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ABSTRACT
Background and Context: Current introductory instruction
fails to identify, structure, and sequence the many skills
involved in programming.
Objective: We proposed a theory which identi�es four dis-
tinct skills that novices learn incrementally. These skills are
tracing, writing syntax, comprehending templates (reusable
abstractions of programming knowledge), and writing code
with templates. We theorized that explicit instruction of
these skills decreases cognitive demand.
Method: We conducted an exploratory mixed-methods
study and compared students’ exercise completion rates,
error rates, ability to explain code, and engagement when
learning to program. We compared material that re�ects this
theory to more traditional material that does not distinguish
between skills.
Findings: Teaching skills incrementally resulted in improved
completion rate on practice exercises, and decreased error
rate and improved understanding of the post-test.
Implications: By structuring programming skills such that they
can be taught explicitly and incrementally, we can inform
instructional design and improve future research on under-
standing how novice programmers develop understanding.

ARTICLE HISTORY
Received 6 August 2018
Accepted 2 January 2019

KEYWORDS
Computing education;
theory of instruction;
instructional design; skill
acquisition; introductory
computer science (CS1)

1. Introduction: CS1 instruction could better teach programming skills

Programming requires many distinct skills. In addition to basic knowledge of
programming constructs (Tew & Guzdial, 2010), programming also requires pro-
cedural skills to perform tasks with these constructs (e.g. tracing code and writing
correct syntax) (Davies, 1993; Sanders et al., 2012; Winslow, 1996). For example,
tracing is a critical skill (Lopez, Whalley, Robbins, & Lister, 2008; Venables, Tan, &
Lister, 2009), which Nelson, Xie, and Ko (2017) formally de�ned as being able to
look at code and predict state changes and outputs through the compilation and
execution of a programming language’s constructs. Explaining code is another
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critical skill, de�ned as reading a piece of code and describing it in relation to the
code’s purpose (Whalley et al., 2006). And then, of course, there is the skill of
writing code, typically characterized as composing syntactically correct code with
a purpose in the context of a problem or speci�cation (Robins, Rountree, &
Rountree, 2003). Many works described and empirically investigated the relation-
ships between these various skills, �nding that while related, these skills are
distinct (Corney, Lister, & Teague, 2011; Lopez et al., 2008; Robins et al., 2003;
Venables et al., 2009; Winslow, 1996).

To teach programming skills e�ectively requires sequencing them.
Educational psychologist Bruner (1966) argued that instruction requires specify-
ing “the ways in which a body of knowledge should be structured so that it can
be most readily grasped by the learner,” as well as “e�ective sequences in which
to present the materials to be learned.” Studies of introductory computer
science (CS1) instruction speci�cally have found gaps in the instruction of
programming skills; for example, Kreitzberg and Swanson (1974) found that
even when students had learned concepts, they could not readily apply them to
programming skills; Sanders et al. (2012) identi�ed that learning to program also
required learning to apply multiple skills, and CS1 instruction lacked adequate
instruction in these skills. In our own observations, we have found CS1 courses at
our institution continue to have problems with overlapping instruction on
programming skills in a way that makes instruction potentially inaccessible for
novices. For example, on the very �rst day of our university’s recent CS1 course,
the instructor showed content on syntax and then proceeded with writing
exercises for practice. Within an hour-long lecture, the instructor showed exam-
ple programs and their output, then asked learners to trace code and determine
correct outputs as well as write code to produce given outputs. Learners with no
prior knowledge felt overwhelmed as they were asked to both trace and write
code simultaneously. Theoretically, empirically, and anecdotally, the lack of
sequencing of skills appears to be a longstanding problem in CS education.

One way to address the lack of structure in programming skills instruction is
to provide explicit instruction on each skill, in sequence (Archer & Hughes, 2010;
Doyle, 1983). For example, Soloway and Ehrlich (1984) proposed identifying and
teaching programming skills by providing instruction on libraries of stereotypi-
cal solutions to problems, as well as strategies for coordinating and composing
them. Others have proposed teaching skills separately and incrementally with
the aim of automating more basic skills (e.g. writing correct syntax) to reduce
confusion and improve learning by lowering cognitive demand (Anderson,
Boyle, Farrell, & Reiser, 1984; Lister et al., 2004). The hope in these works was
that this explicit instruction on skills would free learners to concentrate on more
advanced skills relating to problem-solving (Buck & Stucki, 2000). Although
there have been many theories with implications for CS1 instructional design
for programming skills, few have been translated to concrete instruction, and
when they have, they often lack evaluation.
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In this paper, we build upon these prior theories of CS1 instruction, propos-
ing a new theory of instruction for CS1 programming skills that is simple, has
direct implications for instructional design, and that, when translated into
concrete learning materials, may have measurable impacts on learning. Our
theory structures and sequences four distinct skills: tracing, writing correct
syntax, recognizing the parts and objectives of templates (reusable abstractions
of programming knowledge), and using templates to solve problems. We
hypothesize that explicit, incremental instruction on these four skills will result
in the following e�ects:

(1) Learners will be more able to complete programming tasks
(2) Learners will make fewer errors
(3) Learners will have a greater understanding of the relationship between

parts of the code and the overall purpose
(4) Learners will be more engaged in the learning process

To evaluate our hypotheses, we created learning materials for a subset of CS1
concepts that include instructional content, practice exercises with feedback, and
a post-test which covers these four skills. We then conducted an exploratory,
mixed-methods evaluation of this curriculum with nine novice programmers to
explore the validity of our hypotheses and theory more broadly.

The structure of the paper is as follows: We further substantiate our claims
about the current gaps between empirical �ndings on programming skills and
theories of instruction in Section 2. We then propose our theory of programming
skills instruction in Section 3. In Section 4, we provide a concrete example of
learning materials (instruction, practice, post-test) that we designed based on our
theory. In Section 5, we describe hypotheses based on our theory and detail
a study we conducted to evaluate these hypotheses. We share the results of our
evaluation in Section 6. Finally, we interpret the results, evaluate our hypotheses,
and discuss the implications of our theory in Section 7.

2. Related work: CS1 skills and theories to inform instructional design

In this section, we explore three aspects of related work identifying di�erent
programming skills, gaps in prior theory, and the use of patterns to sca�old
programming knowledge. This related work helps substantiate the need for
a new theory of instruction as well as provide the foundation for it.

2.1. Programming skills (tracing, explaining, writing) are distinct and may
develop sequentially

Much of the literature on the relationships between the skills of tracing, explaining,
and writing code came from a common thread of research from the Leeds Working
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Group and BRACElet workshops (Clear et al., 2011). This work investigated the
teaching and learning of novice programmers, using the Structure of Observed
Learning Outcomes (SOLO) taxonomy (Biggs & Collis, 2014) as a framework for
evaluating novice programmers’ responses to code tracing and explaining pro-
blems (Lister, Simon, Thompson, Whalley, & Prasad, 2006). Di�erent studies used
slight variations of the SOLO taxonomy (Murphy, Fitzgerald, Lister, & McCauley,
2012; Philpott, Robbins, & Whalley, 2007; Whalley et al., 2006), but they all typically
referenced four hierarchical levels of student responses:

(1) Prestructural: Response demonstrates no relevant knowledge or is unre-
lated to the question.

(2) Unistructural: Response provides a description for a small portion of the
code.

(3) Multistructural: Response is a line-by-line description of most of the
code.

(4) Relational: Response provides a summary of what the code does in terms
of the code’s purpose.

Lister et al. (2006) found that responses from experts (educators) tended to
manifest at the relational level of the SOLO taxonomy for tracing problems, as
experts were “seeing the forest.” In contrast, novices who could not produce
relational level responses were “failing to see the forest” and were unable to
extract the purpose or summary of what the code does at a more abstract
level. This work suggested that novice programmers who could provide rela-
tional level responses demonstrated expertise. We used the SOLO taxonomy
for evaluating depth of understanding among participants (see Section 6.3).

Using the SOLO taxonomy to analyze the quality of responses, the Leeds
Working Group and BRACElet workshops made �ndings related to the program-
ming skills novices learn (e.g. tracing, explaining, and writing code). Philpott et al.
(2007) found that novices’ mastery of code tracing indicated their readiness to
reason about or explain the code, suggesting tracing was prerequisite knowledge
for explaining code. Sheard et al. (2008) found a positive correlation between
code explaining and writing tasks. Lopez et al. (2008) found a similar correlation
and suggested a potential hierarchy of programming related tasks with the
knowledge of program constructs at the bottom, code tracing and explaining
ability as part of one or more intermediate levels, and writing ability at the top.
Venables et al. (2009) found a causal relationship between code tracing and
writing, and that the skills of tracing and explaining were strong predictors of
performance on code writing.

This prior work shows that tracing, explaining, and writing code are distinct
skills that are potentially dependent and develop sequentially. Furthermore,
the SOLO taxonomy can be used to evaluate the quality of novices’ responses
to tracing and explaining questions.
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2.2. Theory decomposing programming skills lacks connections to
instruction and lacks a simplifying structure to make instructional design
tractable

Being able to distinguish skills does not necessarily provide guidance on how
they should be taught. To teach these distinct programming skills identi�ed in
the previous section, it would be helpful to have a theory to inform the design
of CS1 instruction that considers these skills. In addition to needing a theory of
instruction to structure and sequence programming skills, it would be ideal to
have it also be translatable to concrete instruction. We found that prior work in
theories of instruction was typically not easily translatable to instruction or did
not adequately account for di�erent programming skills.

2.2.1. Some theories provide abstract constraints without fully specifying
instruction
Basing instruction o� some theories has resulted in constraints for instructional
design without full speci�cation of learning activities. Taxonomies, such as the
SOLO taxonomy discussed previously (Section 2.1), often serve as theories to
provide constraints. Two examples illustrate uses of taxonomies: Recent revi-
sions to Bloom’s taxonomy described the cognitive development of novices
across knowledge domains that are CS-speci�c (Fuller et al., 2007). Many have
used Bloom’s or the SOLO taxonomy to classify instructional content and
assessment items (Thompson, Luxton-Reilly, Whalley, Hu, & Robbins, 2008).
Similarly, Gluga et al. used neo-Piagetian theory to classify the di�culty of
computer science instruction, �nding instructors with varying backgrounds
could reliably identify a problem’s required level of development (after using
a tutorial to learn those levels) (Gluga, Kay, Lister, Simon, & Kleitman, 2013;
Gluga, Kay, Lister, & Teague, 2012). These taxonomies and related theories
have provided general guidelines for instruction, but fall short of being able to
be directly translated to instruction.

Rather than directly adapt more general theories from the learning sciences,
other researchers developed new frameworks and structures speci�c to com-
puter science to provide constraints for instructional design. Whalley and Kasto
(2013) proposed a Block model for measuring the di�culty of code compre-
hension questions and compared it to the SOLO and Bloom taxonomies.
Similarly, Fuller et al. (2007) developed a two-dimensional matrix taxonomy
based on Bloom’s taxonomy along dimensions of producing and interpreting
and includes some concrete discussion of narrow slices of CS1, databases, and
computing professionalism courses. Mead et al. (2006) combined many
threads related to cognition and learning to describe an anchor graph to
represent dependencies among concepts in a course. These prior works pro-
vide CS-speci�c frameworks or structures to support instructional design at
a high-level, but still cannot be directly translated to instruction.
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For each of these theories, we are unaware of work that uses them to make
concrete instructional designs that cover all the skills/components in the
theory. So while some theories provide a means for general classi�cation of
content, they are often too abstract to be directly translated to concrete
instruction.

2.2.2. More speci�c theories do not translate to instruction that supports skill
development
More speci�c theories of instructional design include instructional designs that
have clear realizations, specifying how the knowledge is organized explicitly
for learners, concrete examples of instruction, and concrete examples of
practice and/or assessment. The users of these theories are researchers and
teachers, and potentially also learners themselves. These more concrete the-
ories align with the perspective of Bruner (1966), in which a theory of instruc-
tion must de�ne how a body of knowledge should be structured and
sequenced so it is interpretable for a learner.

Some concrete theories of CS instruction translate to instruction but do not
mention programming skills. For example, Caspersen and Bennedsen (2007)
incorporated cognitive load theory and cognitive skill acquisition into a model
of human cognitive architecture and then presented an introductory object-
oriented programming course. This course used a pattern-based approach to
programming and schema acquisition, but did not specify how to incorporate
di�erent programming skills.

Other concrete theories of instruction provide mention of sequenced pro-
gramming skills but did not detail instruction and practice to fully sca�old the
acquisition of these skills. For example, Buck and Stucki (2000) proposed
a hierarchical progression of skill sets based on Bloom’s taxonomy. This hier-
archy identi�ed tracing as a “lower-level” skill, but their course description did
not include tracing instruction or practice beyond predicting what line exe-
cutes next. More speci�cally, the knowledge and comprehension levels of their
modi�ed Bloom’s taxonomy preceded implementing skills at higher levels, yet
the course design did not provide instruction or practice to support those
levels of knowledge. While the instruction does describe executing code
snippets, it does not assess whether learners can trace code. The only code
comprehension exercise described involved “student[s] predict the next state-
ment to which control will pass, throughout an entire execution of
a procedure. If they predict incorrectly, they are shown the actual line to be
executed next, and they continue from there. . .” In a follow-up paper, Buck and
Stucki (2001) discussed the implementation of this comprehension practice, as
well as practice that involves translating program code into a �owchart; much
of the justi�cation for that instructional design was to try to avoid teaching
variable concepts, and it is unclear when/how variables are taught or assessed.
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Similar to Buck and Stucki (2001) but drawing on neo-Piagetian theories of
programming learning (Morra et al., 2012), Szabo, Falkner, and Falkner (2014)
described a well-de�ned theory for course design, yet their course design was
ambiguous and lacked practice and instruction for lower level skills. While
Szabo applied their theory to designing a second programming course, the
theory did not describe lower level instruction or assessments (e.g. tracing) at
the sensorimotor or pre-operational levels for new concepts such as object-
oriented language features or concepts. Instead, learners experienced “objects
in real life and their interactions” and that seems to have counted for those
skill levels. Yet in their theory they de�ned those levels as relating to tracing
ability at the sensorimotor level as “low abstraction level, can barely trace
code” and pre-operational level “can reliably trace code, but cannot under-
stand functionality”. This misalignment between the speci�cations in their
theory of instructional design and the actual instructional design exists in
other parts of the instruction as well.

Prior theoretical work presaged and re�ected empirical �ndings that lower
level tracing skills precede writing skills; however, prior theories of instructional
designs do not fully specify focused practice, instruction, and assessment that
covers all the knowledge required for pre-requisite skills, particularly for lower
level pre-writing skills (e.g. program tracing).

2.3. Templates can help transition from learning a language to using it to
problem solve

A potential way to incorporate skill development into instruction is by repre-
senting knowledge of what programs can do with the use of pattern-like chunks,
which we will refer to as templates (Clancy & Linn, 1999). Templates are abstrac-
tions of programming knowledge that have generality and reusability (Clancy &
Linn, 1992; 1999), similar to Rist (1989)’s notion of schema, Kreitzberg and
Swanson (1974)’s notion of meta-rules of generalized problem-solving techni-
ques, Anderson et al. (1984)’s notion of weak schemata, and Soloway and Ehrlich
(1984)’s notion of plans in the work. Providing novices with a “repertoire of
templates” (Clancy & Linn, 1992) can reduce the cognitive demands of writing
programs by providing ways to decompose a problem, enabling novices to use
these templates to support their planning and problem-solving process and
write more complicated programs (Mead et al., 2006; Rist, 1989).

Templates can be incorporated into instruction by using it as a sca�olding
technique. Linn and Dalbey (1985) proposed a Chain of Cognitive
Accomplishments that should arise from ideal instruction of programming.
This chain consisted of (1) features of language, (2) design skills relating to
the procedural skills of planning, testing, and reformulating code using tem-
plates, and (3) problem-solving skills which are abstracted from speci�c lan-
guages and applied to learning new languages and situations. Clancy and Linn
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(1999) suggested that exercises in code comprehension, identifying opportu-
nities and “nonopportunities” for pattern reuse, considering multiple represen-
tations of patterns, and comparing related patterns could bene�t students
who were learning from instruction involving patterns.

In summary, prior work has not de�ned concrete instructional designs that
consider di�erent skills that are important to programming and how these
skills develop. Prior theories tend to have either partially speci�ed ambiguous
designs or a lack of focused practice and instruction for speci�c skills (espe-
cially the lower level, pre-writing skills). This ambiguity or inconsistency may
come from each theory’s coverage of a very broad range of skills (e.g. the
scope is often “programming rather than CS1” or other subsets). Prior work on
theories of instructional design tended to focus on program writing instruc-
tion, often not adequately specifying their designs for instruction and practice
for pre-requisite skills (such as tracing). A lack of instruction and practice for
pre-requisite skills may result in gaps in learners’ knowledge that exacerbate as
they prematurely practice more advanced skills such as code writing. Common
patterns such as templates may be able to support skill development by
providing sca�olding in the transition from semantic understanding of code
to problem-solving with code.

3. Theory: separating, structuring, and sequencing programming
skills

In the previous section, we established that distinct programming skills exist,
yet prior theories do not translate to concrete instruction that supports the
development of these skills; we draw upon prior work to propose a theory that
structures and sequences these skills and can be translated to instruction that
sca�olds the development of these skills. In this section, we identify three
claims we draw from prior work which serve as the foundation of our theory.
We then describe our theory and how we structure knowledge across four
programming skills (tracing, writing correct syntax, understanding templates
as reusable abstractions of programming knowledge, applying templates to
solve problems) which build upon each other. This theory is focused to novice
programmers and by design does not explicitly account for skills including
debugging, problem-solving, and solving problems that require inventing new
or previously unlearned templates.

Table 1 shows our “quadrant” of introductory programming skills. We
distinguish the skills of tracing (S1), writing correct syntax (S2), recognizing
templates and their uses (S3), and using templates to solve problems (S4)
across two dimensions. These dimensions are skills (read, write) and knowledge
(semantics, templates). Skills refer to reading already written code and inter-
preting meaning from it, and writing code. Knowledge is either at a machine
level (semantics) and at a task/objective level (templates).
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3.1. Connecting theory to prior work: di�erentiating and ordering skills

We based our theory of incrementally teaching decoupled programming skills on
three claims that distinguished di�erent skills novice programmers must learn:

(1) C1: Tracing code is a di�erent and precursory skill to writing syntactically
correct code

(2) C2: Understanding the features of a programming language is di�erent
than solving a problem with code

(3) C3: Comprehending code templates is a di�erent skill than using templates
to write code to ful�ll an objective

Prior work described in Section 2 substantiates the three claims which are at
the foundation of our theory.

The prior work in Section 2.1 on the proposed and empirically supported
distinction between reading (tracing) and writing code helps substantiate our
�rst claim (C1). While prior work tended to frame writing code as composing
syntactically correct code that also has an objective, we distinguish between
the skills of writing correct syntax and writing code that has an objective. For
C1, we focus only on the skill of writing correct syntax. Although we have
a more speci�c de�nition of writing, we still �nd that the prior work in Section
2.1 substantiates C1, the claim that tracing is a precursory skill to writing
correct syntax.

To substantiate the next claim (C2), we look to the prior work in Section 2.3
on templates and the Chain of Cognitive Accomplishments. More speci�cally,
we focus on how ideal instruction of programming teaches the features of the
language (�rst chain) before design skills relating to using templates (second
chain). Lastly, substantiating C3 requires drawing parallels between program-
ming skills (from Section 2.1) and template use (from Section 2.3). We focus the
de�nition of code explanation to say that it relates to recognizing templates
and their uses (which we call comprehending templates) because both skills
require looking at code and mapping it to an objective or purpose. As
described in Section 2.1, multiple studies found that explaining code was
a separate and precursor skill to writing code (Lopez et al., 2008; Sheard
et al., 2008; Venables et al., 2009). Furthermore, Clancy and Linn (1999)
suggested that code comprehension questions could support instruction on
templates. We substantiate our third and �nal claim C3 with two points: code
explanation (as de�ned by prior work) is similar to reading/comprehending

Table 1. Decomposition of di�erent skills across two dimensions.
semantics related to code templates related to goals/objectives

Read S1. Predict e�ect of syntax on program behavior S3. Recognize templates and their uses
Write S2. Write correct syntax S4. Use templates to complete objective
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templates, and both skills precede writing code with a template. Therefore,
prior work substantiates our three claims.

Our theory recommends reading before writing (as substantiated by C1, C3)
and semantics before templates (as substantiated by C2).

3.2. A theory of instruction for four programming skills across two
dimensions

To further explain our theory, we now describe each skill in incremental order
from S1 (reading semantics) to S4 (writing templates). To provide an example
of how a learner can demonstrate knowledge of each skill, Figure 1 decom-
poses a classic template of a variable swap operation (Sheard et al., 2008) into
the four skills in our theory. All code is in Python syntax. We refer to this �gure
as we describe each skill below.

S1, Reading semantics (top left in Table 1) refers to the ability to accurately
trace code and predict the e�ect of syntax on program behavior. We adopt the
theory of program tracing de�ned by Nelson et al. (2017), which states that
knowing programming tracing is understanding the set of all mappings
between syntax, semantics, and state during compilation. After a learner
develops the understanding of reading semantics, they are able to trace
code and determine its intermediate and �nal states and outputs. They do
not necessarily know how to write correct code or use code to perform
a certain task. Reading semantics is a precursor skill to writing syntax (by C1)
and using templates (by C2), so it is the foundation to all other skills. As
a result, it is �rst in the sequence of skills in our instruction.

Learners demonstrate knowledge of reading semantics by being able to
describe each line of the program and also being able to accurately trace the
code and determine the �nal variable values (�nal state), as demonstrated in
the top left of Figure 1. This knowledge is comparable to the multistructural
level of the SOLO taxonomy (described in Section 2.1). Note that the purpose
of the code as a whole (to swap two variables’ values) is out of the scope of
reading semantics. In the example, given a line of code y = temp, learners
demonstrate knowledge of reading semantics by knowing that the value
stored in variable y updates to the value stored in variable temp.

When they have a strong understanding of reading semantics for a given
programming construct, learners should be able to understand how that
construct a�ects the program statement and output for a piece of code.
They do not necessarily understand the purpose of the construct in relation
to the code or problem more broadly, as that comes later with template
knowledge. They also do not necessarily know how to write correct syntax,
but that is the next skill to learn.

S2, Writing semantics (bottom left in Table 1) refers to the translating of
unambiguous natural language descriptions of language constructs into syntax
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that will compile and execute as expected. Because this is a translation from an
unambiguous speci�cation, this skill does not require understanding the
objective of the code at a relational level. To know how to write semantics is
to be able to write syntactically correct code (construct a valid abstract syntax
tree, AST), modify preexisting code without introducing syntax errors (�ll in
a missing part of a valid AST or modify a valid AST), and correct code with
syntax errors (recognize an invalid AST). Visual blocks-based languages obviate
this skill by enforcing correct syntax by providing drag-and-drop feedback and
therefore not requiring a programmer to know how to write correct syntax.
A novice must know how program constructs execute during compilation, so
they must have an understanding of reading semantics (S1) before writing
semantics.

The bottom left quadrant of Figure 1 is an example of writing semantics practice.
A learner demonstrates knowledge of writing semantics by being able to translate
a line-by-line description of code into lines of code with correct syntax. In the
example, a learner can translate “de�ne variable x and set it to 1” as x = 1 (in Python).

To write correct code that meets an unambiguous speci�cation, a learner
must have an understanding of reading semantics to know how code con-
structs a�ect execution and understanding of writing semantics to know how

Figure 1. Demonstrated knowledge relating to each of the four programming skills in our
theory, using the example of a variable swap. Each skill is represented as a cell in the
quadrant with a description of how a learner demonstrates the skill at the top of each
quadrant. For each skill, a learner demonstrates that skill (for a variable swap) by translating
a given prompt (gray box) into a response (blue box). For example, the �rst skill of reading
semantics (S1, top left) relates to determining the intermediate and �nal program states and
program output. A learner can demonstrate knowledge of this skill by taking a program and
correctly explaining what each line of code does and determining the correct variable values
after execution.
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to translate these code constructs to correct syntax. Weak knowledge of
reading semantics but strong knowledge of writing semantics would result
in a learner writing syntactically correct code which failed to meet the speci-
�cation and does not execute as intended. Strong knowledge of reading
semantics but weak knowledge of writing semantics would result in writing
code which contains syntax errors and could look like a pseudocode that could
meet the speci�cations.

S3, Reading templates (top right in Table 1) refers to the skill of identifying
reusable abstractions of programming knowledge (which we will refer to as
templates) and mapping them to an objective. Reading templates consists of
being able to trace code and map parts of the code to parts of a template and
identify what the objective or purpose of the code is. Novices acquire knowl-
edge of templates by recognizing them in other programs, learning them
through instruction, or devising them.

The top right quadrant of Figure 1 is an example of reading templates
practice. A learner demonstrates knowledge of reading templates by being
able to look at a program and recognize its purpose relative to a template they
previously learned. In the example, a learner can look at the program in Figure
1 and recognize that parts of the code (e.g. the bottom three lines) implement
a variable swap template. This description synthesizes knowledge across multi-
ple lines of code, so it demonstrates relational knowledge, a higher level
knowledge in the SOLO taxonomy.

To read templates from pre-de�ned code, a learner must have understanding
of reading semantics knowledge to map syntax and semantics to changes in
program state as well as reading templates knowledge to translate this machine-
level understanding to a goal/purpose understanding. Weak knowledge of read-
ing semantics would result in a novice having misunderstandings about how the
code executes. This could result in them not recognizing a template in the code,
recognizing a template but not recognizing it was incorrect, or recognizing the
wrong template.

S4, Writing templates (bottom right in Table 1) requires a learner to start with
a problem description that contains ambiguity, identify a template that they could
use to solve the problem, and implement each component of the template in
code. Extracting an objective from a natural language problem description is the
�rst step to writing a template. From there, writing a template is a “reverse
mapping” when compared to reading a template: whereas reading templates
requires learners to map from code to parts of a template to a template objective,
writing templates requires learners to map from an objective (extracted from
a problem description) to parts of a template to code.

The bottom right quadrant of Figure 1 is an example of writing templates
practice. A learner demonstrates knowledge of writing templates by being able
to read a problem description, recognize the need for a previously learned
template, and devise a plan which uses the template to solve the problem. In
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the example, learners must recognize from the problem description that they
can use a variable swap (perhaps cued by the fact that the problem description
states “each variable ends up with the original value of the other variable”).
They then devise a step-by-step plan which implements the variable swap
template, a process utilizing knowledge of reading templates. They can then
use this plan and write code to solve the problem, requiring knowledge of
reading and writing semantics.

To write templates to solve a problem given a problem description,
a learner must have an understanding of reading templates to know the
objective and components of templates, and reading and writing semantics
to write correct code. If they had weak knowledge of reading templates, they
would not be able to recall the templates and would have to solve the
problem by creating their own templates. If they had weak knowledge of
reading or writing semantics, they would not be able to translate the template
to correct syntax or semantics.

3.3. Summary of theory: read before write; semantics before templates

To summarize, we emphasize that the theory de�nes four distinct skills and
sequences instruction, such that knowledge of each skill can be demonstrated
and built upon knowledge of previous skills. The sequence emphasizes teach-
ing reading before writing, semantics (features of a programming language)
before templates (patterns of use). A key distinction we make is the separation
of writing skills into writing correct syntax (S2) and writing meaningful code
with the use of a template. By doing so, we can produce instruction which
teaches semantics before templates. The structure of this theory has direct
implications for instructional design.

4. Instruction: teaching skills incrementally

Having presented structure and sequence for four distinct skills, we now
present several new genres of instruction that might be used to teach accord-
ing to our theory. We do this by presenting a concrete example of learning
materials that taught programming constructs (e.g. conditional statements) by
teaching four programming skills in the order the theory proposed: Students
learn the semantics by getting instruction, practice, and feedback on tracing
(S1), then writing correcting syntax (S2), then reading a template (S3) related
to that construct (e.g. using conditionals to �nd a maximum value), and �nally
on using a template to write code (S4). By providing instruction, practice, and
feedback from each skill in the sequence proposed in our theory, this curricu-
lum can support gradual skill development.

We include an outline of the learning materials to illustrate the sequence of
constructs taught as well as the sequence of skills taught for each construct:
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(1) Introduction
(a) Describe four skills
(b) Describe lesson structure
(c) Motivate metacognitive prompts
(d) Explain how code runs (teaching strategy from Xie, Nelson, and Ko (2018

memory tables))
(2) Data types**
(a) Reading semantics
(b) Writing semantics
(3) Variables
(a) Reading semantics (taught memory tables from Xie et al. (2018) to

complete strategy on reading code)
(b) Writing semantics
(c) Reading template: Variable swap
(d) Writing template: Variable swap
(4) Arithmetic operators
(a) Reading semantics
(b) Writing semantics
(c) Reading template: digit processing
(d) Writing template: digit processing
(5) Print statements**
(a) Reading semantics
(b) Writing semantics
(6) Relational operators
(a) Reading semantics
(b) Writing semantics
(c) Reading template: �oat equality
(d) Writing template: �oat equality
(7) Conditional statements
(a) Reading semantics
(b) Writing semantics
(c) Reading template: �nd max/min value
(d) Writing template: �nd max/min value
** Some constructs did not include learning a template because the ordering of

constructs made it such that learning those constructs did not a�ord the learning
of a new template. The participant needed to learn an additional construct before
learning a new template.

The learning materials began by explaining what it would cover (“basics of
Python”) and that it contained content to read and understand, practice exercises
to attempt, and solutions to exercises with explanations. It also mentioned the
importance of metacognition, thinking about one’s own thinking (National
Academies of Sciences, 2018; Zimmerman & Schunk, 2011), and explained the
purpose of the metacognitive prompts contained within the lesson. These
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retrospective prompts varied depending on the targeted skill: prompts to retro-
spectively re�ect on code and explain the purpose of each line of code using code
comments demonstrated reading semantics; prompts to explain how a given pro-
gram might function demonstrated reading templates; prompts to preemptively
write a plan in plain English for how they intend to solve a given programming
problem demonstrated writing templates. The learning materials then provided an
overview of how code runs (“typically. . .one line at a time from top to bottom, left to
right”) and explained how to read code line-by-line by following a simple “sketch-
ing” (Cunningham, Blanchard, Ericson, & Guzdial, 2017) strategy proposed and
evaluated by Xie et al. (2018). It then provided an overview of the concepts covered
before beginning instruction on the programming constructs.

In developing the learning materials, we assumed no prior programming knowl-
edge, so taught the programming constructs of data types, variables, operators
(arithmetic, comparison), print statements, and conditionals in Python 3. We ordered
the constructs such that each construct only depended on knowledge of previously
learned constructs. We chose Python because it is a common introductory language
that appealed to a broad range of students (including non-majors) and did not
require more advanced programming constructs such as methods or classes to
execute (Ranum, Miller, Zelle, & Guzdial, 2006; Ranum & Miller, 2013). We drew our
selected programming constructs from an adaptation of the �rst case study in
Designing Pascal Solutions which used basic programming constructs to accomplish
a concrete task (verifying a number is a valid passkey) (Clancy & Linn, 1992). The
learning materials included both instructional content to read and exercises (and
their solutions) for learners to practice applying each skill. We delivered the learning
materials as a paper packet of 86 pages, printed single-sided so participants could
easily reference previous pages.

We used instruction on conditional statements as an example to explain
how the curriculum progressed across the four skills in our theory (S1-S4).

4.1. Instruction on semantics

The �rst skills the curriculum teaches are reading semantics (S1) and writing
semantics (S2). These skills relate to understanding the features of
a programming language.

4.1.1. Instruction on reading semantics (S1)
We began by connecting the new construct to previously learned ones and to
relatable examples. Given that conditionals came after learning relational
operators, we framed conditionals as a way to “do di�erent things based on
di�erent relationships.” We then provided a relatable example of a situation
requiring a conditional: “If I don’t have any homework tonight, then I will meet
up with my friends.” We then de�ne the programming construct: “Conditional
statements (also known as if-statements) enable di�erent code to execute
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based on a given relationship.” After this, the instruction continues teaching
how to trace code with conditional statements (S1).

To teach S1, the instruction provides examples framed around real-world con-
texts and incrementally adds complexity. For conditionals, it described a situation
where a participant wanted to buy a beverage but only if it cost $1 or less. It then
showed the code to re�ect this basic conditional where a message instructing them
to “buy the soda!” appeared if the cost �= 1.00. After explaining what the code in
the example did, we added complexity by introducing the else statement. We
motivated the else statement by framing it as a tool “to run di�erent code if the
condition executes to false” and expanded upon the previous example by having
the else condition print a message warning against buying the soda. Because
conditionals break the “top down, left to right” control �ow they were previously
familiar with, we then provided an annotated example showing which lines of code
executed and which did not, as shown in Figure 2.

We repeated this process of motivating the need for the added complexity
of an else-if (a way to add additional branching options) and then adding
it to the previous example. After this, we provided practice exercises in the
form of tracing questions and asked participants to determine the output of
code that contained conditional statements.

Practicing reading semantics (S1) requires a learner to trace code and does
not require knowledge of any other skills. This practice consisted of looking at
�xed-code questions (McCartney, Moström, Sanders, & Seppälä, 2004) where
a learner determines intermediate and �nal program states for a pre-de�ned
piece of code. Figure 3 shows examples of practice exercises for S1.

If a learner has weak knowledge of S1, they would have misunderstandings about
how tokens in the code a�ect program behavior. Thus, it is ideal for exercises to
make misconceptions observable by revealing errors in the intermediate (variable
values) and output (print statements) values when a novice traces code. For exam-
ple, Figure 4 shows an error a learner makes relating to incorrectly tracing code. The
learner sketched annotations to the program (writing the values of variables, cross-
ing out lines that did not execute) that were encouraged in the instruction, but not
required for that exercise. Tracing exercises that require learners to predict inter-
mediate and �nal states help identify understanding and misconceptions relating to
reading semantics.

Figure 2. When teaching participants the skill of tracing (S1) for conditionals, we provided an
explanation and this visualization to show how the control �ow is di�erent based on di�erent inputs.
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4.1.2. Instruction on writing semantics (S2)
After practicing reading semantics and receiving feedback in the form of the
correct solution and an explanation, learners then move on to learning how to
write correct syntax (S2). To teach correct syntax, the instruction de�ned
syntax rules for the construct (e.g. conditionals), adding nuance about the
language grammar that was not necessarily visible when learning how to read
semantics (S1). Figure 5 shows a table with these syntactic rules for condi-
tionals as well as example code with these rules violated and then corrected.

When learners practice writing semantics, they would also need knowledge
of S1 (reading semantics). Practicing writing semantics consists of translating
lines of unambiguous natural language (e.g. “Declare a variable pro�t and set
it to 87”) to lines of code. Weak knowledge of S1 would result in a learner
writing code constructs that do not align with the description of a given line.
Weak knowledge of S2 would result in a learner knowing which constructs to

Figure 3. Practice exercise for tracing skill (S1) for conditionals. Participant reads the code,
crosses out the lines of code that do not execute, and then determines what the code would
output.

Figure 4. Example of a reading semantics (S1) error. Here, the exercise provided the
participant with a code snippet (left) and initial values for variables a, b, and c (above).
The participant then traced through the code and determined the output (the dotted red box
denotes the likely error the �rst line as suggested by the inline annotation, which was not
required by the exercise).
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use, but making syntax errors when writing those constructs. In both cases of
weak knowledge of S1 or weak knowledge of S2, the learner may write code
that contains errors such that the code would not run or the code would have
unexpected behavior. To di�erentiate between the misunderstandings
between S1 and S2, the instruction prompts learners to write comments to
explain “in their own words” what each line of code is doing. Figure 6 provides
an example of an exercise with an S2 error. By understanding what constructs
a learner intended to write, we can di�erentiate between whether their mis-
understanding is from a poor understanding of what semantic tokens do (S1)
or weak understanding of how to write semantic tokens (S2).

4.2. Instruction on template knowledge (S3)

After learning to read and write semantics for a new construct, a learner then
transitions to how to use templates of common code use patterns to apply
knowledge of this construct. With each programming construct, we taught
a template that re�ected the application of that construct (often with other
constructs) to accomplish a task.

4.2.1. Templates have an objective and multiple parts or steps
A template consisted of an objective as well as multiple parts or steps required to
make the template perform its intended purpose. We included templates in
instruction to motivate potential uses of programming and as a sca�olding tech-
nique to bridge between learning the features of a programming language and
learning to use the language to problem solve. In total we taught four templates:

Figure 5. A table in writing semantics curriculum for conditionals which shows syntax rules
relating to the construct and concrete examples of contrasting “bad code” which contains
syntax errors with “�xed code” which corrects the errors.
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� variable swap: switching the values stored in 2 variables by using
a temporary variable and variable updates.

� digit processing: accessing speci�c digits in an integer with multiple digits
by repeatedly using modulus to access the rightmost digit, and then
dividing and using integer truncation to drop the rightmost digit from
the input integer.

� �oat equality: checking if two �oats are approximately equal by comparing
the absolute di�erence to a small threshold value using a relational operator.

� max/min: �nding the maximum or minimum of three (or more) numbers
using conditionals and the and operator.

Instruction on templates comes after instruction on reading and writing
semantics and is also divided into reading and writing portions. The instruction
�rst teaches learners how to read templates and recognize the purpose and
components of a template that utilizes the construct they are learning (S3),
then to apply these templates to write code to complete an objective (S4).

4.2.2. Instruction on S3 (reading templates)
Learning to read templates is fundamentally about learning patterns of com-
putation that solve a class of problems. Our learning materials introduced
learners to the “max/min” template, which they could use to �nd the max-
imum or minimum value from multiple variables that all store numbers (data
structures were out of the scope of this instruction). Before introducing
a template, we provided an example or visualization that attempted to make
the objective and steps of the template more relatable and concrete. For the
max/min template, we provided an explained visualization showing the step-
by-step process of �nding the maximum value from 3 variables. Figure 7 shows
part of that visualized explanation.

The instruction then translated the same process to code and explained the
relationship between the visualization and the code. Our intention was to

Figure 6. Example of errors in a writing semantics (S2) exercise which required a learner to
translate the unambiguous natural language to Python syntax. The dotted red boxes denote
errors in S2 relating to conditionals (forgetting colons after the conditional statements). The
learner’s comments re�ect correct/intended behavior, but the written code is syntactically
incorrect, suggesting an S2 error.
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promote comprehension and abstraction through mutual alignment of two
(perhaps partially) understood situations (Kurtz, Miao, & Gentner, 2001). After
doing so, the learning materials explicitly provided the steps involved in
a max/min template in natural language:

To �nd the maximum (largest) or minimum (smallest) value, we do the
following:

(1) Use if statements to check one value against all other remaining values
(a) We may need a compound conditional statement (using and)

(2) Ignore the value we just checked and repeat step one if there are at least
two remaining values

(3) If there are no more values to compare against, then we reach our else
condition.

The learning materials then transitioned to practice reading this template.
When learners practice reading templates, they would also need knowledge

of S1. Practicing reading templates consists of looking at previously written
code and determining if it correctly implemented a given template and if not,
what part of the template was not properly implemented. Weak knowledge of
S1 would result in a learner not being able to correctly trace the code. Weak
knowledge of S3 would result in a learner not recognizing how parts of the
code map to di�erent components of a template. In both cases of weak
knowledge of S1 or weak knowledge of S3, the learner would have trouble
looking at code and identifying if it properly implemented a template. To
di�erentiate between misunderstandings of S1 and S3, our instruction had
learners read code and identify if it correctly implements each part of
a template, while also explicitly tracking the state of the program. The instruc-
tion observed their ability to trace code (S1) by having them update memory
tables (Xie et al., 2018) with variable declarations and updates. Errors relating

Figure 7. Instruction for reading a template (S3) often began with an example or visualization to
make the template objective and steps more concrete. For the template which uses if state-
ments to �nd the max/min value among variables, we provided a visualization showing how
learners could use pairwise comparisons to �nd the max/min values of more than 2 values.
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to changing program state suggest weak knowledge of S1. Failure to identify
whether code implemented parts of a template correctly suggested weak
knowledge of S3. Figure 8 illustrates an S3 error for the �oat equality template,
which a learner could use to check if two �oats are approximately equal.

4.2.3. Instruction on writing templates (S4)
After engaging with instruction on how to read a template, the lesson moved
on to teaching how to apply a template to ful�ll a computational objective.
Obviously, problem-solving is important to this process, but out of the scope
of this instruction. In our learning materials, we focused on the more narrow
scope of providing rules to address errors that could arise when translating
a template into code. Whereas writing semantics (S2) instruction speci�ed
rules to prevent syntactic errors, writing templates (S4) instruction speci�ed
rules to prevent logic errors which would be syntactically correct but result in
code which did not perform to the speci�cation of the template. Figure 9
provides an example of instruction to address errors relating to conditionals.

When learners practice writing templates, they also need knowledge of S1,
S2, and S3. Practicing writing templates is consistent with typical code writing
practice where learners read a problem description and must write code to
solve the problem. Weak knowledge of S1 or S2 results in errors similar to what
we could expect in practice for writing semantics. Weak knowledge of S3
results in a learner either not recognizing how they can use a template to
solve the problem or not being able to write code to implement the template.
To di�erentiate between misunderstandings, we asked learners to �rst write
a plan to solve the problem in natural language, then write code to complete
the task described to them, then annotate each line similar to what they would
do when practicing writing semantics (S2). An incorrect plan suggests weak

Figure 8. Example of a reading templates (S3) error relating to the template to extract digits
from a number. The learner erroneously thought that the extraction of the digit was not being
done correctly (with the modulo operator) and selected option B. They correctly traced the
code, as demonstrated by the properly completed memory table, so they did not make an S1
error. Therefore, they made an S3 error, likely failing to realize that the code was not properly
updating the starting value current.

COMPUTER SCIENCE EDUCATION 225



knowledge of S4. We can di�erentiate between weak knowledge of S1 and S2
by looking at a learner’s line-by-line annotations. Figure 10 provides an exam-
ple of an S4 error where a learner wrote a plan which incorrectly de�nes
a variable swap (this example is from a di�erent unit than conditionals; we
selected it because the error is more apparent here).

4.3. The post-test used a variety of exercises to evaluate each skill

We developed a summative assessment to measure how well learners were
able to apply the four skills (S1-S4) in the context of the programming con-
structs and templates covered in the instruction. The assessment measured
participants’ ability to read and write semantics and templates. It consisted of
seven questions which roughly increased in di�culty, based on face validity
and performance of pilot tests with novice programmers.

We designed the questions to assess speci�c programming skills. Questions
assessing reading semantics (S1) asked learners to trace stand-alone code
segments that were not part of a larger code base, determine what initial
program state would result in a given �nal state, and comment their own code;
these questions were similar to tracing questions in prior studies (e.g. Lister
et al. (2004)) and only the experimental group had practice on them. Questions

Figure 9. A table in writing templates curriculum for template to �nd maximum or minimum
value from multiple number variables using conditionals. Rules to support the correct
implementation of the template are shown in the left column, with the middle bad code
column demonstrating code with a violation of the rule (in bold), and the rightmost
Explanation column explaining the error.
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