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Scafolding Children’s Sensemaking around Algorithmic Fairness 

ANONYMOUS AUTHOR(S) 

Prior research has investigated children’s perceptions of algorithmic bias, but provides little guidance on engaging children in 

conversations on algorithmic bias that center their agency and well-being. To address this, we developed discussions and design 

activities based on three scenarios of algorithmic (un)fairness. We conducted these discussions and activities with 16 children (ages 
8-12) in the US, and examined our data using qualitative thematic analysis. Grounded in lived experiences and situated knowledge, 
participants were capable of reasoning around both explicit and implicit efects of algorithmic bias. Participants also expressed distrust 
of technology, doubting technology’s abilities and preferring human approaches to resolve unfairness. This work contributes (1) a 

more nuanced understanding of children’s situated reasoning of technology, suggesting their potential for critical engagement and (2) 
a blueprint for engaging children in scafolded yet open-ended sensemaking around algorithmic fairness, informing the design of 
tools, curricula, and other learning experiences for children. 
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1 INTRODUCTION 

As computing becomes pervasive in children’s lives, it brings extensive benefts, but also puts children’s lives, families, 
communities, and futures at increased risk of harm. This has led to a fourishing body of work on youth’s perceptions of 
algorithmic bias, focusing mainly on interactions with AI agents or AI learning experiences. Several scholars have found 

that children tend to overly trust AI agents, precluding them from critiquing AI technologies [20, 31, 41, 56, 60, 61]. In 

contrast, others observed that children could identify unfair treatment from AI with some instruction, suggesting some 

capacity to reason about algorithmic bias [22]. 
While most prior studies targeted algorithmic bias within AI systems, other computing technologies also shape the 

lives of children. Researchers have only recently extended beyond AI, with Coenraad et al. fnding that even without 
instruction, youth were aware of visible negative efects of technology, such as non-consensual data collection and 

use [14]. Although prior work has characterized childrens’ perceptions of algorithmic bias in AI, they do not provide 

much guidance on how to engage children in conversations around algorithmic biases that center their perspectives 
while safeguarding their well-being around a possibly difcult topic. This guidance is especially pertinent and timely 

with increasing calls to educate children on the social and ethical impacts of technology [35, 62]. 
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Based on the funds of knowledge position [28, 46] and sensemaking theory [17], in our prior work, we developed 

discussions and design activities to scafold children in making sense of algorithmic fairness1, and explored them with 

adolescents (ages 14-18) [4]. We found that adolescents introduced many factors that were not included in our prompts, 
such as lived experiences and power dynamics, into their sensemaking practices. Through this observed process, 
adolescents developed rich characterizations of algorithmic bias impacts by drawing from their funds of knowledge. 

In this paper, we build upon prior work on youth perceptions of fairness in AI, as well as our own work [4] on 

scafolding adolescent sensemaking around algorithmic fairness more broadly, to examine youth sensemaking of 
algorithmic fairness more generally. Prior work in moral development indicates that children frst reason about morality 

from a more egocentric stance and then learn to reason from others’ perspectives as they grow older [10], suggesting 

interesting potential diferences between youth and adolescents. Therefore, we pursued the following research questions: 

(1) What funds of knowledge might children use to make sense of algorithmic fairness? 
(2) How might the ages, identities, and backgrounds of children shape their sensemaking of algorithmic fairness? 

After analyzing sensemaking discussions and design activities with 16 children (ages 8-12) in the US, we make 

two important contributions through this study. First, we contribute to a deeper understanding of children’s situated 

knowledge around algorithmic bias in computing more broadly, not only AI. This suggests potential entryways, such as 
their own interpersonal relationships, for critical engagement with technology. Second, we contribute a blueprint for 
engaging children in scafolded yet open-ended reasoning around algorithmic fairness, informing the design of tools, 
curricula, and other learning experiences in the growing movement to educate children on technology’s social and 

ethical impacts. 

2 BACKGROUND 

To examine how children approach and view algorithmic fairness and its intricacies, it is important to frst consider 
existing theories on children’s moral development and its progression with children’s age and experience. We then take 

a closer look at the gradual process of understanding the concept of fairness and the theoretical foundations behind our 
decision to consider children’s context as a crucial factor in this study. 

2.1 Children’s Moral Development and Perceptions of Fairness 

Chapman and Caperndale [12] proposed an interpretation of Kohlberg’s general framework of moral development 
stages that emphasizes the process of opinion and stance formation to be rooted in action. According to them, children 

at diferent developmental stages construct moral values by internalizing their contextualized actions to develop moral 
structures. Therefore, children may develop diferently across contexts based on their life experiences. 

Furthermore, Piaget emphasizes the egocentric continuum in a child’s moral development [10]. He posited that 
children start by reasoning from a more egocentric viewpoint, then by getting to know themselves in relation to the 

world around them, progress to a less egocentric view of values and morality. In Piaget’s structural framework, this 
view would explain the tendency of younger children (up to the age of 11) to characterize morality based on outcomes 
rather than intentions, treating rules infexibly and absolutely. Then, at an older age, children begin to see beyond 

themselves and may view situations from others’ perspectives, using that context to decide if a rule is right or wrong. 

1With our participants, we use the term “fairness” instead of “bias” because prior work [22] showed that “bias” might not be in youth’s vocabulary. We 
use “fairness” when specifcally discussing with our participants but use the terms interchangeably elsewhere in the paper. 
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Kohlberg [36] also worked to extend Dewey’s work of cognitive moral development by diferentiating between 

(1) the pre-conventional level of morality when a child’s recognition of a good or bad action is directly tied to its 
consequences and their physical manifestations, such as punishments and rewards, and (2) the conventional level of 
morality, where older children nuance their moral reasoning while incorporating the moral codes prevalent in the adult 
society surrounding them. Therefore, it is important in our work to recognize our participants’ ongoing development of 
moral standards, considering their stage based on their age and contextual backgrounds. 

As a subset of moral development, the concept of fairness has been shown to mature alongside other values children 

acquire throughout their lives gradually. Children seem to have a deep aversion to inequality. They can identify unfair 
behavior from a young age [57] while tending to prefer equity over equality the older they become [5, 33, 50, 55]. While 

distinguishing between distributive fairness (favoring the results) and procedural fairness (recognizing the fairness 
in the decision-making process) occurs at a young age, research has shown that younger subsets of children favor 
fair processes over fair outcomes. In contrast, older children tend to favor distributive fairness, looking closely at the 

outcomes of an action to determine its fairness, even if the process leading to it was not ‘fair’ [23, 29]. Regarding actions, 
children older than eight were seen to be more likely to act upon perceived unfairness, while younger children are 

more likely only to recognize, but not act upon it [8, 9, 44]. 

2.2 Children’s Perceptions of Algorithmic Fairness 

With respect to children’s understanding of algorithmic fairness, a wealth of literature identifed children’s perceptions 
almost exclusively within the feld of AI and agent interactions. In this work, we focus both on children’s direct 
interactions with computing and an ‘ambient’ computation that may afect children more indirectly in our discussions 
and activities. Reviews of the feld [41] identifed several studies that suggest that children often overestimate agent 
intelligence [21] and consequently overly trust agents [20, 31, 60, 61]. Skinner [56] found that children equated kindness 
with fairness in AI agents, using kind communication with people to justify fairness. Despite this, Druga et al. [22] 
have shown that after showing them videos of algorithmic bias examples, children could connect those examples to 

their daily lives, identifying situations of unfair treatment from AI based on race/ethnicity, age, and gender. 
Research into children’s perceptions of algorithmic fairness that extends beyond AI to computing is nascent at best. 

Coenraad [14], for example, discovered that without instruction, youth demonstrated an awareness of visible negative 

impacts of technology more broadly, not only AI, and were able to provide examples of this bias within their lives. As 
educators and researchers increase eforts to educate children in critical computing literacies [6, 13, 47], this study 

ofers a blueprint of how to leverage children’s knowledge and backgrounds towards developing a more robust moral 
sensitivity to the complexities of algorithmic fairness. 

2.3 Funds of Knowledge & Sensemaking Theory 

W draw from funds of knowledge and sensemaking theories to support children in bringing their conceptions of fairness 
into computing. The funds of knowledge approach posit that learners already have various skills, knowledge, and 

competencies from their lives and their communities [28, 46]. This approach asserts that these assets are frequently 

invisible because of asymmetrical power relationships in education, and educators should identify and incorporate these 

skills when designing learning experiences. In K-12 STEM education, this approach has improved educational practices 
and learning outcomes [3, 16]. Our prior study exploring attitudes towards algorithmic biases with adolescents [4] used 

such experience grounded sense making techniques to understand scenarios questioning technology’s behavior and 

showcased their ability to fesh out their explanations with details from their own lives. 
3 
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Complementary to funds of knowledge is sensemaking theory, which postulates that knowledge is dynamic rather 
than static [17]. It proposes that individuals actively process information from various sources to achieve understanding 

rather than achieving an arbitrary pinnacle of knowledge. Through sensemaking, individuals can progressively develop 

new understandings by participating in complex activities where they may not always have prior knowledge instead 

of simply receiving information through direct instruction. In computing, sensemaking practices allow children to 

play an active role in learning various concepts, such as AI [18, 19], and data literacy [52]. As our goal is to investigate 

how children may engage in conversations around algorithmic fairness that center their perspectives, we ground our 
methods in sensemaking theory to make space for diferent paths of achieving understanding. 

3 METHODS 

3.1 Study Context & Timeline 

From July to November 2022, the frst and second authors conducted three sensemaking discussions lasting a maximum 

of 45 minutes with 16 participants (ages 8-12) in the United States. As we had participants from three US states (North 

Carolina, Virginia, and Washington), we allowed local participants to participate in the study in-person or virtually, 
while non-local participants had to participate virtually. All participants chose to complete the study virtually. As the 

three discussions were independent, we ofered participants the fexibility of scheduling their sessions 1-4 weeks apart 
to accommodate extracurricular activities, vacations, and other obligations. 

3.2 Participant Demographics 

Parents/guardians of the 16 participants in our study flled out a form with free-response questions to disclose their 
children’s age, gender identity, ethnic identity, languages spoken at home, disabilities, and any other aspects of their 
identity they would like the research team to know. Parents/guardians also provided their child(ren)’s chosen pseudonym 

or ‘superhero name.’ If they did not choose a pseudonym, we use the last letters of their frst and last names (Table 1). 
All participants had internet-connected devices at home, but we did not ask for any more information about their prior 
experiences with AI, data, or computing more broadly because (1) we did not require prior experience to participate 

in our study and (2) prior work has associated perceptions of having less prior experience with a lower sense of 
belonging and confdence in a computing context [43, 54], which may impact their participation in the study. Before 

each discussion, we asked each participant for their assent to research participation and session recordings. 
3.3 Sensemaking Discussions 

Table 2 shows the three sensemaking discussions participants engaged in, drawn from our prior study with adoles-
cents [4]. Each discussion centered on a specifc scenario designed to highlight diferent aspects of algorithmic unfairness. 
Each scenario started with seed text describing the situation. This was followed by the incremental reveal of diferent 
layers of algorithmic decision-making — whether a computer was used in decision-making, what algorithm was, what 
data was used, and what the composition of the team behind the algorithm was. 

To facilitate participants’ sensemaking and provide artifacts for us to analyze, each sensemaking discussion involved 

(1) a warm-up question before introducing the scenario, (2) refection questions for each layer revealed, and (3) a semi-
structured big paper design activity where participants brainstorm ideas on big paper to support the unconstrained 

generation of ideas [15, 25]. For virtual participation, we presented the warm-up and refection questions on Google 

Slides and the big paper design activity on Google Jamboard. As the scenarios were adapted from a prior study with an 

older age group [4], we modifed the discussion to be more suitable for this age group by (1) limiting the number of 
participants per discussion to 2, as opposed to 6-7 with the older participants, (2) having participants respond verbally 
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Pseudonym Age Gender Ethnicity Languages Spoken at Home Disability 
AN 
Alex 

 Ashley∗
 Emily∗

 Blue Gamer†
 Green Raven†

Ethan 

Kalex 
 Kitkat Krystal‡

Magentafed 
 Moonstone‡

Leroy 
Minecraft Coder 
Po 

 Spider§
 Squidney§

StoofCorg 

12 
11 
9 
8 
8.5 
12 
9 

11 
9 
9 

11 
9 
12 
8 
10 
10 

Agender 
Male 
Female 
Female 
Boy 
Boy 
Agender 

Female 
Female 
Female 

Male 
Male 
Female 
Girl 
Nonbinary 
Female 

Caucasian 
Asian 
Middle Eastern 
Middle Eastern 
Asian 
Asian 
Non-Hispanic, 
nazi Jewish 
Caucasian 
Caucasian 
Caucasian 

White 
European 
Pakistani 
White 
White 
Asian 

Ashke-

English 
English, Chinese 
English, Arabic 
English, Arabic 
English 
English 
English 

English 
English 
English 

English 
English, Dutch 
Urdu, Punjabi, Potwari, 
English 
English 
English, Chinese 

English 

No 
No 
n/a 
n/a 
No 
No 
No 

No 
No 
No 

No 
ADHD 
n/a 
No 
No 
No 

Table 1. Participant Demographics. “n/a” denotes parent/guardian declined to disclose. Matching symbols (∗, † ‡ § , , ) denote siblings. 

to                

verbally, and (3) assisting the participants with typing for the big paper design activity as some of them had difculty
balancing between voicing their ideas and expressing those ideas on the big paper. 

the refection questions immediately, instead of having them write down their refections frst and then debating 

 

Scenario Seed Text Situation Computer Algorithm Data Team 
Search 
Engine 
(‘Search’) 

Smart 
Speaker 
(‘Speaker’) 

School 

Ahmad is making a presentation for what he wants to 
major in college: nursing. When he searches online for 
images of nurses, he can barely fnd images of man nurses. 
Almost all the images are of women. 
Alex and her friends are playing with her family’s new 
smart speaker, Blurty. She notices Blurty responds to all 
her friends except Maximo, who just moved to the US from 
Mexico. 
There are two schools, School A and School B, in the same 
city. There are the same number of kids who go to both 
schools. Here are some of the kids who go to School A (show 
a group of white children) and here are some of the kids 
who go to School B (show a group of Black children). In 
School A, every classroom has six boxes of school supplies, 
such as books, calculators, art supplies, and notebooks, to 
use when kids are learning. In School B, every classroom 
has one box of school supplies. 

✓ 

✓ 

✓ ✓ 

✓ 

✓

✓

✓

✓

✓ 

✓ 

✓ 

Table 2. Seed Text & Layers Discussed in Each Scenario. 

We               

ages, backgrounds, and the power imbalance between the researchers and participants. As such, we did not directly ask 

participants about their harmful experiences with technology. Instead, we selected scenarios that might resonate with 

them based on prior literature. If they brought up their own experiences, we encouraged them to do so on their terms.
If participants were siblings, they participated in discussions together because, in pilots of this method, we observed 

siblings being able to co-regulate and debate with each other. We wanted co-regulation because we were discussing 

topics that could be emotionally difcult, and siblings could perhaps support each other. We also wanted to encourage 

debate since all our scenarios do not have obvious conceptions of fairness. Lastly, we made deliberate terminology 

made intentional choices to prioritize the safety and agency of participants, accounting for our participants’ 
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choices to minimize reliance on prior computing knowledge. As with ‘fairness’ (see the footnote in Section 1), we used 

the term ‘rules’ to describe the algorithm. We contextualized the data used in each scenario (e.g., voice recordings in 

the Speaker scenario) rather than simply using the term ‘data’. 
Regardless of the scenario, we adhered to the following protocol to encourage elaboration: (1) if the participant(s) 

mention another group of people not mentioned in the scenario, ask them how the rules would afect those people, and 

(2) if the participant(s) mention an interesting point, repeat their point back to them and ask them why. 

3.3.1 Scenario Design. We created three scenarios of algorithmic decision-making that surfaced potential fairness 
issues to seed sensemaking discussions. These scenarios were selected because they do not have straightforward 

conceptions of fairness and, thus, may elicit interesting insights from participants. 

(1) The Search Engine (‘Search’) scenario was based on biases in representation from search results [48, 59]. 
(2) The Smart Speaker (‘Speaker’) scenario was based on the failure of many voice recognition systems to recognize 

other languages or accents [38]. 
(3) The School scenario was adapted from the scenario used in [24] to understand youth’s perceptions of social 

resource inequality to refect algorithmic redlining [53]. 

We presented scenarios in this order to highlight an increasing scope of harm. In the Search Scenario, only a single 

individual is harmed. In the Speaker scenario, while only a single individual is harmed, the harm results in group 

exclusion. In the School scenario, a community is harmed. We also designed the scenarios to have varying technical 
focuses, with the Search scenario involving only software components, the Speaker scenario including hardware and 

software components, and the School scenario involving a covert, non-obvious technical component. 
Table 3 gives a detailed overview of the School scenario. The Search and Speaker scenarios followed a similar 

structure, with some key diferences. First, both scenarios had an apparent technical component that did not require 

uncovering. Second, they had diferent high-level abstractions of the algorithm. The Search Engine followed a naive 

search algorithm accounting for keyword presence in images’ metadata and the Smart Speaker being activated by a 

specifc phrase. Third, the Search scenario had no training data as it was not a machine learning-based algorithm, while 

the Speaker scenario had training data of voices from English-speaking countries. Lastly, the various teams in the 

Search scenario difered based on gender, while the Speaker scenario difered based on country of origin. 

3.3.2 Warm-up Qestions. Participants discussed a warm-up question at the beginning of each sensemaking discussion. 
These questions asked participants to share their experiences and were intended to help them get comfortable refecting 

and voicing their perspectives. Table 3 shows the question used in the School scenario. 

3.3.3 Reflection Qestions. After warm-ups, we revealed diferent layers of the algorithmic decision-making one at a 

time to scafold the sensemaking process, inspired by sensemaking practices in math and data science education [37] 
(see Table 2). For each layer (e.g., algorithm, data) that was revealed, we prompted participants with refection questions 
that were focused on either: (1) understanding or (2) evaluating the decisions in each scenario to encourage divergent 
or convergent thinking, respectively (Table 3). 

3.3.4 Design Activities. After the refection questions, participants brainstormed ideas to address the bias in the scenario. 
Consistent with the big paper method [25], they wrote their ideas either on the jamboard or on sticky notes (Figure 1). 

For the design activities, we prompted participants to imagine that they were the boss and in charge of designing 

the algorithm and, if applicable, the data used in each scenario. We chose this framing because, in early trials of this 
6 
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Stage Phase School: Questions & Revealed Layers 
Warm-Up — Ask: Where do 

walk into your 
you go to school? When you 
classroom, what do you see? 

walk into your school, what do you see? When you 

Worksheet 
Situation 

Computer 

Algorithm 

Data 

Team 

Understanding 

Evaluation 
Understanding 

Evaluation 

Understanding 
Evaluation 

Evaluation 
Evaluation 

Evaluation 

Evaluation 
Evaluation 
Evaluation 

Reveal seed text (Table 2) 
Ask: Why do you think School A has more supplies than School B? 
Reveal: A computer decided how much supplies each school should get. 
Ask: a. What do you think of a computer making that decision? 
b. Why do you think a computer decided to give School A more supplies than School B? 
Reveal: School A is in neighborhood A and School B is in neighborhood B. The computer made its 
decision using this rule: 
“For every $100 the neighborhood gives to the school, every classroom gets an extra box of school 
supplies.” 
Ask: a. What do you think of the rules the computer used? 
[If participants don’t mention fairness] How fair do you think the rules are? Why? 
b. How do the rules impact diferent people? 
c. What are the pros and cons of using a computer to make that decision? 
Reveal: The computer used data about how much neighborhoods gave in the past to decide that 
each neighborhood should give $100 for each box of school supplies. 
Ask: a. What do you think of the data that the computer used? 
b. How fair is it that the computer used past data? Why? 
Reveal: The team who designed the rules and data the computer used was made up of all white 
people. 
Ask: a. What do you think of this team? 
[If participants do not mention fairness for questions a, b, and c] How fair do you think this team 
is? Why? 
b. What if the team was made up of all black people? What do you think of this team? 
c. What if the team was made up of people from diferent races? What do you think of this team? 
d. Which team is the most fair? Why? 
[If participants bring up other factors] If you don’t think any of the teams are the most fair, what 
would be the most fair team? Why? 

Design 

Activity 

Brainstorming 

Brainstorming 
Brainstorming 

Brainstorming 
Brainstorming 
Brainstorming 

Ask: - Imagine you’re the boss & you’re in charge of the rules. What rules would you 
how much supplies each school should get? 
- Who will be applying the rules? Will it be a computer? A person? A team? Both? 
- How do you make sure the rules are fair? 
[Follow-up questions if needed:] 
- What kind of team would be the most fair in designing these rules? 
- How would you and your team design the rules fairly? 
- How would you and your team test the rules fairly? 

use to decide 

Table 3. School Sensemaking Discussion Qestions in full. Italics denote actions performed by facilitators. 

method,                 

would answer to instead of the task at hand. Throughout the activity, we prompted them to consider the fairness of the 

diferent layers of decision-making they designed (see Table 3 for specifc prompts). 

pilot participants struggled with the agency they had in each scenario, getting preoccupied with whom they

3.4     

We discussed the Search scenario with all 16 participants, the Speaker scenario with 14 participants (AN and Squidney 

dropped out), and the School scenario discussion with 12 participants (AN, Spider, Squidney, and Magentafed Moonstone 

dropped out). As siblings participated together, this resulted in 33 transcripts (32-45 minutes long) and big paper designs. 
To understand how participants engaged with the discussions and design activities, we used a deductive thematic 

analysis approach to analyze the transcripts and big paper designs using participants’ responses as our data source, with 

at least two authors coding each transcript and resolving disagreements by consensus. We adopted the practice of taking 

Data Collection & Analysis
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Fig. 1. Example from a Big Paper Design Activity 

participant quotes and big paper responses ‘literally’ to minimize inference. We did not capture agreement metrics such 

as inter-rater reliability throughout this process. Instead, we chose to resolve uncertainties through discussion and 

consensus-building, consistent with the position of Hammer and Berland [30] on qualitative coding that uses codes as 
an organizational aid for thematic claims about the data. 

Our codebook was drawn from our prior study [4], using the metaphor of a camera as an analysis guide. Since the 

adolescent participants made sense of algorithmic fairness using many factors beyond those in the scenarios, in the 

post-hoc round of that study’s thematic analysis, we organized those factors into a camera metaphor to describe how 

participants used diferent factors in their sensemaking and how these factors related to each other. 
In this metaphor, we specifcally used the lenses and flters of a camera. Photographers utilize lenses to modify the 

scale and resolution of a shot and afx diferent flters to a lens to photograph the same subject diferently, resulting in 

varying fnal images. In this metaphor, the participants are photographers, viewing algorithmic fairness in diferent 
scales/resolutions and lights to make sense of them. Each participant has their camera with their own set of lenses and 

flters. In [4], we found that participants used two diferent lenses to make sense of algorithmic bias at diferent levels: 
(1) a human lens, which spanned individual to societal factors, and (2) a technical lens, which included technology 

creators and other technical factors. Along with adapting the scale and resolution with their lenses, we observed that 
participants employed diferent characteristics, such as gender and race, as flters to alter what was most relevant to 

their sensemaking in each scenario. This categorization scheme is refected in our codebook (Table 4). 
Categories in the codebook were not mutually exclusive and often overlapped. For example, if a participant used a 

programmer’s gender bias to make sense of the Search scenario, their quote would be coded in both ‘biases’ under 
technical factors and ‘gender’ under characteristics. Factors that did not ft in any of the categories were coded as 
‘Other’ under human factors, technical factors, or characteristics. While the frst three authors reached a collective 

understanding of most codes, some were more often disagreed upon and required more discussion to build consensus: 
(1) individual: principles because for some participants, it was hard to determine if they espoused these principles 
themselves, or if they were simply naming a societal ideal, (2) individual: stereotype and society: societal stereotypes 

because for some participants, it was difcult to identify if they held the stereotype themselves or if they were naming 

a societal stereotype, (3) community: membership because it was sometimes difcult to identify the community that 
participants were referring to without inference. Upholding Hammer and Berland’s stance on qualitative work [30], we 

report on these disagreements for transparency on which themes were more subject to diferent interpretations. 
8 
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Factor Explanation 
Human Lens 
Individual: Stereotype Participants drew from a stereotype they espoused themselves. 
Individual: Lived Experience Participants drew from their own lived experiences. 
Individual: Principles Participants drew from their views of right and wrong. 
Community: Geographic Location Participants drew from the location of a community. 
Community: Membership Participants drew from who is in a community. 
Society: History Participants drew from past events and phenomena. 
Society: Societal Stereotype Participants identifed a problematic idea as a ‘stereotype’. 
Society: Power Distribution Participants identifed issues of power/agency or lack thereof. 
Society: Systemic Marginalization Participants problematized marginalization as a result of larger systems. 
Technical Lens 
Creators: Qualifcations Participants expressed both technical and interpersonal qualitites that made tech creators 

(un)qualifed for the job. 
Creators: Biases Participants cited biases held by the tech creators. 
Creators: Power Dynamics Participants accounted for power dynamics within teams of tech creators. 
Characteristics as Filters Characteristics participants used to describe the factors above: 

gender, country of origin, language, accent, (dis)ability, age, academic performance, 
economic status/class, race/ethnicity 

ble 4. Codebook using the metaphor of a camera from [4] as an analysis guide. We coded for the presence/absence of these factors 
 participant transcripts and big paper designs. 

Ta
in

After all the transcripts were coded, the frst and second authors collaboratively grouped the ‘Other’ factors into 

common categories using afnity diagramming [42]. The frst author then coded the ‘Other’ factors into those common 

categories, with the second author verifying their codes and resolving uncertainties through consensus. Lastly, the frst 
and second authors conducted a post-hoc analysis of all the codes to synthesize higher-level themes. 

3.5 Author Positionality 

Positionality statements make explicit the relationship between the authors’ identities and the research topic and the 

identities of the participants [32, 39, 51]. Each author wrote statements to describe experiences and perspectives that 
infuenced their engagement with the research. 

The frst author identifes as a woman of color. Some participants used her visible identity facets in the sensemaking 

discussions. For instance, when making sense of why most nurses were women in the Search scenario, Blue Gamer 
hypothesized that it was because women “get less pay for some weird reason” and then asked the frst author if 
she got enough pay. Her experiences with systemic marginalization in computing and society led to her interest in 

critical computing literacies for youth and adolescents. She led this project to understand the youth’s perspectives and 

engagement with ideas around algorithmic bias. 
The second author grew up and currently resides in a liberal and technology-centric city. Through their work in 

various communities throughout their career, they have come to recognize that their background may lead them to view 

technology as an integral and irresistible part of society - a reality that is not refected by all participants in this study 

or otherwise. They are therefore motivated by their hope to challenge the culture of mystery, silence, and unchallenged 

acceptance of technological advancements. They seek to grant children the opportunity to see beyond the black box of 
technology and clearly understand its motives and inner workings. 

The third author positions herself primarily as an activist for better and more inclusive technology education. Before 

deciding to embark on a Ph.D. journey, she worked for more than eight years on hands-on STEAM education in diferent 
communities worldwide as part of the organization she created called Anonymized. In the past three years, she has led 
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multiple           Anonymized        

AI education, which is free and open-source. 
The fourth author identifes as a mixed-race, queer, gender non-conforming parent and a computing researcher. She 

has had a lifelong interest in youth development and approached this project with a curiosity about youth capacity for 
moral reasoning about computation. Her role in the work was mentor, advisor, and facilitator. 

4 RESULTS 

Using the camera metaphor from our prior study with adolescents as an analysis guide(see Section 3.4), we characterize 

the two lenses, the human lens and technical lens, and the flters, or the characteristics, participants in this study used to 

make sense of algorithmic bias. Since participants often used the lenses and multiple flters in conjunction, featuring a 

quote for one particular lens or flter does not mean it did not contain others. 

4.1 Human Lens: Diferent Scales of Human Factors 

The human lens encompassed factors relevant to groups of people of diferent sizes: individual, community, and society. 

4.1.1 Individual. The individual level included factors connected to an individual. One factor that participants accounted 

for in reasoning about the unfairness in a scenario was stereotypes (Search: 9/16; Speaker: 2/14; School: 1/12). When 

brainstorming how people designing a Search Engine would identify images of diferent gendered nurses, Emily 

suggested, “You could tell by the face and hair?”, refecting physical gender stereotypes. 
Participants also attributed the unfairness to an individual’s pitfalls (Search: 6/16) or an individual’s interaction with 

technology (Speaker: 5/12; School: 4/12). In reasoning about why the Smart Speaker did not respond to Maximo, Green 

Raven hypothesized, “he might have said it wrong”, faulting the individual in the scenario. 
Across all scenarios, two factors were especially salient to participants. The frst was their lived experiences (Search: 

11/16, Speaker: 9/14, School: 8/12). Po drew from her school district when making sense of the unfairness in the School 
scenario, “In the less wealthy side of <Po’s hometown>, the district divides it purposely so the wealthier people go to one 

school, and then the less wealthy people go to another”, using observations of wealth distribution in her neighborhood. 
The other particularly salient factor was their principles or beliefs of right and wrong (Search: 16/16, Speaker: 14/14, 

School: 12/12). In critiquing the rules in the Search scenario, AN said, “It’d be nice to have a search that would include 

some sort of diversity, but I don’t know what kind of rule that would be.” Although they did not how to accomplish it, AN 

believed that diversity was important in designing the rules for a search engine. 

4.1.2 Community. The community level covered factors linked to a collective group of people. At this level, membership, 
or who was in a community, was especially relevant to participants in their sensemaking process (Search: 11/16; Speaker: 
7/14; School: 8/12). When brainstorming who should design the rules in the School scenario, Alex wanted “a team of 

parents who have children who go to all the schools in the city”, conceptualizing potential stakeholders in that scenario. 
Most participants also examined aspects of interpersonal relationships, such as bullying, empathy, and collaboration, 

when making sense of the unfairness in scenarios (Search: 10/16, Speaker: 12/14, School: 8/12). When making sense of 
Ahmad’s feelings from seeing mostly women as nurses, Kalex compared it to an instance of bullying: “I have a friend 

who is vegetarian [...] there was a kid in my class who would bully her for it.” Similarly, Minecraft Coder empathized with 

Maximo’s struggle in the Speaker scenario: “it would make you think you should speak another language, and you would 

ask every time Alexa can you repeat that again?”. Participants also accounted for collaboration while brainstorming the 

design team. When asked if the team designing the Speaker should be from diferent countries, Magentafed Moonstone 

co-design sessions with families focused on AI literacy and created , one of the frst platforms for
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questioned, “Can the team all speak one language? Because then it’s not really a team if they can’t collaborate”, suggesting 

that good teamwork was a priority, perhaps even above diversity in countries or languages. 

4.1.3 Society. The society level encompassed factors attributed to larger structural issues. Participants accounted for 
history (Search: 10/16, Speaker: 1/14, School: 11/12), issues of power distribution (Search: 12/16, Speaker: 3/14, School: 
11/12), systemic marginalization (Search: 9/16, Speaker: 2/14, School: 9/12), and societal stereotypes (Search: 11/16, 
Speaker: 7/14, School: 8/12). Interestingly, while participants considered systemic issues in their sensemaking, they 

tended to attribute these issues to individuals. This tendency was exemplifed in the following exchange between Ethan 

and a researcher while discussing the Speaker scenario: 

Researcher: Why do you think the speaker would respond diferently to someone from a diferent place? 

Ethan: Because America is mostly a bad place, and so we build bad things. 

Researcher: Alright, why do you say it’s a bad place? 

Ethan: It’s getting better, but [...] it doesn’t accept a lot of stuf. 

Researcher: What do you mean when you say it doesn’t really accept that much? 

Ethan: Not the president now, but who used to be president like, a few years ago, Trump. 

In this exchange, Ethan voiced a larger structural issue, a country’s unwelcoming environment, but blamed it on a 

specifc person. Similarly, when making sense of why schools received diferent amounts of school supplies, Green 

Raven hypothesized, “The white person’s like white supremacy cuz it’s what white people think”. While Green Raven 

identifed the systemic issue of white supremacy, he attributed it to individual white people. Both these instances reveal 
an awareness of systemic issues but only a vague, individualistic understanding of them. 

Participants also considered societal ideals. These are distinct from the principles at the individual level because 

it was not clear if the children espoused these ideals themselves (Search: 16/16, Speaker: 12/14, School: 9/12). In his 
evaluation of an all-men team in the Search scenario, Minecraft Coder critiqued, “the team would think the same”. While 

he accounted for the societal ideal of diversity in his sensemaking, it was not defnitive if he believed in this ideal. 
4.2 Technical Lens: Diferent Resolutions of Technology Factors 

Participants used the technical lens to account for technology-related factors to varying degrees of specifcity. This lens 
was not as well-formed as the human lens, which was expected because we did not require prior computing experience. 

4.2.1 Technology Creators. We grouped engineers, programmers, designers, and others involved in developing technol-
ogy under the umbrella of ‘creators’, as participants did not meaningfully distinguish between them. When sensemaking, 
participants accounted for the creators’ qualifcations (Search: 16/16, Speaker: 14/14, School: 12/12) and biases (Search: 
15/16, Speaker: 7/14, School: 8/12), as well as power dynamics within teams of tech creators (Search: 11/16, Speaker: 
5/14, School: 6/12). For instance, Alex contemplated the skill of navigating team disagreements in deciding who would 

be qualifed to design rules for the School scenario: “Some people might disagree on how much you should price it [...] but 

as long as they could always fnd some way to agree they’ll be a very good team.” 

4.2.2 Users. Participants also considered technology users (Search: 7/16; Speaker: 10/14; School: 7/12). This largely 

came in the form of testing the technology with users conceptualized by the participants, both real and hypothetical. In 

brainstorming how she would test the Speaker, Ashley said, “they could have many people who speak diferent languages”. 
She also included people in her life in testing, “Your family? Maybe your neighbor? Maybe other people you see?” 

In conceptualizing hypothetical users, some participants made assumptions about them, such as Squidney in making 

sense of the rules in the Search scenario: “They probably would know that having a label would increase the chance of 
11 
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having it in the list or photos that come up when you search nurse.” Squidney indicated an assumption of some technical 
knowledge from a user, which may not necessarily be the case. 

4.2.3 Atitudes towards Technology. Lastly, participants refected on their attitudes toward technology in their sense-
making. Most participants voiced doubts over a computer’s abilities (Search: 11/16; Speaker: 11/14; School: 12/12). These 

doubts were often cited as reasons to absolve the computer, such as StoofCorg in the Search scenario: “the computer 

is just following whatever the people say”. These doubts might have also shaped the computers’ role in the solutions 
participants designed. For instance, an idea from Ethan’s design board was “Use the computer for the emails and 

the phone”, relegating technology to a communication role. 
Participants also demonstrated a preference for humans over computers in addressing the unfairness in the scenarios 

(Search: 6/16; Speaker: 1/14; School: 7/12). In making sense of the computer’s decision-making role in the School 
scenario, Po critiqued, “Instead of making a computer do it and being extremely specifc, [...] then I think it’s just be a 

better idea for a human to do it. Because there’s less room for error if a human just did it.” 

4.3 Filters: Characteristics Salient in Sensemaking 

After participants determined the scale/resolution of their sensemaking within the human or technical lens, they 

decided which flter to attach to the lens to make diferent characteristics more relevant. Participants tended to use 

characteristics from both the prompts and their conceptions to reason about the algorithmic unfairness in the scenarios. 
Participants sometimes used multiple characteristics simultaneously, so using a quote for a specifc characteristic does 
not mean it did not contain other characteristics. We begin with the characteristics used only in the scenario where 

they were prompted, followed by characteristics that participants introduced into only one scenario, and end with 

characteristics used by participants in all scenarios regardless of mention in the prompts. 

4.3.1 Characteristics Used only in the Prompted Scenario. All participants (14/14) used both language and a closely 

related though not explicitly stated factor, accent, to make sense of the fairness in the Speaker scenario. When evaluating 

a multilingual design team for the Speaker, Blue Gamer prioritized language inclusivity, “Yeah, it would include everyone. 

Even if they made bad decisions, it’s still better than everyone knowing only one language.”. As for accents, when making 

sense of the rule used to trigger the Speaker, Kitkat Krystal hypothesized: “If you think about people with accents, like 

Maximo might have, maybe when they say ‘Hey, Blurty’, it may sound a little diferent that Blurty may not understand.” 

4.3.2 Characteristics Introduced by Participants. Some participants (4/16) used economic status to make sense of the 

unfairness in the Search scenario, although it was not mentioned at all. Participants often reasoned about economic 
status through gender, a characteristic included in the prompt. When assessing the fairness of an all-male design team, 
Spider hypothesized, “this team probably gets paid a lot of money [...], and so the woman is out lots of money”. 

Another characteristic that participants introduced was (dis)ability into the Speaker scenario (3/12). In critiquing the 

rule used to trigger the Speaker, Alex described his own pronunciation difculties: “If people speak with accents or speech 

impediments, like lisps, then perhaps it will be harder to understand. For example, I have to wear these retainers every night. 

When I wear them, it’s hard for me to pronounce my Ls and Rs. If I tried to say, ‘Hey, Blurty’, it might sound a little weird.” 

Participants also considered diferent traits of speech (10/14). For example, Ethan brainstormed testing with voices of 
diferent pitches, “If it’s high pitch, accent, or low, or deep, we can fnd out if it can still recognize it as Hey, Blurty.” 

In the School scenario, participants introduced the school or neighborhood population (5/15) to make sense of the 

unfairness. When it was revealed that a computer decided the distribution of school supplies, Kitkat Krystal rationalized 

its decision based on class size, “It can also just be based on how many kids are in your class. In school A, say there were 32 
12 
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students in a class. But then for school B, there were 22. So it’s okay, they can get a smaller amount of boxes.” On a related 

note, participants also introduced the distribution of resources (4/15). In brainstorming solutions, Ashley ideated: “I 
think they should split the money to both schools. They can get the supplies they need”. 

4.3.3 Characteristics Salient across all Scenarios. Four characteristics were used by participants to make sense of 
algorithmic fairness in all the scenarios: gender, country of origin, race/ethnicity, and age. 

Gender was only mentioned in the Search scenario, but was relevant in all scenarios (Search: 16/16; Speaker: 7/14; 
School: 3/12). For instance, when deciding who he would want in his design team for the School scenario, Leroy 

suggested, “a mix of races and genders”, layering gender in addition to race (which was included in the scenario). 
Similarly, country of origin was only brought up in the Speaker scenario but was added by participants in all scenarios 

(Search: 3/16; Speaker: 14/14; School: 1/12). As an example, in designing a solution to the Search scenario, Green Raven 

said, “I guess every country has a say. So it’s a worldwide thing.” 

Race/ethnicity was also only included in the School scenario, but became pertinent to participants across all scenarios 
(Search: 9/16; Speaker: 4/14; School: 12/12). For example, when choosing which accents and dialects to include in the 

training data for the Speaker, StoofCorg brainstormed, “defnitely Mexican because you get a lot of Mexican immigrants, 

Chinese because there’s a lot of Chinese immigrants, African Americans, maybe British.” 

Interestingly, age was not prompted in any of the scenarios and yet was utilized by all participants in their sensemaking 

(Search: 9/16; Speaker: 4/14; School: 1/12). Age was often used as a gateway for participants to introduce their own 

conceptions of fairness into their sensemaking process, such Magentafed Moonstone (age 12) who was participating 

with her sibling Kitkat Krystal (age 9): “When you have someone that’s 9 versus someone that’s 12, clothes might cost 

more. So you might have to give us a diferent amount of money, but it’s still fair.” 

5 DISCUSSION 

5.1 RQ1: What funds of knowledge might children use to make sense of algorithmic fairness? 

Through the scafolded sensemaking in these scenario discussions and design activities, all participants reasoned around 

algorithmic fairness using factors both explicitly and not explicitly mentioned in the scenarios. Participants used two 

lenses to adjust the scale and resolution of their sensemaking: (1) the human lens and (2) the technical lens. 
In the human lens, participants used factors at increasing group sizes ranging from individual to society, which 

refects ecological system theory that views an individual relative to their communities and larger society [11]. At the 

individual level, participants often grounded their sensemaking in their lived experiences and principles. Similarly, at the 

community level, participants tended to base their reasoning in both real and hypothetical interpersonal relationships, 
which often arose when hypothesizing the impacts of algorithmic bias. However, while participants also reasoned at 
the societal level, this sensemaking was more vague — participants tended to attribute structural issues to individual 
bad actors, not fully comprehending the large, systemic scale. Participants also expressed societal ideals when making 

sense of the unfairness, but it was not always clear if they believed in themselves. This vagueness may be because these 

issues are more abstract, coming from surrounding adult society, and less grounded in their own lived experiences [36]. 
As for the technical lens, participants often developed specifc conceptualizations of users, drawing from both 

real people in their lives and hypothetical users. This mirrors the relevance of lived experiences and interpersonal 
relationships observed through the human lens. In contrast with prior work [20, 31, 41, 60, 61], participants also exhibited 

a distrust towards technology, doubting computers’ abilities and displayed an inclination towards a human approach to 

address unfairness. This may be due to various reasons, including but not limited to (1) the lack of personifcation of 
13 
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the technology in the scenarios [26], (2) the child characters in the scenarios were easier to empathize with, (3) lived 

experiences with or exposure to adult tech use [49], and (4) a broader attitude change towards technology in society. 

5.2 RQ2: How might the ages, identities, and backgrounds of children shape their sensemaking of 
algorithmic fairness? 

Compared with the adolescent participants in our prior study [4], participants in this study tended to draw more 

heavily from their own experiences, perhaps indicative of a more egocentric viewpoint of morality characteristic 
in children [10]. Interpersonal relationships were very salient to participants in this study but not as salient for 
adolescents. This observation may potentially be because, at this age group, most children are learning to navigate 

interpersonal relationships and refning those skills [45]. In the human lens, the diferences between the child and 

adolescent participants seemed to be refected through the larger relevance of the individual and community levels and 

the relative vagueness of the societal level (Figure 2). In the technical lens, this study’s participants often expressed 

detailed characterization of users in their testing, as opposed to the previous study’s adolescent participants often 

designing for the ‘average user’, possibly indicating the salience of interpersonal relationships. This study’s participants 
also drew from their own skeptical attitudes around technology, potentially refecting a more egocentric viewpoint. 

Fig. 2. Comparison of the Sensemaking ‘Cameras’ of this study’s participants & adolescents from [4]. The individual and community 
levels of the human lens were more salient (orange), while the societal level was more vague (dashed line). The technical lens had new 
aspects of ‘users’ and ‘atitudes’ (blue). 

In addition to reasoning fairness at diferent scales and levels of specifcity, participants often introduced charac-
teristics beyond the prompt in their sensemaking. Participants introduced economic status into the Search scenario, 
(dis)ability into the Speaker scenario, and population and resource distribution into the School scenario, none of which 

were prompted. Participants may have added economic status into the Search scenario because it involved genders 
and occupations; some may have been sensitive to occupational stereotypes [27] or have existing knowledge of the 

gender pay gap [58]. Participants may include (dis)ability in the form of speech impediments because of their own 

experiences [7]. Similarly, participants may have accounted for school or neighborhood population, as well as resource 

distribution because schools, classrooms, and neighborhoods are contexts they are familiar with. 
Participants seemed to be especially attuned to gender, race/ethnicity, country of origin, and age, as they used them to 

make sense of the unfairness in all scenarios regardless of whether they were prompted. In contrast, race/ethnicity and 

economic status/class were particularly salient for the adolescent participants in [4]. Children develop identities around 

gender and race from a young age as part of learning social competence [34], which may explain the salience of gender 
14 
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and race. While we did not specifcally ask in our demographics form, some participants brought up their immigrant 
backgrounds, which may account for the relevance of country of origin across the scenarios. Age may be particularly 

salient to participants because many developmental milestones in childhood are tied to age [1]. The seemingly lower 
relevance of economic status/class for participants in this study compared with the adolescent participants in [4] may 

be grounded in lived experience. We did not recruit based on economic background for this study, but we recruited the 

adolescent participants from a program targeting students from low-income backgrounds in [4]. By understanding how 

learners’ funds of knowledge may change based on ages, identities, and backgrounds and by considering their stage of 
development, learning experiences, such as these discussions and activities, can scafold learners in leveraging their 
funds of knowledge to make sense of algorithmic fairness, enabling them to reason more deeply. 

5.3 Limitations, Contributions, & Future Work 

Although our study provides valuable insights, its design has some limitations. While we prioritized participants’ 
well-being and safety throughout the study, elements of the inherent power dynamic between an adult researcher 
and child participants still persist. For example, by following up on a participant’s idea to encourage their thinking, a 

researcher signals importance to the participant, which can infuence them to emphasize ideas diferently. Participants 
may also have perceived us as authority fgures, possibly afecting their behavior in sessions. They may have acted 

diferently to impress us or may have been more engaged because perceived authority fgures were listening to them. 
Also, while our participants were from diferent US states, they were all from locales that had a technology industry 

presence, which may have shaped their attitudes toward technology. Lastly, our participants only represent their own 

unique views and experiences, which do not generalize (neither was generalizability an objective of this study). 
In spite of its limitations, this work reveals crucial insights into children’s reasoning around algorithmic fairness. 

When provided opportunities to use their situated knowledge, such as in these discussions and design activities, children 

were not only aware of algorithmic bias but also capable of sensemaking around both its explicit and implicit negative 

impacts. This characterization of participants’ funds of knowledge can help designers uphold design principles for 
children, by gathering and respecting children’s unique perspectives [40] and by supporting proactive measures to 

protect them from algorithmic bias [2], such as education. Understanding potential funds of knowledge also inform the 

design of learning experiences on algorithmic fairness by understanding potential paths for children to engage in a way 

that centers their agency and well-being. Since learners’ funds of knowledge evolve with age, experiences, and social 
circumstances [28, 46], it is important that such experiences designed for children consider both their lived experiences 
as well as their moral and interpersonal development so that their existing experiences and knowledge may serve as a 

bridge into a new domain. 
While this study ofers one blueprint for incorporating children’s funds of knowledge through open-ended sense-

making, future work could explore other tools and techniques to do so. As our participants only represent their own 

knowledge and experiences, it is also crucial that future studies replicate this study with participants of diferent 
identities and backgrounds. Future studies may also investigate how diferent stakeholders in diferent contexts, such as 
families, teachers, designers, and policymakers, may be responsive to children’s funds of knowledge when engaging 

them in learning experiences on algorithmic bias. Learning experiences, tools, and other interactions with technology 

that meaningfully integrate children’s situated knowledge can better enable them to take advantage of their unique 

perspectives in navigating this increasingly technological world. 

15 



781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

Woodstock ’18, June 03–05, 2018, Woodstock, NY Anon. 

6 SELECTION AND PARTICIPATION OF CHILDREN 

We recruited children through our networks, social media, and local parent groups. We selected children based on their 
ages (7-12) and attempted to get a mix of genders, ethnicities, languages spoken at home, and disability status. Before 

any discussions with children, both the children and their parents read and signed a consent form, describing the study 

purpose, procedures, potential risks, stress, or discomfort, confdentiality, and the de-identifed public dissemination of 
research results. At the start of each discussion, the researcher frst told the children that it would take up to 45 minutes, 
and that we would start by discussing a scenario with computers, followed by an activity where they would get to be 

the boss and design some rules. We then asked the children if they assented to the discussion being recorded and that 
they can stop the recording at any time. Lastly, we reinforced to the children that they should only share what they are 

comfortable sharing and that if they no longer want to participate, they can tell us without getting in trouble with us or 
their parents. Throughout the discussion, we also looked out for signs of discomfort from the children, so that we could 

skip questions or shorten/end discussions if they were uncomfortable. 
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