
Falx: Synthesis-Powered Visualization Authoring
Chenglong Wang

clwang@cs.washington.edu
University of Washington

Yu Feng
yufeng@cs.ucsb.edu

University of California, Santa
Barbara

Rastislav Bodik
bodik@cs.washington.edu
University of Washington

Isil Dillig
isil@cs.utexas.edu

The University of Texas at Austin

Alvin Cheung
akcheung@cs.berkeley.edu

University of California, Berkeley

Amy J. Ko
ajko@uw.edu

University of Washington

ABSTRACT
Modern visualization tools aim to allow data analysts to easily cre-
ate exploratory visualizations.When the input data layout conforms
to the visualization design, users can easily specify visualizations by
mapping data columns to visual channels of the design. However,
when there is a mismatch between data layout and the design, users
need to spend significant effort on data transformation.

We propose Falx, a synthesis-powered visualization tool that
allows users to specify visualizations in a similarly simple way but
without needing to worry about data layout. In Falx, users spec-
ify visualizations using examples of how concrete values in the
input are mapped to visual channels, and Falx automatically infers
the visualization specification and transforms the data to match
the design. In a study with 33 data analysts on four visualization
tasks involving data transformation, we found that users can ef-
fectively adopt Falx to create visualizations they otherwise cannot
implement.
ACM Reference Format:
ChenglongWang, Yu Feng, Rastislav Bodik, Isil Dillig, Alvin Cheung, andAmy
J. Ko. 2021. Falx: Synthesis-Powered Visualization Authoring. In CHI Con-
ference on Human Factors in Computing Systems (CHI ’21), May 8–13, 2021,
Yokohama, Japan. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3411764.3445249

1 INTRODUCTION
Modern visualization authoring tools, such as declarative visual-
ization grammars like ggplot2 [50], Vega-Lite [37] and interactive
visualization tools like Tableau [42] and Voyager [54], are built to re-
duce data analysts’ efforts in authoring visualizations in exploratory
data analysis. At the heart of these tools, visualizations are specified
using grammars of graphics [52], where every visualization can be
succinctly specified using the following three components:
• A graphical mark that defines the geometric objects used to
visualize the data (e.g., line, scatter plots, bars),

• A set of visual encodings that map data variables to visual
channels (e.g., 𝑥 , 𝑦-positions of points),

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’21, May 8–13, 2021, Yokohama, Japan
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8096-6/21/05. . . $15.00
https://doi.org/10.1145/3411764.3445249

• A set of parameters that decide visualization details: coordinate
system, scales of axes, legends and titles.

In practice, users only need to specify the mark and the visual en-
codings in order to create the visualization because many tools use
a rule-based engine to automatically fill in parameters for visualiza-
tion details (often referred to as “smart defaults”) unless the user
wants further customization. The abstraction of graphical marks,
visual encoding channels, and adoption of smart default parameters
open an expressive design space for data analysts that allow them
to rapidly construct visualizations for exploratory analysis through
simple specifications. For example, to visualize the dataset in Fig-
ure 1 with three columns Date, Temp (for temperature) and Type
as a scatter plot, the user can choose the graphical mark “point”
with encodings {𝑥 ↦→ Date, 𝑦 ↦→ Temp, color ↦→ Type}. The visual-
ization tool then creates one point for each row in the input data,
by mapping its values in columns Date and Temp to 𝑥 ,𝑦-positions
and assigning a color to each point based on its value in column
Type. Here, the tool uses the default linear scale for 𝑥 ,𝑦-axis and
categorical scale for color, which are default parameters that the
user does not need to specify explicitly. The final visualization is
rendered in Figure 1 (right).

Date Temp Type
09-05 64.4 Low
09-05 87.8 High
09-06 53.6 Low
09-06 80.6 High

Type → color
Temp → 𝑦
Date → 𝑥

−−−−−−−−−−−−−−−→

Figure 1: An example dataset and its scatter plot visualiza-
tion that maps Date to 𝑥 , Temp to 𝑦 and Type to color.

In fact, the simplicity of these high-level visualization grammars
is grounded in their abstract data model. These grammars expect
that the input table is organized in a layout that matches the visual-
ization design [51]: (1) each relation forms a row in the input data
and corresponds to exactly one geometric object in the visualiza-
tion, and (2) each data variable forms a column that can be mapped
to a visual channel. In practice, however, the mismatch between
the data layout and the visualization design is common due to the
following reasons [9, 51]:
• Tables exported from different sources (e.g., database, analysis
tool, different team member) may have different layouts and
they may not directly match the visualization design.

https://doi.org/10.1145/3411764.3445249
https://doi.org/10.1145/3411764.3445249
https://doi.org/10.1145/3411764.3445249

CHI ’21, May 8–13, 2021, Yokohama, Japan Chenglong Wang et al.

Date Temp Type
09-05 64.4 Low
09-05 87.8 High
09-06 53.6 Low
09-06 80.6 High

pivot
−−−−−→

Date Low High
09-05 64.4 87.8
09-06 53.6 80.6

Low → 𝑦min

High → 𝑦max

Date → 𝑥

−−−−−−−−−−−−−−−→

Figure 2: A different visualization design requires transformation of the original input data.

• Different analysis tasks require different visualization designs,
and changes in the design can lead to different expected data
layout.

• The data may need aggregation (e.g., average, count, culmina-
tive sum) or additional computation to derive new values prior
to visualization.

In all of these cases, data analysts cannot directly visualize the
data with a simple specification. They have to conceptualize the
expected data layout and utilize data transformation tools (e.g.,
tidyverse [51], Trifacta [17]) to transform the data to match the
visualization design. These additional tasks create a barrier for
data visualizations and greatly increase the effort required for ex-
ploratory analysis [7, 9, 18, 53]. For example, if the data analyst
decides to change the visualization in Figure 1 to a bar chart with
floating bars that show the temperature range during each day
(Figure 2 right), the original data layout will no longer match the
new design since the new design expects three data columns (date,
lowest temperature, highest temperature) that map to 𝑥 , 𝑦max and
𝑦min. As a result, the data analyst needs to transpose the table in
Figure 1 using a pivot operation (to collect key-values pairs in the
Type and Temp columns into new columns) before mapping data
columns to visual channels (Figure 2 right).

We propose Falx, a synthesis-based visualization authoring tool
to address the challenges outlined above. 1 Falx builds on recent
advances in program synthesis: many program synthesis tools (e.g.,
FlashFill [10], Wrex [6]) have been developed with the promises
of automating challenging or repetitive programming tasks for
end users by synthesizing programs from user demonstrations.
In our design, instead of asking analysts to transform data and
specify visualization manually, Falx asks analysts to demonstrate
the visualization task using examples of mappings from concrete
values in the input data (as opposed to table columns) to visual
channels. Using these examples, Falx automatically synthesizes
the programs to transform and visualize the full data, such that
resulting visualizations are consistent with the examples (i.e., all
example mappings are contained within the visualization). For
example, for the data in Figure 2, the user can create an example
bar to demonstrate the task and
let Falx create the desired visualization for the full dataset (Figure 2
right). Sometimes, the examples can be ambiguous to Falx, and Falx
may generate multiple visualizations that match the example but
not necessarily the user intent. In such cases, analysts can interact
with an exploration panel to inspect the synthesized visualizations
and select the desired one. After that, analysts can further fine-tune
details of the desired visualization through a post-processing panel.

1Demo available at https://falx.cs.washington.edu/

Falx’s design has many potential advantages. First, users of Falx
specify visualizations by mapping values to visual channels: this
approach inherits the simplicity from grammars of graphics but pro-
vides more expressiveness since users can use the same examples to
specify visualization ideas for inputs with different layouts. Second,
Falx offloads the data transformation task to the program synthe-
sizer so that users no longer need to conceptualize the expected data
layout or transform the data. Finally, while program synthesizers
by design can generate multiple results, users can effectively select
and validate the desired visualization from synthesized candidates
using the exploration panel in Falx. In general, rather than having
to construct a visualization, data analysts demonstrate the task
using examples and then select the desired visualization from a
candidate pool, which shifts from the challenges of expression to
the ease of recognition. With these designs, Falx aims to eliminate
users’ prerequisites in data transformation and enable data analysts
to rapidly author visualizations.

We conducted a user study with 33 participants to test these
design hypotheses, studying how users adapt to the new visual-
ization process. Our results show that users of Falx, regardless of
previous experience in visualization, can efficiently learn and solve
challenging visualizations tasks that cannot be easily solved using
the baseline tool ggplot2. However, we also discovered challenges
that users face when using the tool and strategies they adopt to
solve the problems. We believe these discoveries lead to future
opportunities in adopting synthesized-based visualization tools in
practice and unveil other potential designs that can further improve
the usability of such tools.

2 USAGE SCENARIO
We first go through an example to illustrate the anticipated user
experience in Falx (Section 2.2) compared to R (Section 2.1). In
this example, a data analyst has the following dataset with New
York and San Francisco temperature records from 2011-10-01 to
2012-09-30.

Date New York San Francisco
2011-10-01 63.4 62.7
2011-10-05 64.2 58.7

...
2012-09-25 63.2 53.3
2012-09-30 62.3 55.1

The analyst wants to create a visualization to compare the tem-
perature in the two cities. First, the visualization should contain
two lines to show temperature trends in the two cities; these two
lines should be distinguished by color. Second, on top of the line
chart, a bar chart should be layered on top to show the temperature
difference between the two cities for each date. Each bar should

https://falx.cs.washington.edu/

Falx: Synthesis-Powered Visualization Authoring CHI ’21, May 8–13, 2021, Yokohama, Japan

start from the New York temperature and end at the corresponding
San Francisco temperature, and the color gradient of the bar should
indicate the temperature difference between the two cities on that
day. The desired visualization is shown in Figure 3.

Figure 3: A visualization that compares New York and San
Francisco temperatures between 2011-10-01 and 2012-09-30.

2.1 User Experience in R
We first illustrate how a data analyst, Eunice, would create this
visualization in R using tidyverse [51] and ggplot2 [50], two widely-
used libraries for data transformation and data visualization.

After loading the data into a data frame in R, Eunice decides
to first create the line chart that shows temperature trends of the
two cities. To do so, Eunice chooses the function geom_line from
the ggplot2 library. In order to create lines with different colors for
different categories, Eunice needs to supply four data variables to
the geom_line function – two variables for specifying x and y posi-
tions, one for colors of the line, and the last one for groups of lines
(i.e., which points belong to the same line). Since the input data
does not have these variables, Eunice needs to use the tidyverse
library to transform the input data. To do so, Eunice first conceptu-
alizes the desired data layout: the data should have 3 fields—date
(for 𝑥-axis), temperature (for 𝑦-axis), and city name (for color and
group). Eunice recalls a function pivot_longer in tidyverse, which
supports pivoting the table from a “wide” to a “long” format by
collecting column names and values in the column as key-value
pairs in the body content. Specifically, Eunice writes the following
code to transform the data, which yields the data on the right that
matches Eunice’s expectation.

df1 <- pivot_longer(data = df,
cols = ("New York", "San Francisco"),
names_to = "City", values_to = "Temperature")

Date City Temperature
2011-10-01 New York 63.4
2011-10-01 San Francisco 62.7

...
2012-09-30 San Francisco 55.1

After data transformation, Eunice specifies the visualization using
the following script. The script maps Date to 𝑥-axis , Tempera-
ture to 𝑦-axis, and City to both color and group. It generates the
visualization in Figure 4a.

(a) A line chart that shows temperature trends.

(b) A bar chart that visualizes temperature difference.

Figure 4: Two visualizations created in R that compare New
York and San Francisco temperatures.

plot1 <- ggplot(data = df1) +
geom_line(aes(x = `Date`, y = `City`,

color= `Temperature`, group = `Temperature`))

Eunice then proceeds to create bars on top of the first layer to
visualize the temperature difference. Eunice first finds the function
geom_rect from the library that supports floating bars. To visu-
alize temperature difference, Eunice needs to specify positions of
bars by mapping Date to 𝑥min and 𝑥max properties and mapping
temperatures of the two cities to 𝑦min and 𝑦max ; she also needs to
map the temperature difference between the two cities to color to
specify bar colors. Since the original data does not contain a column
for temperature difference, Eunice uses the mutate function from
tidyverse to transform the data. Using the following script, Eunice
successfully creates the visualization in Figure 4b.

df2 <- mutate(df, Diff = `New York` - `San Francisco`)
plot2 <- ggplot(df2) +

geom_rect(aes(xmin = `Date`, xmax = `Date`,
ymin = `New York`, ymax = `San Francisco`,
fill = `Diff`))

Finally, Eunice restructures the code to combine the two layers
together using a concatenation operator. She also fine-tunes some
parameters in ggplot2 to improve visualization aesthetics (e.g., mod-
ify titles of the axes and change line chart to a step chart), which
generates the visualization that matches her design in Figure 3.

Since Eunice is an experienced data analyst, she manages to go
through these data transformation and visualization step and even-
tually generates the desired visualization. However, a less experi-
enced data analyst, Amelia, finds the visualization task challenging.
• First, Amelia is not familiar with the ggplot2 library, so she
struggles in identifying the right functions to use. For example,
it is difficult for her to distinguish between geom_path and

CHI '21, May 8�13, 2021, Yokohama, Japan Chenglong Wang et al.

geom_line, andgeom_baror geom_rect. She is also unfamiliar
with how to compose multi-layered visualizations.

� Second, due to her lack of experience with ggplot2, she �nds
it di�cult to conceptualize the expected input layout because
di�erent functions and tasks require di�erent data layouts.

� Finally, due to her lack of experience with tidyverse, she needs
to spend signi�cantly more time in �nding the right operators
and implementing the desired transformation.

2.2 User Experience in Falx
Now we show how Amelia, a less experienced data analyst, uses
Falx (Figure 5) to create the same visualization.

First, Amelia uploads the input data to Falx's input panel (Fig-
ure 5-1) and examines the input data displayed in a tabular view.
Amelia decides to �rst visualize temperature trends of the two
cities using a line chart. Amelia goes to the demonstration panel
to demonstrate how the �rst two data points of New York tem-
peratures will be visualized. To do so, Amelia �rst clicks the �+�
icon in the interface and select a line element (Figure 6-1), and
Falx pops out an editor panel for Amelia to specify properties of
this line element. Amelia clicks on values in the input table and
copies the values to specify properties of the line element as follows
(Figure 6-2):

� The line segment starts at the point withG1 = 2011-10-01,
~1 = 63”4 (New York temperature on 2011-10-01)

� The line ends atG2 = 2011-10-05,~2 = 64”2 (New York temper-
ature on 2011-10-05)

� The color of the line is labeled as �New York�

After saving the edits, Falx registers the example and provides a
preview that visualizes the example line segment (Figure 6-3) for
Amelia to examine. Using this example, Amelia conveys the follow-
ing visualization idea to Falx: �I want a line chart over the input
data that contains the demonstrated line segment�. Amelia then
presses the �Synthesize� button (in Figure 5-1) to ask Falx to �nd
the desired line chart. Internally, Falx �rst infers the visualization
speci�cation and then runs a data transformation synthesizer to
transform the input data to match the visualization speci�cation.
After approximately four seconds, Falx �nds two visualizations
that match the example and displays them in the bottom of the
exploration panel (Figure 5-2). Both visualizations contain the
example line segment speci�ed by Amelia but they generalize the
example di�erently: the �rst visualization only visualizes New York
temperatures as demonstrated in the example, while the second
generalizes the color dimension to other columns in the input data
as well, resulting in a visualization that also contains San Francisco
temperatures.

After brie�y navigating both candidates in the carousel, Amelia
�nds the second visualization closer to the design in her mind, so
she clicks the second visualization to enlarge it in the center view
for a detailed check (Figure 5-2 top). In the center view, Amelia
hovers on the visualization to check details like values of di�erent
points in each line. After con�rming the visualization matches her
design, Amelia moves on to the second layer visualization, which
should display temperature di�erences between the two cities using
a series of bars.

Next, Amelia creates an example bar to demonstrate how the
temperature di�erence between the two cities on2011-01-01should
be visualized (Figure 7 left): the bar is positioned at date2011-10-01,
it starts at62”7 (San Francisco temperature), ends at63”4 (New York
temperature), and its color shows the temperature di�erence of
0”7 for that day. Amelia runs the synthesizer to �nd visualizations
that contain both the example line and the example bar. This time,
after 9 seconds, Falx �nds 8 candidate visualizations that match the
examples (Figure 7 middle). To decide which visualization to pick,
Amelia can either (1) add a second example bar to demonstrate the
temperature di�erence of the two cities on another date to help Falx
resolve the ambiguity, or (2) navigate candidates in the exploration
panel to examine them. Amelia decides to use the second approach
again. She �rst rules out some obviously incorrect visualizations
(e.g., visualization 2 in Figure 7 middle), then compares similar
visualizations, and �nally selects the �rst visualization to check it
in detail. After some examination, she decides it matches her design
and proceeds to post-process the visualization.

The post processing panel (Figure 5-3) contains a GUI editor
that allows Amelia to �ne-tune visualization details and a pro-
gram viewer for viewing and editing the synthesized program. Any
changes made during the editing process are directly re�ected on
the center view panel (Figure 5-2) to provide immediate feedback.
Using the post-processing panel, Amelia changes the line mark
to step mark and modi�es axis titles, which produces the visual-
ization in Figure 7 right. Amelia is happy with this visualization
and concludes the task. If Amelia wants to further customize the
visualization (e.g., change color scheme, adjust bar spacing), she
can directly edit the underlying Vega-Lite program.

In sum, Amelia creates the visualization by iterating through
creating examples, exploring synthesized visualizations, and post
processing. In this process, she bene�ts from the following design
decisions behind Falx:

� First, while two visualization layers require di�erent data trans-
formations, Amelia does not need to worry about this, as the
transformation task is delegated to the underlying synthesizer.
In fact, even if the input data comes with a di�erent layout,
Amelia can still solve the problem with the same examples.

� Second, Amelia speci�es examples by choosing from a small set
of visualization marks and specifying mappings from concrete
data values to properties. This allows her to create visualiza-
tions without programming in the visualization grammar.

� Third, instead of asking Amelia to read synthesized programs
to disambiguate synthesis results, Falx provides an exploration
interface that allows Amelia to explore and examine results in
the visualization space.

� Finally, Falx adopts a scalable synthesis algorithm to explore the
exponential number of possible ways to transform and visualize
the input data. Each synthesis run takes between 3 and 20
seconds, which makes Amelia conformable at iterating between
giving examples and exploring the generated visualizations.

3 SYSTEM ARCHITECTURE
In this section, we �rst provide a brief review of program synthesis
and discuss the design and implementation of Falx, our end-to-end
synthesis tool for automating data visualization tasks.

	Abstract
	1 Introduction
	2 Usage Scenario
	2.1 User Experience in R
	2.2 User Experience in Falx

	3 System Architecture
	3.1 Background: Program Synthesis
	3.2 Falx Synthesizer

	4 User Study
	4.1 Participants
	4.2 Procedure
	4.3 Task Completion
	4.4 Task Experience
	4.5 Visualization Strategies in Falx
	4.6 Workflow Implications

	5 Related Work
	6 Discussion
	7 Acknowledgement
	References

