
44	 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y � 0 0 1 8 - 9 1 6 2 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E

COVER FEATURE 21ST CENTURY USER INTERFACESCOVER FEATURE 21ST CENTURY USER INTERFACES

Human-centered methods can help researchers better

understand and meet programmers’ needs. Because

programming is a human activity, many of these methods

can be used without change. However, some programmer

needs require new methods, which can also be applied

to domains other than software engineering.

Two key (and surprisingly controversial) obser-
vations behind the research of Carnegie Mel-
lon University’s Natural Programming Group
(www.natprog.org) are that developers are

humans and that software development languages and

environments are the user interfaces through which
developers interact with computers. This means that
researchers should use conventional human–computer
interaction (HCI) methods to investigate how developers
use programming languages and tools. There are many
perspectives on how to use HCI methods to improve
software development and software products, including
user-centered design, participatory design, agile meth-
ods, and the wide range of requirements-engineering
methodologies.

Programmers Are Users
Too: Human-Centered
Methods for Improving
Programming Tools

See www.computer.org/computer-multimedia for
multimedia content related to this article.

Brad A. Myers, Carnegie Mellon University
Amy J. Ko, University of Washington
Thomas D. LaToza, George Mason University
YoungSeok Yoon, Google

	 J U LY 2 0 1 6 � 45

Here, we focus on the HCI methods
(see Table 1) that our group has used
over the last 30 years to improve the
usefulness and, specifically, usabil-
ity of tools for individual developers.
Many others have performed signifi-
cant and important research on other
aspects, including how groups of devel-
opers can communicate and be effec-
tively managed.1–3

Table 1 lists the development activ-
ities in which we have used each HCI
method, highlighting the breadth of
activities that the methods can sup-
port. These methods can also be used
in other ways to support additional
activities. This article presents small
case studies illustrating how we have
used the methods and discusses each
method’s strengths and weaknesses.
It contributes to understanding the
broad range of human-centered ap
proaches that can help improve pro-
grammers’ tools.

APPLYING HCI METHODS
HCI is a well-established field that
studies the interaction between people
and technology. Many people might
think HCI methods are primarily for
usability testing (evaluating how well
people can use a particular technol-
ogy).4 However, HCI has developed or
adapted a variety of human-centered
methods for answering many kinds
of questions about user interfaces. In
fact, HCI masters’ programs, such as
those at Carnegie Mellon University
and the University of Washington,
teach over 30 methods for discovering
information about people and their
interactions with technology.

In this article, we use “HCI” and
“human-centered” interchangeably to
describe methods involving people,
even methods that might be from
other fields or might be widely used

elsewhere. We are not suggesting that
these methods are exclusively under
the purview of HCI or even that HCI
has a greater claim on these methods
than other fields, such as psychology
or anthropology.

Another possible misconception
is that HCI focuses on only the sur-
face presentation (such as colors,
fonts, icons, and screen layouts). HCI
is concerned with everything the user
encounters, including functionality,
usefulness, information structure and
meaning, content, presentation, lay-
out, navigation, speed of response,
emotional impact, context (the social
environment in which a tool is used),
and documentation and help. HCI also
applies a variety of measures, includ-
ing learnability (how well the tool or
concept can be learned), productivity
and effectiveness (how quickly tasks
can be performed), and errors (how
often people make mistakes during
use). Many of the methods can provide
data about these measures that can
make decision-making more objec-
tive.4 Generally, for any question a tool
maker has about a new tool or tool fea-
ture, an HCI method can probably help
provide answers.

Our group has studied different
kinds of developers—professional pro-
grammers (who generally have a com-
puter science degree or an equivalent),
novice programmers (who are learning
how to be professional programmers),
and end-user programmers (who pro-
gram to automate a task rather than
to ship code for others to use).5 In
this article, we use “programmer”
and “developer” interchangeably to
apply to all people who work with code
(among their other activities), includ-
ing people who do the programming,
software engineers, system architects,
and testers. To avoid confusion, we use

“experimenter” to refer to people who
use HCI methods to study program-
mers or to design or evaluate new tools
or processes for programmers.

HCI methods can be applied to
everything the developer encounters,
including

›› tools such as editors and
integrated development
environments;

›› reusable components such as
APIs, libraries, and software
development kits;

›› documentation for all the tools,
APIs, processes, and context
used to organize development;
and

›› the design of the programming
languages themselves.

The dangers of not using these
human-centered practices have been
well-documented: languages, docu-
mentation, and tools that are con-
fusing, difficult to learn, or, worse
yet, useless. We have identified two
dimensions of usefulness: that an
important problem is addressed and
that the problem is actually solved.
For a problem to be important, it must
happen frequently or have a large
impact and be difficult for the devel-
oper to solve (which might be mea-
sured by the effort or time that solv-
ing it takes). The frequency, impact,
and difficulty can all be measured
with the HCI methods we discuss in
this article. Surveys have shown that
developers complain that research-
ers sometimes address unimportant
problems.6 Researchers can avoid this
by using human-centered data to help
decide which problems to research.

Furthermore, a research result
might not actually solve the prob-
lem. Sometimes a new tool or process

46	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

21ST CENTURY USER INTERFACES

might just change the problem. For
example, visualizations often just
change the developers’ search task
from looking through the code to
looking through a complicated graph-
ical presentation, which might not
be faster. Or, developers might find a
new tool’s user interface too difficult
to use, even when the tool’s function-
ality is inherently useful.7 Again,
researchers can use HCI methods to

measure the results of using the tool
or process, to see whether developers
perform better.

REQUIREMENTS AND
PROBLEM ANALYSIS
The first activity of a project likely
involves getting a better understand-
ing of the users’ problems and needs,
as a way to solidify the requirements.
This activity is obviously relevant for

commercial systems; we have found
it useful and often necessary for
research projects, too. Four methods
that we have often used in this activity
are contextual inquiry (CI), exploratory
lab studies, surveys, and data mining.

Contextual inquiry
In a CI, the experimenter observes
developers performing their usual
work where it actually happens.8 For

TABLE 1. Human–computer interaction (HCI) methods our group has used.

Method Tool development activities supported Key benefits Challenges and limitations

Contextual
inquiry

Requirements and problem analysis »» Experimenters gain insight into day-to-
day activities and challenges.

»» Experimenters gain high-quality data
on the developer’s intent.

»» Contextual inquiry is time consuming.
»» Recruiting professionals might be a
challenge.

Exploratory lab
studies

Requirements and problem analysis »» Focusing on the activity of interest is
easier.

»» Experimenters can compare
participants doing the same tasks.

»» Experimenters gain data on the
developer’s intent.

The experimental setting might differ
from the real-world context.

Surveys »» Requirements and problem analysis
»» Evaluation and testing

»» Surveys provide quantitative data.
»» There are many participants.
»» Surveys are (relatively) fast.

The data is self-reported and is subject to
bias and lack of participant awareness.

Data mining
(including
corpus studies
and log
analysis)

»» Requirements and problem analysis
»» Evaluation and testing

»» Data mining provides large quantities
of data.

»» Experimenters can see patterns that
emerge only with large corpuses.

»» Inferring or reconstructing the
developer’s intent is difficult.

»» Data mining requires careful filtering.

Natural-
programming
elicitation

»» Requirements and problem analysis
»» Design

Experimenters gain insight into
developer expectations.

The experimental setting might differ
from the real-world context.

Rapid
prototyping

Design Experimenters can gather feedback at
low cost before committing to high-cost
development.

Rapid prototyping has lower fidelity than
the final tool, limiting what problems
might be revealed.

Heuristic
evaluations

»» Requirements and problem analysis
»» Design
»» Evaluation and testing

»» Evaluations are fast.
»» They do not require participants.

Evaluations reveal only some types of
usability issues.

Cognitive
walkthroughs

»» Design
»» Evaluation and testing

»» Walkthroughs are fast.
»» They do not require participants.

Walkthroughs reveal only some types of
usability issues.

Think-aloud
usability
evaluations

»» Requirements and problem analysis
»» Design
»» Evaluation and testing

Evaluations reveal usability problems and
the developer’s intent.

»» The experimental setting might differ
from the real-world context.

»» Evaluations require appropriate
participants.

»» Task design is difficult.

A/B testing Evaluation and testing »» Testing provides direct evidence
that a new tool or technique benefits
developers.

»» It provides objective numbers.

»» The experimental setting might differ
from the real-world context.

»» Testing requires appropriate
participants.

»» Task design is difficult.

	 J U LY 2 0 1 6 � 47

example, in one of our projects, we
wondered what key barriers develop-
ers face when fixing defects.9 So, we
asked developers at Microsoft to work
on their own tasks while we watched
and took notes about the issues that
arose. A key problem for 90 percent of
the longest tasks was understanding
the control flow through code in widely
separated methods, which the existing
tools did not adequately reveal.

CIs are a good way to gather qualita-
tive data and insights into developers’
real issues. However, they do not pro-
vide quantitative statistics, owing to
the small sample size. Also, a CI can be
time consuming, especially if it is diffi-
cult to recruit representative develop-
ers to observe.

Exploratory lab studies
In these studies, the experimenter
assigns specific tasks to developers
and observes what happens. Unlike
usability analysis and A/B testing
(which we discuss later), the partici-
pants normally use conventional tools
(rather than a new design). The key dif-
ference from a CI is that here the par-
ticipants perform tasks provided by
the experimenter instead of their own
tasks, so there is less realism. However,
the experimenter can see whether the
participants use different approaches
to the same task.

For example, we collected a detailed
dataset at the keystroke level of expe-
rienced developers performing main-
tenance tasks in Java.10 We discovered
that the developers spent about one-
third of their time navigating around
the code base, often using manual
scrolling. This highlights an import-
ant advantage of these observational
techniques. For example, when we
asked the participants about barriers
when performing these tasks, no one

mentioned scrolling because it did not
rise to the level of salience. However,
it became obvious to us that this was
a barrier when we analyzed the logs
of what the developers actually did.
Knowing about such problems is the
first step to inventing solutions.

Surveys
In other cases, asking developers
questions can be helpful. We often
use surveys to collect numerical
data (hopefully from a large number
of people) about how pervasive our
observations from CIs and explor-
atory lab studies are.

For example, after we observed in
our CIs that interprocedural control
flow was important, we wanted to find
out how often developers have ques-
tions about control flow and how hard
those questions are to answer. So, we
performed a survey. The developers
reported asking such questions on
average about nine times a day, and
most felt that at least one such ques-
tion was hard to answer.9 By adding
open-ended questions to this survey,
we were able to collect many other
hard-to-answer questions about code
that capture real problems developers
face in their everyday work.

Data mining
Data mining is probably more closely
associated with fields other than HCI.
It might include corpus studies or log
analyses, depending on the kind of
data being analyzed. Often, this can be
a good way to investigate how perva-
sive a pattern is.

For example, we wondered how
often developers backtrack (return
code to a previous state) while edit-
ing code, possibly by using the editor’s
undo command. So, we analyzed 1,460
hours of fine-grained code-editing logs

from 21 developers. We detected 15,095
backtracking instances, for an average
rate of 10.3 per hour. This motivated
us to create Azurite, an Eclipse plug-in
that provides more flexible selective
undo, in which developers can undo
past edits without necessarily undoing
more recent ones.11

In another study, we performed
a linguistic analysis of the titles of
nearly 200,000 bug reports from the
repositories for five open source proj-
ects to see how developers describe
software problems. Our analysis sug-
gested designs for more structured
bug report forms that better match
people’s phrasing of problems, while
enabling tools to more easily reason
about reports. However, in data min-
ing, the large amount of data often
makes manual inspection impossi-
ble, which can make it more difficult
to validate results or understand the
developer’s intent.

DESIGN
Once experimenters have investi-
gated a problem, they might want to
design a tool or process to mitigate
any discovered issues. HCI meth-
ods can help answer questions about
what the design should be so that the
result will be attractive to and effec-
tive for developers. The methods we
have used for this include natural-
programming elicitation and conven-
tional rapid prototyping.

Natural-programming elicitation
Because programming requires devel-
opers to map their intent into a form
the computer can execute, research-
ers can make the process easier by
bringing the form of expression closer
to how the developer thinks. To bet-
ter understand how developers think
about their problems, we created

48	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

21ST CENTURY USER INTERFACES

natural-programming elicitation.12
This involves getting developers to
provide their own descriptions or
designs, which then inform the design
of tools and languages.

For example, our early research
examined how novice developers
expressed various programming con-
cepts.12 In one study, we showed them
pictures like those in Figure 1 and asked
how they would instruct the computer
to achieve that behavior. We found
they often used an event- or rule-based
structure, in which actions occurred
in response to events. For example,
for Figure 1, 54 percent of the partici-
pants used an if–then style, such as “If
Pac-Man hits a wall, then he stops.” In
contrast, about 18 percent of the par-
ticipants used a constraint-based style,
such as “Pac-Man cannot go through a
wall,” with the remaining participants
using other styles.

We used the result of this and other
studies to guide the design of a pro-
gramming language for children.12
For example, on the basis of the results
for Figure 1, the system uses the if–
then style for event handling.

We have also used this method to
understand how developers want to
access functionality through APIs.13
We gave developers a blank screen or
piece of paper and asked them to design

the API for a particular functionality.
This helped us understand the most
natural vocabulary and organization of
classes and methods, and provided rec-
ommendations for future API designs.

Rapid prototyping
A key HCI guideline is to rapidly iter-
ate on the design, using prototypes.4
Typically, the first step employs paper
prototypes, which are quickly cre-
ated using drawing tools or even just
pen and paper. For many of our tools,
we use this rapid prototyping to test
whether our ideas will likely work.

For example, when trying to help
developers understand the inter
procedural control flow of code, we
used OmniGraffle to draw mockups of a
possible new visualization and printed
them on paper (see Figure 2a).9 We then
asked the developers to pretend to per-
form tasks with them. We discovered
that the initial visualization concepts
were too complex to understand yet
lacked information important to the
developers. For example, a key require-
ment was to preserve the order in
which methods are invoked, which was
not shown (and is not shown by other
static visualizations of call graphs,
either). In the final visualization (see
Figure 2b), the lines coming out of a
method show the order of invocation.

EVALUATION AND TESTING
Developers are likely familiar with
using HCI methods to evaluate the
usability of the products they make.
However, they might not have tried
using those methods to measure their
development tools’ usability. We rou-
tinely evaluate the usability and per-
formance of our tools for develop-
ers, using expert analyses, think-aloud
usability evaluations, A/B testing, and
data mining using log analyses.

Expert analyses
In expert analyses, people who are
experienced with usability meth-
ods perform the analysis by inspec-
tion. For example, heuristic evaluation
employs 10 guidelines to evaluate an
interface.4 We used this method in our
collaboration with SAP. We found that
the really long function names vio-
lated the principle of error prevention
because the names could be easily con-
fused with each other.13

Another expert-analysis method
is a cognitive walkthrough.14 It involves
carefully going through tasks using
the interface and noting where users
will need new knowledge to be able to
take the next step.

Using both of these methods,
we helped SAP iteratively improve
a developer tool for Visual Studio.
Because SAP used agile develop-
ment,3 it could address our recom-
mendations immediately.

Think-aloud usability evaluations
Another set of methods is empirical
and involves testing the tools with the
target users. For development tools,
this requires having the developers
perform realistic tasks. The first result
of these evaluations is an understand-
ing of what participants actually do, to
see how they work with the tool.

FIGURE 1. Using pictures to prompt novice programmers or nonprogrammers to express
conditional situations. We asked participants how they would instruct the computer to
have Pac-Man behave according to the pictures. Fifty-four percent of the participants
used an if–then style (“If Pac-Man hits a wall, then he stops”), about 18 percent of the
participants used a constraint-based style (“Pac-Man cannot go through a wall”), and the
remaining participants used other styles.

	 J U LY 2 0 1 6 � 49

In addition, we recommend using
a think-aloud study, in which the par-
ticipants continuously articulate their
goals, confusion, and other thoughts.
This provides the experimenter with
rich data about why users perform the
way they do, so problems can be found
and fixed. As with other usability tests,
the principle is that if one participant
has a problem, others will likely have
it too, so it should be fixed if possible.

Research shows that a few represen-
tative users can find a great percentage
of the problems.4 In our research, when
we have evidence of usefulness from
early needs analysis through CI and
surveys, it is often sufficient to show
usability of tools through think-alouds
with five or six people. However, the
evaluations should not involve par-
ticipants who are associated with the
tool, because they will know too much
about how the tool should work.

A/B testing
Unlike expert analyses and think-
aloud usability evaluations, which
are informal, A/B testing uses formal,
statistically valid experiments. This is
the key way to demonstrate that one
tool is better than another regarding
some measure.

For example, we showed that devel-
opers using our Whyline debugging
tool were more than three times as
successful, in one-half the time, as the
control group.15 Similarly, we tested
Eclipse with Azurite against regular
Eclipse, and developers using Azurite
were twice as fast.11

Such formal measures are import-
ant for research papers. The resulting
numbers might also help convince
developers and managers to try new
tools or change work habits, because
they might find numbers more per-
suasive. However, these experiments

can be difficult to design correctly
and require careful attention to many
possibly confounding factors.16 In
particular, it is challenging to design
tasks that are sufficiently realistic yet
doable in an appropriate time frame
for an experiment (an hour or two).

Data mining through log analyses
A tool’s evaluation does not have
to stop when that tool leaves the

lab. Adding detailed logging to a
tool can help tool designers bet-
ter understand how developers use
that tool.

For example, we used our Fluorite
logger to investigate how developers
used Azurite.11 We found that devel-
opers often selectively undid a block
of code, such as a whole method,
restoring it to how it used to work and
leaving the other code as is.

(a)

(b)

FIGURE 2. An example of rapid prototyping. (a) A paper prototype of a visualization
drawn with OmniGraffle. (b) The final version of the tool, called Reacher. The prototype
revealed that the order of method calls was crucial to visualize. The method EditPane.
setBuffer(..) makes five method calls (the five lines exiting setBuffer shown in order
from top to bottom, with the first and third being calls to EditBus.send(..)). Lines with
“?” icons show calls that are conditional (and thus might or might not happen at runtime).
The circular arrow indicates calls in loops, diamonds indicate overloaded methods, and
numbers indicate that multiple calls have been collapsed.

50	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

21ST CENTURY USER INTERFACES

Similarly, we created Apatite, a
Web-based documentation tool that
presents Java methods by associa-
tion. When the user selects a method
or class, Apatite shows all the other
methods and classes that are often
used with it. In our field study, because
Apatite is a Web tool, we could easily
log every user action by using conven-
tional Web analytics tools. The logs

showed that few users found this asso-
ciation feature useful. Instead, they
used Apatite mainly to quickly find
a method or class by name because
it autocompletes any name entered.
Although we were disappointed that
Apatite did not prove more useful, the
study revealed valuable insights into
what developers really want.

DESIGN AND DEVELOPMENT
RECOMMENDATIONS
Besides the HCI methods we just dis-
cussed, human-centered techniques
can improve tools for developers in
other ways. We have found the follow-
ing observations useful.

Good aesthetic and
interaction design
During design, we have found it useful
to apply good aesthetic and interaction
design principles. Even when building
tools for people like themselves, soft-
ware engineers (and researchers) are
not necessarily the best interaction

designers. In addition, usability issues
can be a barrier to uptake and use, even
when the functionality is useful, as we
mentioned before.

To help resolve these issues, exper-
imenters can engage people skilled
in graphic and interaction design.
For example, graphic designers can
help with colors, icons, selection of
controls, and layout. This might be

especially important for visualiza-
tion tools. We have consistently found
that improving our tools’ presenta-
tion, interaction flow, and layout has
improved their usability, popularity,
and evaluations.

The primacy of viewing code
We have found that a key use for
visualizations is to guide develop-
ers to the right code to look at, rather
than the visualizations being an aid
to understanding on their own. For
example, Whyline aids debugging
by visualizing why a particular out-
put did or did not happen, through
dynamic and static analysis of full
execution traces.15 Whyline’s first
version targeted the Alice educa-
tional programming language and
provided an elaborate visualization
of the control flow and dataflow.
However, when we targeted the tool
at Java, the visualization became
unwieldy and not understandable.
Therefore, we focused the visualiza-

tion on providing easy navigation to
the relevant code for each step.

Similarly, the Reacher tool (see
Figure 2b) shows only a summary of
method invocations. Users click on the
lines and icons to see the correspond-
ing code snippets to get an under-
standing of the associated code.

The importance of search
It is no surprise to any developer
how useful it is to search the Web for
answers to a variety of questions, from
how to use APIs to what error mes-
sages mean. Our Mica project aug-
mented Google search to make the
returned results even more useful by
highlighting which API methods and
code examples the search returned.

We have found search useful in
many other ways. For example, Reacher
lets users search forward and backward
along the feasible control flow (rather
than searching through all the code),
to specifically answer questions such
as, “Are there any paths by which this
method can be reached without first
calling the initialization method?”

As we mentioned before, Azurite
lets developers search code backward
in time, to answer questions such as,
“When was this variable renamed?”
Generally, we have found that devel-
opers have very specific questions, so
providing a means to answer their ques-
tions directly through tools can sub-
stantially improve their productivity.

Augmenting what developers
are already doing
Experimenters should augment what
developers are already doing, so that
the new features are where they are
looking anyway. This significantly
increases familiarity and therefore
usability and reduces the new tools’
overhead.

ADDING DETAILED LOGGING TO A
TOOL CAN HELP TOOL DESIGNERS

BETTER UNDERSTAND HOW DEVELOPERS
USE THAT TOOL.

	 J U LY 2 0 1 6 � 51

For example, many developers
explore an API by using the auto-
complete pop-up menus in the code
editor. Although this feature aims to
reduce typing, developers commonly
use it to see the list of available meth-
ods and then guess which one might
be useful. However, we found that the
Eclipse autocomplete is not always
useful when developers are trying to
create a new instance of a class.13 (For
example, invoking the autocomplete
menu after typing “=” does not provide
any useful completions.) This is espe-
cially true when the instance should
be created using a factory method or
other indirect means.

Therefore, we built Eclipse plug-ins
that incorporate such entries directly
into the autocomplete menus. The Cal-
cite plug-in makes the autocomplete
menu that appears after the devel-
oper types “=” more useful by adding
to it the most common ways to create
instances.13 It does this on the basis
of analysis of code found through
Web crawling. The Dacite plug-in
adds autocomplete entries based on
API annotations for various patterns
such as factories and helper meth-
ods. The Graphite plug-in provides
mini-editors, which can be discovered
through autocomplete, for defining
colors and interactively authoring reg-
ular expressions. It automatically gen-
erates the corresponding code to cre-
ate Java objects.

Our Jadeite tool augments the pop-
ular JavaDoc documentation with
entries for methods that developers
expect to be in a certain class but that
are actually defined elsewhere. For
example, we found that developers
expect the email send method to be in
the Message class, whereas it is actually
in the Transport class. So, Jadeite adds
a placeholder entry in the JavaDoc for

the Message class under send, telling
developers where to look.13

Iterative design
To develop programming tools, we
recommend the same process that
has always been recommended for
creating more usable applications for
consumers: iterative design through-
out all phases, using human-cen-
tered methods.4,17 Large companies
such as Microsoft and Google already
embed user interface specialists into
their teams that create developer
tools (such as in Microsoft’s Visual
Studio group). However, even small
teams can learn to use at least some
of these methods.4

Many other HCI methods and
observations are available
that can answer additional

questions tool developers might have.
Hopefully, tool creators can use these
methods to help increase the likeli-
hood that future tools will help devel-
opers be more successful, effective,
and efficient.

ACKNOWLEDGMENTS
This article grew out of nearly 30 years’
work by the Natural Programming
Group involving more than 50 students,
staff, and postdocs besides the authors.
We thank them all for their contribu-
tions. The research summarized here
has been funded by SAP, Adobe, IBM,
Microsoft, and multiple US National Sci-
ence Foundation grants including CNS-
1423054, IIS-1314356, IIS-1116724, IIS-
0329090, CCF-0811610, IIS-0757511, and
CCR-0324770. Any opinions, findings,
and conclusions or recommendations
expressed in this article are those of the
authors and do not necessarily reflect
those of any of the sponsors.

REFERENCES
1.	 J. Tomayko and O. Hazzan, Human

Aspects of Software Engineering,
Charles River Media, 2004.

2.	 A. Seffah, J. Gulliksen, and M.C.
Desmarais, Human-Centered Software
Engineering—Integrating Usability in
the Software Development Lifecycle,
Springer, 2005.

3.	 D. Salah, R.F. Paige, and P. Cairns,
“A Systematic Literature Review for
Agile Development Processes and
User Centred Design Integration,”
Proc. 18th Int’l Conf. Evaluation and
Assessment in Software Eng. (EASE 14),
2014, article 5.

4.	 J. Nielsen, Usability Engineering, Aca-
demic Press, 1993.

5.	 A.J. Ko et al., “The State of the Art
in End-User Software Engineering,”
ACM Computing Surveys, vol. 43, no. 3,
2011, article 21.

6.	 D. Lo, N. Nagappan, and T. Zimmer-
mann, “How Practitioners Perceive
the Relevance of Software Engi-
neering Research,” Proc. 10th Joint
Meeting European Software Eng. Conf.
and ACM SIGSOFT Symp. Foundations
of Software Eng. (ESEC/FSE 15), 2015,
pp. 415–425.

7.	 E. Murphy-Hill and A.P. Black,
“Refactoring Tools: Fitness for Pur-
pose,” IEEE Software, vol. 25, no. 5,
2008, pp. 38–44.

8.	 H. Beyer and K. Holtzblatt, Contextual
Design: Defining Custom-Centered Sys-
tems, Morgan Kaufmann, 1998.

9.	 T.D. LaToza and B. Myers, “Devel-
opers Ask Reachability Questions,”
Proc. 32nd Int’l Conf. Software Eng.
(ICSE 10), 2010, pp. 185–194.

10.	 A.J. Ko et al., “An Exploratory Study
of How Developers Seek, Relate, and
Collect Relevant Information during
Software Maintenance Tasks,” IEEE
Trans. Software Eng., vol. 33, no. 12,
2006, pp. 971–987.

52	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

21ST CENTURY USER INTERFACES

11.	 Y. Yoon and B.A. Myers, “Supporting
Selective Undo in a Code Editor,”
Proc. 37th Int’l Conf. Software Eng.
(ICSE 15), vol. 1, 2015, pp. 223–233.

12.	 B.A. Myers, J.F. Pane, and A. Ko,
“Natural Programming Languages
and Environments,” Comm. ACM,
vol. 47, no. 9, 2004, pp. 47–52.

13.	 B.A. Myers and J. Stylos, “Improving
API Usability,” Comm. ACM, vol. 59,
no. 6, 2016, pp. 62–69.

14.	 C. Lewis et al., “Testing a Walk-
through Methodology for Theory-
Based Design of Walk-Up-and-Use
Interfaces,” Proc. SIGCHI Conf.
Human Factors in Computing Systems
(CHI 90), 1990, pp. 235–242.

15.	 A.J. Ko and B.A. Myers, “Debugging
Reinvented: Asking and Answering
Why and Why Not Questions about
Program Behavior,” Proc. 30th Int’l

Conf. Software Eng. (ICSE 08), 2008,
pp. 301–310.

16.	 A.J. Ko, T.D. LaToza, and M.M. Bur-
nett, “A Practical Guide to Controlled
Experiments of Software Engineer-
ing Tools with Human Participants,”
Empirical Software Eng., vol. 20, no. 1,
2015, pp. 110–141.

17.	 J. Goodman-Deane et al., “User
Involvement and User Data: A
Framework to Help Designers to
Select Appropriate Methods,” Design-
ing Inclusive Futures, P. Langdon,
J. Clarkson, and P. Robinson, eds.,
Springer, 2008, pp. 23–34.

ABOUT THE AUTHORS

BRAD A. MYERS is a professor in the Human–Computer Interaction Institute in

Carnegie Mellon University’s School of Computer Science. His research inter-

ests include programming environments, programming-language design, and

user interfaces. Myers received a PhD in in computer science from the Uni-

versity of Toronto. He is a Fellow of IEEE and ACM and belongs to the IEEE

Computer Society and the ACM Special Interest Group on Computer–Human

Interaction. Contact him at bam@cs.cmu.edu.

THOMAS D. LATOZA is an assistant professor of computer science in George

Mason University’s Volgenau School of Engineering. His research focuses

on software engineering environments, spanning empirical and design work

related to debugging, software design, collaboration, and crowdsourcing soft-

ware engineering. LaToza received a PhD from Carnegie Mellon University’s

Institute for Software Research. Contact him at tlatoza@gmu.edu.

YOUNGSEOK YOON is a software engineer at Google. His research aims to

improve developer productivity by providing better development tools and

environments for code editing, debugging, testing, and build automation. Yoon

received a PhD in software engineering from Carnegie Mellon University’s Insti-

tute for Software Research. Contact him at youngseokyoon@google.com.

Selected CS articles and
columns are also available for
free at http://ComputingNow
.computer.org.

IEEE TRANSACTIONS ON

BIG DATA

For more information
on paper submission,
featured articles, call-for-
papers, and subscription
links visit:

www.computer.org/tbd

SUBSCRIBE
AND SUBMIT

TBD is financially cosponsored
by IEEE Computer Society, IEEE
Communications Society, IEEE

Computational Intelligence Society,
IEEE Sensors Council, IEEE Consumer

Electronics Society, IEEE Signal
Processing Society, IEEE Systems,
Man & Cybernetics Society, IEEE
Systems Council, IEEE Vehicular

Technology Society

TBD is technically cosponsored by
IEEE Control Systems Society, IEEE
Photonics Society, IEEE Engineering
in Medicine & Biology Society, IEEE
Power & Energy Society, and IEEE

Biometics Council

SUBMIT
TODAY

AMY J. KO is an associate professor in the University of Washington’s
Infor- mation School and an adjunct associate professor in the university’s
Computer Science & Engineering department. Her research focuses on
interactions between people and code, spanning the areas of human–
computer interaction, computing education, and software engineering. Ko
received a PhD from Carnegie Mellon University’s Human–Computer
Interaction Institute. Contact her at ajko@uw.edu.

