

INTEGRATING LARGE LANGUAGE MODEL AND PSYCHOMETRIC
ANALYSIS TO UNDERSTAND LEARNER'S CODING BEHAVIORS

M. Zhang1, C. Li1, H. Guo1, M. Li2, A. J. Ko2, B. Zhou2
1Educational Testing Service (UNITED STATES)
2University of Washington (UNITED STATES)

Abstract
Assessing programming skills effectively remains a significant challenge in computer science education,
as traditional methods often prioritize the final code product while overlooking the processes that lead
to a solution. This study investigates how integrating both process-based data captured through
keystroke logs and product-based data extracted from final code submissions using a pre-trained
DeBERTa model can enhance and facilitate the prediction and understanding of student programming
performance. Data from 180 undergraduate students performing Python coding tasks were analyzed.
Random Forest models demonstrated that process features, such as review and programming duration
and number of code test attempts, predict performance more accurately than product features alone,
with the combination of both yielding the highest prediction scores. Hierarchical clustering further
revealed four distinct patterns of student coding behavior and proficiency, ranging from “proficient and
efficient” to “low proficiency but persistent.” These findings revealed the value of process data in
programming assessment and offer practical implications for personalized instruction. Limitations and
future work are discussed as well.

Keywords: Coding, behavioral process, LLM, psychometrics.

1 INTRODUCTION
The growing interest in learning to code spans across students and professionals of all ages, driven by
both career opportunities and the societal impacts of computing. However, educators often find teaching
and assessing computer programming challenging [1, 2]. Despite advancements in identifying learning
difficulties and developing instructional methods, assessing programming skills remains relatively
underdeveloped [3]. Previous research has largely neglected the conflict between evaluating the final
program produced by learners and the process they followed to create it. A key challenge in computer
science education and assessment is understanding the connection between a learner's process and the
resulting programs. Studies on students' programming processes typically examine sequential snapshots
of developing programs. For example, Akram et al. [4] and Miao et al. [5] pinpointed snapshot features
that can be used to provide constructive feedback during coding. Although these studies highlight potential
applications of programming process data, existing literature does not focus on using this data to directly
assess programming skills. This research aims to fill this gap by analyzing process data to investigate how
programming task complexity and characteristics influence student programming strategies and processes.

In this research, we utilize keystroke logs to capture students' programming processes. In the domain of
natural language writing, researchers have demonstrated the benefits of integrating product-based and
process-based approaches to enhance writing assessment [6, 7]. Similar to natural language writing,
where combining product-based and process-based methods has proven beneficial for assessment
purpose [8, 9], we argue that programming also involves a form of writing. Although programming has its
distinct characteristics, it shares commonalities with writing in natural languages. For instance,
programmers, like writers, must prioritize their goals due to limited working memory. In the context of
assessment, the parallels between writing code and natural language are even more pronounced: both
activities respond to tasks (or assessment items) that outline expectations, are evaluated against specific
criteria, and, when the task is sufficiently complex, require students to develop and follow a plan for
production.

Large language models (LLMs), such as GPT-4, have shown promise in understanding and interpreting
computer codes [10]. These models leverage vast amounts of training data, including code repositories,
documentations, and natural language descriptions, to learn the syntax and semantics of various
programming languages [11]. By doing so, LLMs can assist in code comprehension, debugging, and even
code generation. They can analyze code snippets, identify errors, suggest improvements, and provide
explanations for complex code segments, to name a few. In this study, as an initial attempt, we analyzed

Proceedings of EDULEARN25 Conference
June 30th - July 2nd, 2025, Palma, Mallorca, Spain

ISBN: 978-84-09-74218-9
9700

students’ codes (product) using a pre-trained DeBERTa model (i.e., deberta-v3-xsmall) [12], and combined
the information extracted from process data captured by keystroke logs. Specifically, we address the
following two research questions: Research Question 1 (RQ1): How well can information extracted from
coding process and/or final code product predict students’ programming performance? Research Question
1 (RQ2): What patterns did students exhibit in their coding processes and final code products?

Addressing these research questions has significant practical implications for learners and educators.
Understanding how information from the coding process and final code products predicts performance
can help educators tailor their teaching methods. By identifying key indicators of success, educators can
provide targeted support to students who may struggle, ultimately improving learning outcomes and
coding proficiency. Identifying coding patterns can facilitate personalized learning experiences, where
instructional strategies can potentially be adapted to fit each student's unique coding style, fostering
better engagement and mastery of coding skills.

2 METHODOLOGY
In this section, we describe the data set including the participants, the coding items and the assessment
delivery platform, as well as the data analyses applied to address the two research questions.

2.1 Data Set
We used a dataset collected from 180 undergraduate students enrolled in universities in North America.
The students were recruited and participated in this study on a voluntary basis and received a moderate
monetary compensation. Most participants were either currently enrolled in or had previously taken
introductory Python programming courses. Our research team created 21 Python practice coding tasks
with varying levels of difficulty and specific task characteristics. Each task included 7 or 8 test cases for
students to verify the accuracy, or correctness, of their codes. More detailed descriptions of the recruiting
process and participants can be found in Guo et al. [13] and Chen et al. [14]. These tasks were
administered through an online learning platform specifically designed for this study, shown in Fig. 1.
Students could attempt each task multiple times within a two-week period, and any incomplete work was
automatically recorded by the system at the end of this period. We also referred these tasks as coding
items hereafter.

Figure 1. Coding task interface.

The items were divided into two test forms, enabling a two-stage test design [15]. Students' performance
in the first stage determined whether they were routed to a more difficult or easier form in the second
stage. Consequently, the items used in the second stage had smaller sample sizes by design. In this
study, we analyzed five items from the first test stage, which had larger sample sizes (ranging from 134
to 180) and were of a medium difficulty level as determined by context experts on the research team.

9701

2.2 Data Analysis
To address RQ1, we extracted product features using the last layer embeddings from the DeBERTa
model. Specifically, using the pretrained DeBERTa-v3-xsmall model, we processed students' final codes
to generate vector representations. This model, with its 12 layers and a hidden size of 384, produces
vectors that, hopefully, can encapsulate the nuances of the codes. We focused on the final layer
embeddings and performed principal component analysis (PCA), for each item separately, to reduce
the complexity of the high-dimensional embedding data from the language model. We analyzed the
predictive power for different numbers of principal components (PCs).

In addition, we extracted process features from keystroke logs. Table 1 outlines four key process
features derived from keystroke logs, which provide insights into students' coding behaviors.

Table 1. Definitions of Process Feature Variables.

Predictor Definition

Intermediate Review
Duration

Sum of all pause durations before checking code accuracy against test cases
(in seconds, logged)

Final Review Duration The pause duration before final code submission (in seconds, logged)

Programming Duration Total time spent on writing codes (total time duration spent on an item minus
the intermediate and final review durations) (in seconds, logged)

Attempt Count Number of times a student checks the code accuracy against test cases before
final code submission

The “Intermediate Review Duration” measures the total time spent pausing before checking code
accuracy against test cases. Students may check their codes multiple times over the course of their
coding process, and this feature partially reflects a student’s review and debugging process. The “Final
Review Duration” feature captures the pause duration before the final submission, showing the time
taken for a final review and any last-minute revision. The “Programming Duration” is the total time a
student spent writing code, excluding the intermediate and final review durations. This feature highlights
the active coding time student spent on a task. The “Attempt Count” feature is simply the count of how
many times a student checked their code against test cases, which indicates a student’s iterative testing
and debugging efforts. Finally, as an additional product feature, we extracted a “Code Length” variable,
calculated as the number of characters in the final submitted code.

For each item, we applied Random Forest models to predict student’s performance using process and/or
product features identified above, where student’s performance (prediction target) was determined to
be 1 if the final code passed all test cases and 0 otherwise. We implemented a four-fold cross-validation
approach and reported average prediction accuracy and F1 score (which represents overall model
performance by combining precision and recall) across folds.

For RQ2, we performed hierarchical clustering using Ward’s minimum variance method where variances
were defined using squared Euclidean distances between responses [16]. The input variables for
clustering included both process and product variables. We inspected the dendrograms resulting from
each item as well as between and within cluster variance plots by the number of clusters to decide on a
cluster number that make sense across items. It is of note that there is no definitive method or rule that
works for all datasets. And determining the optimal number of clusters can be challenging as a result.
The decision ought to be guided by the content and context of the data, ensuring that the clusters formed
are meaningful and interpretable. All the analyses in this study were conducted using Python.

3 RESULTS

3.1 Predicting Performance Using Process and Product Features (RQ1)
The principal component analysis (PCA) revealed that, consistently across items, the first four PCs
explained more than 50% of the variance, the first 10 PCs explained more than 75% of the variance,
and the first 20 PCs, over 85%. Fig. 2 shows the cumulative explained variance against the number of
principal components.

9702

Figure 2. Cumulative explained variance plot.

Fig. 3 and Fig. 4 demonstrate the prediction accuracy and F1 score, respectively, obtained from various
predictor sets for each coding item, based on Random Forest models. The prediction target is the
dichotomous scores on the final code submission: if the code correctly solves all test cases, the score
is 1, otherwise, 0. The results indicate that using only four principal components (PCs) as predictors can
achieve comparable prediction accuracy and F1 scores to using 10 or 20 PCs. Adding "Code Length"
to the predictor set does not significantly or consistently enhance prediction accuracy and F1 scores.
Except for the item "classify_sum," using process features alone (represented by the "Process" bars in
lighter blue) resulted in considerably higher prediction accuracy and F1 scores compared to using
product features alone. Furthermore, combining process features (as described in Table 1) with product
variables as a predictor set led to notably higher prediction accuracy and F1 scores than using product
variables (PC and/or Code Length) alone.

Figure 3. Prediction accuracy by item and predictor set.

Figure 4. F1 score by item and predictor set.

9703

These results above demonstrated the valuable information that can be gained from students’ coding
processes, beyond just their final code submissions. The next research question examines the potential
strategies students use while coding, which offers deeper insights into their problem-solving skills,
debugging techniques, and overall coding habits.

3.2 Clustering of Coding Patterns (RQ2)
Results from RQ1 suggest that process-oriented information are predictive of proficiency. RQ2
investigates whether they can reveal patterns and behaviours that are not evident from the final code
alone, which will in turn enable more targeted and effective instructional interventions. Based on the
RQ1 results, we moved forward with data analysis using the first 4 PCs. The clustering analysis was
conducted separately for each item on the 4 PCs, the process features (listed in Table 1), Code Length,
as well as scores. Fig. 5 shows the dendrograms in the hierarchical clustering, where the X-axis
represents the students’ codes and Y-axis represents the distances between the clusters. The height of
each merge (on the Y-axis) in the dendrogram indicates the level of dissimilarity between the clusters
being merged, with higher merges representing greater dissimilarity.

Figure 5. Dendrogram by item.

We identified and selected a four-cluster solution that was consistent and interpretable across items.
Table 2 describes the key characteristics for each cluster based on those “explainable” input variables
-- the scores, process features and code length. The four clusters represent distinct profiles based on
their programming and review patterns. Cluster 1, labelled "Proficient and efficient," is characterized by
short intermediate review times, concise code, short programming durations, and high scores, indicating
a streamlined and effective approach. Cluster 2, "Proficient and thoughtful," also achieves high scores
with short code but takes longer during the final review phase, suggesting a more meticulous, thoughtful
and reflective coding process. Cluster 3, "Persistent and adequate proficiency," involves more checking
on code accuracy against test cases (more attempts), extended programming times, and longer code,
associated with decent scores, highlighting a persistent and thorough effort. Lastly, Cluster 4, "Low
proficiency but persistent," features long codes, more attempts, less review time and prolonged
programming durations, and associated with lower scores, reflecting a low proficient yet persistent
approach.

Table 2. Cluster interpretation.

Cluster Profile Characteristic Patterns

1 Proficient and efficient Short intermediate review time, short code, short programming time,
high score

2 Proficient and thoughtful Short code, long final review time, high score

3 Persistent and adequate
proficiency More attempts, long programming time, long code, decent score

4 Low proficiency but
persistent

Long code, more attempts, less review time, long programming time,
low score

For more detailed results, Table 3 shows the means of the clustering input variables used to arrive at
these interpretations. It is noted that, while principal components (PCs) were utilized as input variables
in the clustering analysis, they were not employed for interpreting the clusters due to their lack of
explainability.

9704

Table 3. Means of explainable cluttering variables.

Item Cluster/
Profile

Cluster
Size

Final
Score

Intermediate
Review Duration
(in sec. logged)

Final Review
Duration

(in sec. Logged)

Programming
Duration

(in sec. Logged)
Attempt
Count

Code
Length

cla
ss

ify
_

su
m

1 30 0.867 -1.421 -4.361 4.103 2.267 113.100
2 35 0.857 -1.585 -3.909 4.101 2.229 93.657
3 47 0.851 -1.312 -4.155 4.548 2.660 143.362
4 22 0.500 -1.847 -5.618 3.845 2.091 160.045

co
nt

ai
ns

_
m

ax
_d

if 1 35 0.914 -1.893 0.667 4.154 1.543 99.686
2 44 0.977 -1.949 0.983 4.147 1.364 159.432
3 37 0.730 -0.937 -0.289 4.792 2.514 227.865
4 28 0.679 -0.870 -0.288 5.505 2.750 325.071

di
gi

t_
su

m
_

m
at

ch
 1 43 0.744 -1.560 0.168 5.057 2.233 125.558

2 34 0.824 -1.110 0.460 5.381 2.471 306.471
3 40 0.625 -0.860 -0.833 4.993 2.700 240.450
4 35 0.486 -1.095 -1.457 5.421 2.914 174.657

re
ve

rs
e_

w

or
d

1 39 0.795 -1.571 -0.398 4.009 2.333 162.641
2 38 0.816 -1.180 -0.133 4.733 2.868 94.737
3 17 0.765 -1.156 0.033 4.658 2.647 211.412
4 33 0.636 -0.752 -1.338 5.534 3.121 271.879

vo
w

el
_

co
un

t

1 32 0.844 -1.803 0.739 4.202 2.156 115.906
2 34 0.912 -1.287 1.617 4.572 2.647 144.382
3 53 0.811 -1.527 0.551 4.627 2.453 168.717
4 18 0.667 -1.035 -0.754 5.339 3.111 229.333

4 CONCLUSIONS
In this study, we addressed the challenges of assessing programming skills among undergraduate
students by leveraging both the process (keystroke logs) and product (final code submissions) aspects
of coding tasks. Student performance or proficiency, as evaluated based on whether or not successfully
passing all test cases, was predicted with high accuracy using Random Forest models: process features
alone generally outperformed product features and that the combination of both also yielded high
prediction accuracy and F1 scores. Hierarchical clustering of both process and product variables
identified four distinct profiles, each characterized by unique coding strategies and proficiency levels:
"proficient and efficient," "proficient and thoughtful," "persistent and adequate proficiency," and "low
proficiency but persistent."

The findings of this study highlight the useful insights that process data can add to conventional product-
based assessment of programming skills. Traditionally, assessment in computer science education has
focused almost exclusively on the final code product, potentially overlooking the strategies and
behaviors that lead to student success or difficulties. The potential of process-based reporting has been
shown valuable in the natural language writing context [17]. Here, our analyses demonstrate that
process features, such as time spent reviewing, the number of code check attempts, and programming
duration, are at least as informative, and often more predictive, of student proficiency than code product
features alone.

The PCA analysis revealed that even a very small number of principal components from code
embeddings could capture a large portion of product variance. However, in most cases, process features
yielded higher prediction accuracy and F1 scores in predicting student performance. This suggests that
students' pathways to a solution, including habits of reviewing and debugging, are essential indicators
of their programming proficiency. Practically, this result indicates that integrating both types of data may
lead to an assessment framework that is not only more holistic but also more informative for students
and educators.

9705

Furthermore, the clustering analysis provides actionable insights into student behaviors. By categorizing
students into distinct profiles based on both their processes and final products, instructors may better
recognize the individual differences in learning and problem-solving. While this study is an initial attempt
to classify coding patterns, the findings show promises to have important pedagogical implications.
Educators may use process data to detect struggling students earlier, tailor feedback, and adapt
instruction to match distinct coding styles. For example, the "proficient and efficient" group quickly
produced successful, concise code, while "proficient and thoughtful" students took more time in their
reviews before submission. Persistent students, regardless of proficiency, made more attempts and
spent longer coding, suggesting resilience but perhaps a need for additional guidance or feedback to
improve effectiveness.

Some limitations should be acknowledged. One key limitation of this work lies in the use of the DeBERTa
pre-trained language model for extracting code embeddings. While DeBERTa has shown capability in
understanding the syntax and superficial semantics of code, it is not specifically designed for code
analysis and may not fully capture deeper structures such as algorithmic efficiency, logical correctness,
or problem-solving approaches embedded in the code. Therefore, reliance on DeBERTa embeddings
could obscure important facets of programming skill, and future work should explore language models
specifically trained for code or incorporate static code analysis tools to enrich product features (such as
StarCoder in [18]). Additionally, while clustering offered interpretable profiles, the selection of the optimal
number of clusters remains somewhat subjective. Thirdly, only a small number of process features were
extracted and used for analysis. Future research is advised to craft more fine-grained process features
from keystroke logs such as those used in natural language composition (e.g., phrase and sentence-
level editing, keyboarding transcription) [19, 20]. Additionally, the participants were constrained to North
American university students familiar with Python, possibly limiting generalizability. Finally, the scope of
programming tasks was also relatively narrow, focused on introductory-level problems. Future research
is encouraged to explore broader, more diverse datasets, and examine whether these findings
generalize to other programming languages and educational contexts.

ACKNOWLEDGEMENTS
This work is supported by the NSF ECR-DUE Awards 2055550 and 2100296.

REFERENCES
[1] M. B. Garcia. “Profiling the Skill Mastery of Introductory Programming Students: A Cognitive

Diagnostic Modeling Approach.” Education and Information Technology, 30, 6455-6481. 2025.

[2] B. Xie, D. Loksa, G. L. Nelson, M. J. Davidson… and A. Ko. “A theory of instruction for
introductory programming skills.” Computer Science Education, 26, 205-253. 2019.

[3] S. A. Fincher and A. V. Robins. The Cambridge handbook of computing education research.
Cambridge University Press, 2019.

[4] B. Akram, H. Azizolsoltani, W. Min, E. Wiebe… and J. Lester. “Automated Assessment of
Computer Science Competencies from Student Programs with Gaussian Process Regression.”
In Proceedings of the 13th International Conference on Educational Data Mining (EDM 2020),
A. N. Rafferty, J. Whitehill, V.Cavalli-Sforza, and C.Romero (Eds.), pp. 555-560. 2020.

[5] D. Miao, Y. Dong, and X. Lu. “Pipe: Predicting Logical Programming Errors in Programming
Exercises.” In Proceedings of the 13th International Conference on Educational Data Mining
(EDM 2020), A. N. Rafferty, J. Whitehill, V.Cavalli-Sforza, and C.Romero (Eds.), pp. 473-479. 2020.

[6] R. Conijn, C. Cook, M. van Zaanen, and L. Van Waes. “Early Prediction of Writing Quality Using
Keystroke Logging.” International Journal of Artificial Intelligence in Education, 32, 835-866. 2022.

[7] M. Zhang, P. Deane, A. Hoang, H. Guo, H. and Li, C. “Applications and modeling of keystroke
logs in writing assessments.” Educational Measurement: Issues and Practice. Online First. 2025.

[8] M. Zhang and S. Sinharay. “Investigating the Writing Performance of Educationally At-risk
Examinees Using Technology.” International Journal of Testing, 22, 312-347. 2022.

[9] R. E. Bennett, M. Zhang, S. Sinharay, H. Guo and P. Deane. “Are There Distinctive Profiles in
Essay-Writing Processes?” Educational Measurement: Issues and Practice, 41, 55-69. 2021.

9706

[10] X. Du, M. Liu, K. Wang, H. Wang … Y. Lou. “Evaluating Large Language Models in Class-Level
Code Generation.” In Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering (ICSE '24). Article 81, 1-13. 2024.

[11] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke… and Y. Zhang. “Sparks of Artificial
General Intelligence: Early Experiments with GPT-4.” Retrieved from
https://arxiv.org/abs/2303.12712. 2023.

[12] P. He, J. Gao and W. Chen. “DeBERTaV3: Improving DeBERTa using ELECTRA-Style Pre-
Training with Gradient-Disentangled Embedding Sharing.” Retrieved from
https://arxiv.org/pdf/2111.09543. 2023.

[13] H. Guo, M. Zhang, A. Ko, M. Li… and C. Li. “Measuring Students’ Programming Skill via Online
Practice.” In Proceedings of the 8th Educational Data Mining in Computer Science Education
(CSEDM) Workshop. Atlanta, GA. 2024.

[14] Li, C., Zhang, M., Guo, H., Liu, X., Ko, A., & Li, C. “Leveraging Psychometric Modeling for
Enhancing Programming Skill Assessments.” In Proceedings of the 2025 ICAEI Conference,
Suzhou, China. 2025.

[15] M. S. Yigiter and N. Dogan. “Computerized Multistage Testing: Principles, Designs and
Practices with R.” Measurement: Interdisciplinary Research and Perspectives, 21(4), 254-277. 2023.

[16] Ward, J. H., Jr. “Hierarchical Grouping to Optimize an Objective Function,” Journal of the
American Statistical Association, 58, 236-244. 1963.

[17] N. Vandermeulen, M. Leijten and L. Van Waes. “Reporting Writing Process Feedback in the
Classroom: Using Keystroke Logging Data to Reflect on Writing Processes.” Journal of Writing
Research, 12(1), 109-140. 2020.

[18] A. Lozhkov, R. Li, L. B. Allal, F. Cassano… and H. de Vries. “StarCoder 2 and The Stack v2:
The Next Generation.” Retrieved from https://arxiv.org/abs/2402.19173. 2024.

[19] G. Tao, M. Zhang, and C. Li. “Association of Keyboarding Fluency and Writing Performance in
Online-Delivered Assessment.” Assessing Writing, 51, 100575. 2022.

[20] M. Zhang and P. Deane. “Process Features in Writing: Internal Structure and Incremental Value
Over Product Features.” ETS Research Report Series RR-15-27. Princeton, NJ. 2015.

9707

https://arxiv.org/abs/2303.12712
https://arxiv.org/pdf/2111.09543
https://arxiv.org/abs/2402.19173

