Modeling Programming Problem Solving Through
Interactive Worked Examples

Dastyni Loksa
The Information School
University of Washington
Seattle, WA
dloksa@uw.edu

Abstract

Problem solving is a critical programming skill, but most
learning opportunities do not include instruction on it. Part
of the reason for this may be due to the difficulty in modeling
the cognitive and iterative nature of programming. In this
paper we present the Problem Solving Tutor, a web based
tool for delivering interactive worked examples that model
the iterative and cognitive processes of programming.

Keywords Worked Example; Problem Solving; Program-
ming

1 Introduction

Problem solving is a critical skill for novice programmers to
develop, and involves complex self-regulation and metacog-
nitive skills. And yet, these skills are rarely explicitly taught
[5]. In many learning settings, novice programmers encounter
problem solving process only indirectly through code ex-
amples or programming demonstrations, such as a teacher
writing code in front of a classroom.

Domains like math and physics use worked examples to
teach problem solving process, however, current program-
ming worked examples are missing key elements that make
them effective in those domains. In most domains worked
examples include a problem statement, all steps necessary
to craft a solution, and the final solution. Because program-
ming is a highly iterative task requiring a lot of mental work
it is challenging to represent all steps to the solution. Pro-
gramming worked examples often only present a problem
statement and final code with some line-by-line explanations
of execution, or sub-goal labels [3]. What programming work
examples lack are the cognitive and iterative steps toward
the solution that allow learners to view and learn problem
solving behaviors.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

PLATEAU’17 Workshop on Evaluation and Usability of Programming Lan-
guages and Tools, October 23, 2017, Vancouver, CA

Amy J. Ko
The Information School
University of Washington
Seattle, WA
ajko@uw.edu

In this paper we present the Problem Solving Tutor, a
tool to deliver programming worked examples that model
cognitive and iterative problem solving behaviors.

2 Problem Solving Tutor

To address the many challenges of delivering process-based
worked examples, we designed the Problem Solving Tutor
(PST), depicted in Figure 1. The PST focuses on providing
users with an interactive way to learn programming problem
solving process. It follows a worked example model of teach-
ing where an example programming problem is solved by an
expert who demonstrates each step of the process while also
providing rationale. The PST examples differ from current
programming worked examples in two important ways: 1)
it demonstrates each step an expert takes and 2) models the
expert’s decision making and reflection.

The PST provides an animated graphical representation
of an expert programmer (Figure 1.1) as one of it’s focal
points. The expert is an important aspect of the PST because
a learner’s relationship with their teacher is a powerful me-
diator of the learning experience [4]. To make the expert
engaging and person-like [1], the expert’s facial expressions
change to represent its current emotional state which ranges
from disappointment to excitement.

The expert’s speech bubble (Figure 1.2) is where all of the
expert’s dialogue is placed allowing the expert to communi-
cate with the learner. Within the speech bubble the expert
relates their thinking and rationale for their process and de-
cisions. The expert demonstrates their planning, evaluation
and reflection within the speech bubble simulating the ex-
pert using a think-aloud protocol. This models the expert’s
internal thought process and describes their mental work to
the learner while solving the problem.

The PST also provides a visual representation of the ex-
pert’s current state in a list of problem solving behaviors
drawn from prior work [2] (Figure 1.3). The current behav-
ior is always highlighted, animating to the next behavior
whenever the expert reaches a step that has them enacting a
different behavior. Showing these behaviors and transitions
allows users to identify, at a glance, which of the problem
solving behaviors the expert is currently engaging in, pro-
vides a visual reminder of what behaviors might be coming
next, and which others behaviors are possible.

PLATEAU’17, October 23, 2017, Vancouver, CA Dastyni Loksa and Amy J. Ko

3. PSTutor

Interpret | Search Adapl implement | EValuate

Step: 44145

// red and black squares, 50px

// draw large square and put small ones on top
canvas.fillstyle="red";
canvas.fillRect(0,0,100,100);
canvas.fillstyle="black";

0,50,50) ;

50,50, 50,50) ;

That should be it! Let's take a look and evaluate our
end product.

5. ’
Problem Solving Tutor Interface

1. Expert

2. Expert's Speech

3. Problem Solving Stages

4. Output Area

5.Code Area

6. Navigation and Current Step

4 ' Hide Output

Figure 1. The Problem Solving Tutor interface. 1) The expert, 2) speech bubble, 3) problem solving behaviors, 4) output area,

5) code area, 6) navigation and current step.

The expert can prompt learners to reflect on the process
using assessments. In assessments, the expert shifts the focus
of from the code to the problem solving activities and poses
a question to the learner such as, “Let’s see what you know
about the problem solving process. What do you think we
should do next?" These multiple choice questions appear in
the speech bubble where learners select an answer before

receiving feedback about their selection, right or wrong.

Learners can re-select answers and receive the feedback any
number of times before progressing.

Figure 1.4 indicates the code area where the current state
of the code is displayed. While the code is not editable by
users, it includes animated "typing" of code by the expert
during implementation steps allowing users to watch the
expert write each line of code. Animations are skippable by
proceeding to the next step in the example or by pressing the
spacebar. The most recent block of code is also highlighted
for easy identification, even after proceeding to the next
problem solving steps.

To support code comprehension and evaluation, the PST
includes a live output window (Figure 1.4) which shows the
output for the code currently in the code area. In Figure 1
the output is showing the rendered JavaScript code from the
code area (Figure 1.5). The output area can be collapsed to
provide more visual space in the code area, however, when
an example step requires the output for evaluation it will be
automatically expanded into view.

Figure 1.6 shows the navigation bar. Learners can use their
mouse or key bindings to navigate forward and backward
through the example’s steps or directly to the final solution
if the example had been previously completed.

3 Conclusion

An inability to fully observe a programmer’s problem solving
process contributes to the difficulty many face when learn-
ing how to program. The Problem Solving Tutor presents
programming worked examples in a way that allows learners
to view each step of an expert’s problem solving process. By
modeling the process and including think-aloud rational and
iteration on the code, learners are able to attempt to emulate
the expert’s process on future problems and with practice,
learn to master them.

References

[1] Amy L. Baylor and Jeeheon Ryu. 2003. The effects of image and anima-
tion in enhancing pedagogical agent persona. Journal of Educational
Computing Research 28, 4 (2003), 373-394.

Dastyni Loksa, Amy J. Ko, Will Jernigan, Alannah Oleson, Christo-
pher J. Mendez, and Margaret M. Burnett. 2016. Programming, Problem
Solving, and Self-Awareness: Effects of Explicit Guidance. In Proceed-
ings of the 2016 CHI Conference on Human Factors in Computing Systems.
ACM, 1449-1461.

Briana B. Morrison, Lauren E. Margulieux, and Mark Guzdial. 2015.
Subgoals, Context, and Worked Examples in Learning Computing
Problem Solving. In Proceedings of the Eleventh Annual International
Conference on International Computing Education Research (ICER ’15).
ACM, 21-29.

Erin E. O’Connor, Eric Dearing, and Brian A. Collins. 2011. Teacher-
child relationship and behavior problem trajectories in elementary
school. American Educational Research Journal 48, 1 (2011), 120-162.
Anthony Robins, Janet Rountree, and Nathan Rountree. 2003. Learning
and teaching programming: A review and discussion. Computer Science
Education 13, 2 (2003), 137-172.

[2

—

E

—

[4

[l

(5

—_

	Abstract
	1 Introduction
	2 Problem Solving Tutor
	3 Conclusion
	References

