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Abstract 
Assessing programming skills effectively remains a significant challenge in computer science education, 
as traditional methods often prioritize the final code product while overlooking the processes that lead 
to a solution. This study investigates how integrating both process-based data captured through 
keystroke logs and product-based data extracted from final code submissions using a pre-trained 
DeBERTa model can enhance and facilitate the prediction and understanding of student programming 
performance. Data from 180 undergraduate students performing Python coding tasks were analyzed. 
Random Forest models demonstrated that process features, such as review and programming duration 
and number of code test attempts, predict performance more accurately than product features alone, 
with the combination of both yielding the highest prediction scores. Hierarchical clustering further 
revealed four distinct patterns of student coding behavior and proficiency, ranging from “proficient and 
efficient” to “low proficiency but persistent.” These findings revealed the value of process data in 
programming assessment and offer practical implications for personalized instruction. Limitations and 
future work are discussed as well. 
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1 INTRODUCTION 
The growing interest in learning to code spans across students and professionals of all ages, driven by 
both career opportunities and the societal impacts of computing. However, educators often find teaching 
and assessing computer programming challenging [1, 2]. Despite advancements in identifying learning 
difficulties and developing instructional methods, assessing programming skills remains relatively 
underdeveloped [3]. Previous research has largely neglected the conflict between evaluating the final 
program produced by learners and the process they followed to create it. A key challenge in computer 
science education and assessment is understanding the connection between a learner's process and the 
resulting programs. Studies on students' programming processes typically examine sequential snapshots 
of developing programs. For example, Akram et al. [4] and Miao et al. [5] pinpointed snapshot features 
that can be used to provide constructive feedback during coding. Although these studies highlight potential 
applications of programming process data, existing literature does not focus on using this data to directly 
assess programming skills. This research aims to fill this gap by analyzing process data to investigate how 
programming task complexity and characteristics influence student programming strategies and processes. 

In this research, we utilize keystroke logs to capture students' programming processes. In the domain of 
natural language writing, researchers have demonstrated the benefits of integrating product-based and 
process-based approaches to enhance writing assessment [6, 7]. Similar to natural language writing, 
where combining product-based and process-based methods has proven beneficial for assessment 
purpose [8, 9], we argue that programming also involves a form of writing. Although programming has its 
distinct characteristics, it shares commonalities with writing in natural languages. For instance, 
programmers, like writers, must prioritize their goals due to limited working memory. In the context of 
assessment, the parallels between writing code and natural language are even more pronounced: both 
activities respond to tasks (or assessment items) that outline expectations, are evaluated against specific 
criteria, and, when the task is sufficiently complex, require students to develop and follow a plan for 
production. 

Large language models (LLMs), such as GPT-4, have shown promise in understanding and interpreting 
computer codes [10]. These models leverage vast amounts of training data, including code repositories, 
documentations, and natural language descriptions, to learn the syntax and semantics of various 
programming languages [11]. By doing so, LLMs can assist in code comprehension, debugging, and even 
code generation. They can analyze code snippets, identify errors, suggest improvements, and provide 
explanations for complex code segments, to name a few. In this study, as an initial attempt, we analyzed 
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students’ codes (product) using a pre-trained DeBERTa model (i.e., deberta-v3-xsmall) [12], and combined 
the information extracted from process data captured by keystroke logs. Specifically, we address the 
following two research questions: Research Question 1 (RQ1): How well can information extracted from 
coding process and/or final code product predict students’ programming performance? Research Question 
1 (RQ2): What patterns did students exhibit in their coding processes and final code products? 

Addressing these research questions has significant practical implications for learners and educators. 
Understanding how information from the coding process and final code products predicts performance 
can help educators tailor their teaching methods. By identifying key indicators of success, educators can 
provide targeted support to students who may struggle, ultimately improving learning outcomes and 
coding proficiency. Identifying coding patterns can facilitate personalized learning experiences, where 
instructional strategies can potentially be adapted to fit each student's unique coding style, fostering 
better engagement and mastery of coding skills. 

2 METHODOLOGY 
In this section, we describe the data set including the participants, the coding items and the assessment 
delivery platform, as well as the data analyses applied to address the two research questions.  

2.1 Data Set 
We used a dataset collected from 180 undergraduate students enrolled in universities in North America. 
The students were recruited and participated in this study on a voluntary basis and received a moderate 
monetary compensation. Most participants were either currently enrolled in or had previously taken 
introductory Python programming courses. Our research team created 21 Python practice coding tasks 
with varying levels of difficulty and specific task characteristics. Each task included 7 or 8 test cases for 
students to verify the accuracy, or correctness, of their codes. More detailed descriptions of the recruiting 
process and participants can be found in Guo et al. [13] and Chen et al. [14]. These tasks were 
administered through an online learning platform specifically designed for this study, shown in Fig. 1. 
Students could attempt each task multiple times within a two-week period, and any incomplete work was 
automatically recorded by the system at the end of this period. We also referred these tasks as coding 
items hereafter.  

 
Figure 1. Coding task interface. 

The items were divided into two test forms, enabling a two-stage test design [15]. Students' performance 
in the first stage determined whether they were routed to a more difficult or easier form in the second 
stage. Consequently, the items used in the second stage had smaller sample sizes by design. In this 
study, we analyzed five items from the first test stage, which had larger sample sizes (ranging from 134 
to 180) and were of a medium difficulty level as determined by context experts on the research team. 
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2.2 Data Analysis 
To address RQ1, we extracted product features using the last layer embeddings from the DeBERTa 
model. Specifically, using the pretrained DeBERTa-v3-xsmall model, we processed students' final codes 
to generate vector representations. This model, with its 12 layers and a hidden size of 384, produces 
vectors that, hopefully, can encapsulate the nuances of the codes. We focused on the final layer 
embeddings and performed principal component analysis (PCA), for each item separately, to reduce 
the complexity of the high-dimensional embedding data from the language model. We analyzed the 
predictive power for different numbers of principal components (PCs). 

In addition, we extracted process features from keystroke logs. Table 1 outlines four key process 
features derived from keystroke logs, which provide insights into students' coding behaviors.  

Table 1. Definitions of Process Feature Variables. 

Predictor Definition 

Intermediate Review 
Duration 

Sum of all pause durations before checking code accuracy against test cases 
(in seconds, logged) 

Final Review Duration The pause duration before final code submission (in seconds, logged) 

Programming Duration Total time spent on writing codes (total time duration spent on an item minus 
the intermediate and final review durations) (in seconds, logged) 

Attempt Count Number of times a student checks the code accuracy against test cases before 
final code submission 

The “Intermediate Review Duration” measures the total time spent pausing before checking code 
accuracy against test cases. Students may check their codes multiple times over the course of their 
coding process, and this feature partially reflects a student’s review and debugging process. The “Final 
Review Duration” feature captures the pause duration before the final submission, showing the time 
taken for a final review and any last-minute revision. The “Programming Duration” is the total time a 
student spent writing code, excluding the intermediate and final review durations. This feature highlights 
the active coding time student spent on a task. The “Attempt Count” feature is simply the count of how 
many times a student checked their code against test cases, which indicates a student’s iterative testing 
and debugging efforts. Finally, as an additional product feature, we extracted a “Code Length” variable, 
calculated as the number of characters in the final submitted code. 

For each item, we applied Random Forest models to predict student’s performance using process and/or 
product features identified above, where student’s performance (prediction target) was determined to 
be 1 if the final code passed all test cases and 0 otherwise. We implemented a four-fold cross-validation 
approach and reported average prediction accuracy and F1 score (which represents overall model 
performance by combining precision and recall) across folds. 

For RQ2, we performed hierarchical clustering using Ward’s minimum variance method where variances 
were defined using squared Euclidean distances between responses [16]. The input variables for 
clustering included both process and product variables. We inspected the dendrograms resulting from 
each item as well as between and within cluster variance plots by the number of clusters to decide on a 
cluster number that make sense across items. It is of note that there is no definitive method or rule that 
works for all datasets. And determining the optimal number of clusters can be challenging as a result. 
The decision ought to be guided by the content and context of the data, ensuring that the clusters formed 
are meaningful and interpretable. All the analyses in this study were conducted using Python. 

3 RESULTS 

3.1 Predicting Performance Using Process and Product Features (RQ1) 
The principal component analysis (PCA) revealed that, consistently across items, the first four PCs 
explained more than 50% of the variance, the first 10 PCs explained more than 75% of the variance, 
and the first 20 PCs, over 85%. Fig. 2 shows the cumulative explained variance against the number of 
principal components. 
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Figure 2. Cumulative explained variance plot. 

Fig. 3 and Fig. 4 demonstrate the prediction accuracy and F1 score, respectively, obtained from various 
predictor sets for each coding item, based on Random Forest models. The prediction target is the 
dichotomous scores on the final code submission: if the code correctly solves all test cases, the score 
is 1, otherwise, 0. The results indicate that using only four principal components (PCs) as predictors can 
achieve comparable prediction accuracy and F1 scores to using 10 or 20 PCs. Adding "Code Length" 
to the predictor set does not significantly or consistently enhance prediction accuracy and F1 scores. 
Except for the item "classify_sum," using process features alone (represented by the "Process" bars in 
lighter blue) resulted in considerably higher prediction accuracy and F1 scores compared to using 
product features alone. Furthermore, combining process features (as described in Table 1) with product 
variables as a predictor set led to notably higher prediction accuracy and F1 scores than using product 
variables (PC and/or Code Length) alone. 

 
Figure 3. Prediction accuracy by item and predictor set. 

 
Figure 4. F1 score by item and predictor set. 
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These results above demonstrated the valuable information that can be gained from students’ coding 
processes, beyond just their final code submissions. The next research question examines the potential 
strategies students use while coding, which offers deeper insights into their problem-solving skills, 
debugging techniques, and overall coding habits. 

3.2 Clustering of Coding Patterns (RQ2) 
Results from RQ1 suggest that process-oriented information are predictive of proficiency. RQ2 
investigates whether they can reveal patterns and behaviours that are not evident from the final code 
alone, which will in turn enable more targeted and effective instructional interventions. Based on the 
RQ1 results, we moved forward with data analysis using the first 4 PCs. The clustering analysis was 
conducted separately for each item on the 4 PCs, the process features (listed in Table 1), Code Length, 
as well as scores. Fig. 5 shows the dendrograms in the hierarchical clustering, where the X-axis 
represents the students’ codes and Y-axis represents the distances between the clusters. The height of 
each merge (on the Y-axis) in the dendrogram indicates the level of dissimilarity between the clusters 
being merged, with higher merges representing greater dissimilarity.  

 
Figure 5. Dendrogram by item. 

We identified and selected a four-cluster solution that was consistent and interpretable across items. 
Table 2 describes the key characteristics for each cluster based on those “explainable” input variables 
-- the scores, process features and code length. The four clusters represent distinct profiles based on 
their programming and review patterns. Cluster 1, labelled "Proficient and efficient," is characterized by 
short intermediate review times, concise code, short programming durations, and high scores, indicating 
a streamlined and effective approach. Cluster 2, "Proficient and thoughtful," also achieves high scores 
with short code but takes longer during the final review phase, suggesting a more meticulous, thoughtful 
and reflective coding process. Cluster 3, "Persistent and adequate proficiency," involves more checking 
on code accuracy against test cases (more attempts), extended programming times, and longer code, 
associated with decent scores, highlighting a persistent and thorough effort. Lastly, Cluster 4, "Low 
proficiency but persistent," features long codes, more attempts, less review time and prolonged 
programming durations, and associated with lower scores, reflecting a low proficient yet persistent 
approach.  

Table 2. Cluster interpretation. 

Cluster  Profile Characteristic Patterns 

1 Proficient and efficient Short intermediate review time, short code, short programming time, 
high score 

2 Proficient and thoughtful Short code, long final review time, high score 

3 Persistent and adequate 
proficiency More attempts, long programming time, long code, decent score 

4 Low proficiency but 
persistent 

Long code, more attempts, less review time, long programming time, 
low score 

For more detailed results, Table 3 shows the means of the clustering input variables used to arrive at 
these interpretations. It is noted that, while principal components (PCs) were utilized as input variables 
in the clustering analysis, they were not employed for interpreting the clusters due to their lack of 
explainability. 
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Table 3. Means of explainable cluttering variables. 

Item Cluster/ 
Profile 

Cluster 
Size 

Final 
Score 

Intermediate 
Review Duration 
(in sec. logged) 

Final Review 
Duration  

(in sec. Logged) 

Programming 
Duration  

(in sec. Logged) 
Attempt 
Count 

Code 
Length 

cla
ss

ify
_ 

su
m

 

1 30 0.867 -1.421 -4.361 4.103 2.267 113.100 
2 35 0.857 -1.585 -3.909 4.101 2.229 93.657 
3 47 0.851 -1.312 -4.155 4.548 2.660 143.362 
4 22 0.500 -1.847 -5.618 3.845 2.091 160.045 

co
nt

ai
ns

_ 
m

ax
_d

if 1 35 0.914 -1.893 0.667 4.154 1.543 99.686 
2 44 0.977 -1.949 0.983 4.147 1.364 159.432 
3 37 0.730 -0.937 -0.289 4.792 2.514 227.865 
4 28 0.679 -0.870 -0.288 5.505 2.750 325.071 

di
gi

t_
su

m
_ 

m
at

ch
 1 43 0.744 -1.560 0.168 5.057 2.233 125.558 

2 34 0.824 -1.110 0.460 5.381 2.471 306.471 
3 40 0.625 -0.860 -0.833 4.993 2.700 240.450 
4 35 0.486 -1.095 -1.457 5.421 2.914 174.657 

re
ve

rs
e_

 
w

or
d 

1 39 0.795 -1.571 -0.398 4.009 2.333 162.641 
2 38 0.816 -1.180 -0.133 4.733 2.868 94.737 
3 17 0.765 -1.156 0.033 4.658 2.647 211.412 
4 33 0.636 -0.752 -1.338 5.534 3.121 271.879 

vo
w

el
_ 

co
un

t 

1 32 0.844 -1.803 0.739 4.202 2.156 115.906 
2 34 0.912 -1.287 1.617 4.572 2.647 144.382 
3 53 0.811 -1.527 0.551 4.627 2.453 168.717 
4 18 0.667 -1.035 -0.754 5.339 3.111 229.333 

4 CONCLUSIONS 
In this study, we addressed the challenges of assessing programming skills among undergraduate 
students by leveraging both the process (keystroke logs) and product (final code submissions) aspects 
of coding tasks. Student performance or proficiency, as evaluated based on whether or not successfully 
passing all test cases, was predicted with high accuracy using Random Forest models: process features 
alone generally outperformed product features and that the combination of both also yielded high 
prediction accuracy and F1 scores. Hierarchical clustering of both process and product variables 
identified four distinct profiles, each characterized by unique coding strategies and proficiency levels: 
"proficient and efficient," "proficient and thoughtful," "persistent and adequate proficiency," and "low 
proficiency but persistent." 

The findings of this study highlight the useful insights that process data can add to conventional product-
based assessment of programming skills. Traditionally, assessment in computer science education has 
focused almost exclusively on the final code product, potentially overlooking the strategies and 
behaviors that lead to student success or difficulties. The potential of process-based reporting has been 
shown valuable in the natural language writing context [17]. Here, our analyses demonstrate that 
process features, such as time spent reviewing, the number of code check attempts, and programming 
duration, are at least as informative, and often more predictive, of student proficiency than code product 
features alone. 

The PCA analysis revealed that even a very small number of principal components from code 
embeddings could capture a large portion of product variance. However, in most cases, process features 
yielded higher prediction accuracy and F1 scores in predicting student performance. This suggests that 
students' pathways to a solution, including habits of reviewing and debugging, are essential indicators 
of their programming proficiency. Practically, this result indicates that integrating both types of data may 
lead to an assessment framework that is not only more holistic but also more informative for students 
and educators.  
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Furthermore, the clustering analysis provides actionable insights into student behaviors. By categorizing 
students into distinct profiles based on both their processes and final products, instructors may better 
recognize the individual differences in learning and problem-solving. While this study is an initial attempt 
to classify coding patterns, the findings show promises to have important pedagogical implications. 
Educators may use process data to detect struggling students earlier, tailor feedback, and adapt 
instruction to match distinct coding styles. For example, the "proficient and efficient" group quickly 
produced successful, concise code, while "proficient and thoughtful" students took more time in their 
reviews before submission. Persistent students, regardless of proficiency, made more attempts and 
spent longer coding, suggesting resilience but perhaps a need for additional guidance or feedback to 
improve effectiveness. 

Some limitations should be acknowledged. One key limitation of this work lies in the use of the DeBERTa 
pre-trained language model for extracting code embeddings. While DeBERTa has shown capability in 
understanding the syntax and superficial semantics of code, it is not specifically designed for code 
analysis and may not fully capture deeper structures such as algorithmic efficiency, logical correctness, 
or problem-solving approaches embedded in the code. Therefore, reliance on DeBERTa embeddings 
could obscure important facets of programming skill, and future work should explore language models 
specifically trained for code or incorporate static code analysis tools to enrich product features (such as 
StarCoder in [18]). Additionally, while clustering offered interpretable profiles, the selection of the optimal 
number of clusters remains somewhat subjective. Thirdly, only a small number of process features were 
extracted and used for analysis. Future research is advised to craft more fine-grained process features 
from keystroke logs such as those used in natural language composition (e.g., phrase and sentence-
level editing, keyboarding transcription) [19, 20]. Additionally, the participants were constrained to North 
American university students familiar with Python, possibly limiting generalizability. Finally, the scope of 
programming tasks was also relatively narrow, focused on introductory-level problems. Future research 
is encouraged to explore broader, more diverse datasets, and examine whether these findings 
generalize to other programming languages and educational contexts. 
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