
Leveraging Psychometric Modeling for Enhancing
Programming Skill Assessments

Chen Li*
ETS Research Institute

Educational Testing Service
Princeton, USA
CLi@ETS.ORG

*Corresponding author

Mo Zhang
ETS Research Institute

Educational Testing Service
Princeton, USA

MZhang@ETS.ORG

Xiang Liu
ETS Research Institute

Educational Testing Service
Princeton, USA

XLiu003@ETS.ORG

Hongwen Guo
ETS Research Institute

Educational Testing Service
Princeton, USA

HGuo@ETS.ORG

Amy J Ko
Information School

University of Washington
Seattle, USA

AJKo@UW.EDU

Min Li
College of Education

University of Washington
Seattle, USA

MinLi@UW.EDU

Abstract—Computer programming has emerged as a critical
21st century literacy. Programming skills are often assessed with
open-ended items that require students to write codes to solve
a programming problem. The accuracy of the codes can be
evaluated using test cases. These coding items, or tasks, cover
different programming concepts, including integer manipulation,
looping, and function recursion, each with varying difficulty
levels. Despite the prevalence of such assessments, there is a lack
of rigorous psychometric analysis on such coding tasks when an
unlimited number of attempts are allowed, which is a common
practice in assessing programming skills; that is, students can
try as many times as possible and debug and revise their codes
as needed based on test case results. This study demonstrates an
application of psychometric analysis and modeling to a computer
programming assessment data set collected from college-level
students. In addition to assessing the correctness of the final
submitted programs, the analysis considers process data such as
time spent on the task and number of attempts. By analyzing
both product and process data, we aim to uncover potential
associations between different programming concepts and item
difficulty level. We propose fitting a cognitive diagnostic model
(CDM) with process data as covariates to classify students
into different skill mastery patterns. We demonstrate that this
modeling approach can provide valuable insights for instructors
and researchers in understanding how students learn and master
programming concepts.

Index Terms—coding assessment, programming skills, process
data, psychometric analysis, cognitive diagnostic model

I. INTRODUCTION

Computer programming has emerged as a critical 21st cen-
tury literacy. Learning to code is becoming a popular subject
for students and professionals of all ages, partly for its career
prospects, but also as a critical literacy for understanding how
computing is shaping society. Despite the progress made in
understanding the difficulties in learning programming and in
interventions for teaching it more effectively, there has been

little progress in assessing programming skills. The assessment
chapter in a 2019 book [1] that surveyed the entire field of CS
education highlights this gap, summarizing a modest body of
research on plagiarism, but noting the severe lack of research
on designing valid, reliable, and fair measures of programming
knowledge. Much of the effort has been put into creating and
validating concept inventories or examining logistical issues
such as scaling the formative assessment of programming
skills (e.g., [2]). Some recent work showed psychometric
flaws with these concept inventories [3] and applied modern
validity frameworks to assess specific skills [4]. While this
progress is meaningful, prior work has overlooked the tensions
between assessing the program that a learner produces versus
the process that a learner followed to produce that program. An
open challenge in assessment in Computer Science education
is to understand the relationship between a learner’s process
and the programs resulting from that process [5].

The objective of this study is to explore the application
of psychometric analysis and modeling to a computer pro-
gramming assessment dataset by leveraging both response
process and product data. We used an item and assessment
delivery platform that has been developed under the larger
research project and allows for data collection of programming
product and process information at scale. The platform is
capable of capturing all the keyboarding activities and mouse
actions executed by a student when writing codes, in addition
to the final submitted codes [6]. Using a limited sample
size data, we evaluated different ways to evaluate coding
performance while incorporating timing and process data. We
demonstrate an application of cognitive diagnostic models to
uncover potential associations between programming concepts
and item difficulty level and as a method to identify the
difficult programming skills for students to grasp and classify



students into different skill mastery patterns. We show that this
modeling approach can potentially provide invaluable practical
insight for instructors and researchers in understanding how
students learn and master programming concepts.

II. METHODS

A. Cognitive Diagnostic Model Application
Taking into consideration the relative small sample size of

the pilot data (N of participants about 180) and the number
of programming tasks (i.e., 21) according to [7] and [8], we
used generalized DINA (the deterministic inputs, noisy “and”
gate) model for dichotomous attributes for our analysis. As
suggested in [9] the DINA model is the best choice in a small
sample scenario, and its parameters are easy for interpretation.

The DINA model is a popular cognitive diagnostic model,
which assumes the test taker must master all required skills
associated with that item to answer the item correctly. In our
model application, all attributes or skills are assumed to be
independent of each other. We estimated the generalized DINA
model with monotonicity constraints. Based on students’ ac-
tual responses, this model turns students’ descriptions into a
multi-dimensional knowledge point matrix.

As described in [10], in the DINA model with independent
attributes, the latent variable ηij(= 1/0) represents whether
respondent j has mastered all attributes required for item i :

ηij =

K∏
k=1

aqikjk (1)

where qik is the element of the Q matrix which is an I×K
matrix. qik=1 if item i requires attribute k and 0 if not. The
model allows for slipping and guessing:

si = Pr(Yij = 0|ηij = 1) (2)

gi = Pr(Yij = 1|ηij = 0) (3)

It follows that the probability πij of a correct response of
respondent j to item i is:

πij = Pr(Yij = 1|αj , si, gi) = (1− si)
ηijg

1−ηij

i (4)

B. Participants and Instrument
Our analysis is based on around 180 students’ test records.

There were 21 unique programming items in total strategically
grouped into a two-stage adaptive test design [6]. The common
form in Stage 1 included 9 tasks. There were two forms in
Stage 2, one easy form and one hard form. Each form in
Stage 2 contained six tasks. Depending on their performance
in Stage 1, students were routed to either hard or easy form
in Stage 2.

The test data was collected from students across different
academic majors and grade levels. On the item delivery
interface, the items are presented on the upper-left portion
of the screen, students edit and submit their codes on the
lower-left area, and check out the running results for each
test case on the right side. Besides the final test responses
data, processing data was also collected by capturing logs of
all keystrokes, program executions, window focus events, copy
and paste events, etc. during the coding test.

C. Q Matrix Simplification

Originally, seven programming skills were embedded in
our item design, as shown in the Figure 1. They were:
integer manipulation, string manipulation, list manipulation,
operators, branching, loops, and nested branching. Each item
measures a combination of a subset of the seven skills. Based
on this design, we got the model’s Q matrix, which specifies
the attributes measured by each item.

Fig. 1. Programming Skills in Item Design.

Since the sample size was relatively small, in order to
get better parameter estimations, we simplified the Q matrix.
Specifically, integer manipulation, string manipulation, list
manipulation are combined into a single category labeled
as “manipulation,” and branching and nested branching are
grouped together labeled as “branching.” As a result, we have
a seven-skills frame and a four-skill frame (i.e., manipulation,
branching, operators, and loop).

D. Scoring Rules

Traditionally, students’ performance was judged based on
the accuracy of their final submitted code using test cases
and/or a scoring rubric. Recent research has suggested that
there are pros and cons from a psychometric perspective to
evaluate students’ proficiency based on the final outcome [6].
We examined the histogram of the 180 students’ response time
by items (as showed in Figure 2.), and found that among the
students who passed the item in 5 attempts, 78% took less
than 5 minutes to complete the code editing. Based on this
finding, the following four different scoring rules were used
to score the students’ coding behavior.

Fig. 2. Histogram of The First Five Attempts Duration.



• Pass at the first attempt (Scoring Rule 1): If the code
passes all test cases of the item in the first running
attempt, then score = 1 on this item; otherwise, 0.

• Pass within 5 minutes and 5 attempts (Scoring Rule
2): If the programming code passes all test cases of the
item within five minutes and within five running attempts,
then score = 1 on this item; otherwise, 0.

• Pass within 5 attempts (Scoring Rule 3): If the program-
ming code passes all test cases of the item within five
running attempts, then score = 1 on this item; otherwise,
0.

• Unlimited time and attempts (Scoring Rule 4): If the
programming code passes all test cases of the item, no
matter how many attempts the student tried, and no matter
how long it took the student, then score = 1 on this item;
otherwise, 0.

From the Scoring Rule 1 to Scoring Rule 4, the degree of
strictness decreases step by step, the first scoring rule is the
most strict and the last one is the most relax with no constraints
on the number of attempt or coding time. We computed a total
score for each participant by summing all item scores acros.
The total score distribution using the four different scoring
rules, as can be seen in Figure 3, confirmed the varying degrees
of the strictness, with the overall histograms gradually shifted
from the left (lower total score, more strict scoring rule) to
the right (higher total score, less strict scoring rule).

Fig. 3. Total Score Histogram Using The Four Scoring Rules.

III. RESULTS

A. Model Estimation Results

According to the recommendations made in [11] by com-
paring several software packages, we chose the R software
to estimate the DINA model. The analysis used the CDM
package for cognitive diagnostic modeling [12] in R. The
model fit statistics are given in Figure 4. The models were
compared between the four-skill and seven-skill frames, based
on AIC, BIC, and mean RMSEA (root mean square error
approximation), for each of the scoring rules described above.

From the model fit statistics, we can see that the AIC and
BIC values of the seven-skill frame and four-skill frame are
very close, while the mean RMSEA values of the four-skill

Fig. 4. Model Fit Results

frame (purple line) are lower than the seven-skill frame (or-
ange line). The difference in mean RMSEA between the four-
and seven- skill frame was particularly large resulting from the
Scoring Rule 2 which includes the response time constraint.
Overall, the seven-skill frame RMSEA values between 0.08
and 0.12 are acceptable, but the four-skill frame showed better
model fit taking in account of all three evaluation statistics
(AIC, BIC, and RMSEA). Therefore, we only report the results
based on four-skill frame hereafter.

B. Item Analysis Results

Figure 5 gives the item analysis results using four different
scoring rules based on the four-skill frame. The blue bars
represent the “guess” parameter estimates by item and the
orange bars represent “slip” parameter estimates by item. To
interpret the two parameters, a high “guess” estimate means
that even students of low proficiency have a high probability
to guess the correct answer by chance, a high “slip” estimate
means that even students of high proficiency have a high
probability to make a careless mistake and fail that item, and
vice versa.

The results are rather interesting and generally agreed with
our expectations from item design. Overall, items 1 to 13 and
item 20 are relatively easy compared to the items 14 to 19.
The results also suggested that for items 2, 12, 14 and 21,
students needed to exert more effort to figure out the correct
coding on these items. And for items 1, 20, and 21, students
will improve a lot if they were given longer time. Also there
were items (for example, item 17) appeared very difficult at the
beginning, but it will finally been resolved if the students tried
enough attempts. The “slip” parameters further diminished
substantially under the unlimited attempt condition, suggesting
that regardless of item difficulty, students are unlikely to
make careless mistakes when they were allowed to revise and
resubmit their codes as many time as they desired.

C. Demographic Subgroup Analysis Results

As part of the data collection, the students were asked to
report their demographic background on a volunteer basis,
including their gender identification, ethnicity, home language,
prior programming experience, academic major, among others.
All questions were provided in an open-ended format. The



Fig. 5. Item Analysis Based On The Four-skill Frame.

DINA model estimated person parameters which can be used
to generate a skill attribute patterns for each individual student.

Here the subgroup analyses are post-hoc analyses based
on the estimated person skill profiles from the DINA model.
Using the individual parameters estimation we calculated the
average estimation scores of each subgroup by self-identified
gender and by academic major, respectively. For gender, we
compared two subgroups: the “men” group which is the
dominant subgroup in CS education and the “non-men” group.
For academic major, four subgroups were compared: computer
science, engineering, math, and others. The subgroup com-
parison results are given in the following spider graphs. For
the purpose of demonstration, we only show the comparisons
between the most strict Scoring Rule 1 (passing all test cases
at first attempt) and the least strict Scoring Rule 4 (passing all
test cases with unlimited time and attempt).

In Figure 6, the solid lines represented the subgroups’
average ability evaluated by first attempt scores on the four
skills, and the dashed lines represent the subgroups’ average
ability evaluated by the final scores. The blue color represents
subgroup of men and the red color represents non-men. At the
beginning, using Scoring Rule 1, the men group’s appeared to
outperform the non-men group, especially on the “loops” skill.
However with more attempts and unlimited time on task, the
results based on Scoring Rule 4 shows that the non-men group
appears to have caught up and there is much less obvious
difference between the men and non-men groups on any of
the four skills. Furthermore, the gaps between the solid lines
and dashed lines suggest that allowing for unlimited time on
task and attempts appeared to have the biggest impacts on the
estimations on the loops skill.

Figure 7 shows the performance comparisons between stu-
dents in different academic majors. The solid lines represent

Fig. 6. Skill Evaluation By Gender Based on Four Skills.

the mean estimated ability for a subgroup evaluated by Scoring
Rule 1 and the dashed lines represent the mean estimated
ability evaluated by Scoring Rule 4. We find that, for the
loops, manipulation and branching skills, the computer science
students appear to perform the best when evaluated by Scoring
Rule 1, the “Math” and “Other” major students in the middle,
and the “Engineering” students the worst at the beginning.
There is no obvious difference on the operators skill among
the four major groups. The patterns shifted a bit in the final
attempt scores resulting from Scoring Rule 4. In the end,
the “Engineering” major group demonstrated better loops and
branching skills compared to the other three major groups.
Although the other three major groups also demonstrated
better skills overall in the final attempt, the changes were
generally not as substantial as the “Engineering” major group.

Fig. 7. Skill Evaluation By Major Based On Four Skills.

IV. SUMMARY AND DISCUSSION

Learning computer programming has become essential not
only for career development but also as a means of compre-
hending the increasing influence of computing technologies on
society. Despite the strides made in programming education,



there is still a noticeable gap in developing reliable methodolo-
gies to assess programming skills. This study seeks to address
this shortfall by an empirical demonstration of applying rigor-
ous psychometric models and analyses to a computer program-
ming assessment dataset, utilizing data on both the end product
and the programming process implemented by individuals. A
platform was developed to capture the full breadth of student
interaction with programming tasks, including keyboard and
mouse activities, enabling a comprehensive collection of data
that captures both the final code and the coding process. A
cognitive diagnostic model, specifically the generalized DINA
model, was applied to this data to explore the relationship
between programming concepts and task difficulty, providing
new insights into how students learn and master programming
skills.

The analysis simplified the original seven-skill model into
a four-skill model by grouping related skills to achieve better
model fit due to the small sample size. Various scoring
rules were examined, establishing a gradient of strictness that
evaluated how constraints on time and number of attempts
affected students’ performance. Results indicated the potential
for improved performance when allowances were available for
additional time and attempts. Furthermore, demographic sub-
group analyses revealed nuanced differences in performance
based on gender and academic major, with differing patterns
observed in students’ mastery of skills such as loops and
branching. Using these analyses, we highlight the value of
using psychometric models in coding assessments to uncover
deeper insights into student learning processes and skill ac-
quisition in programming.

One of the primary limitations of this study is the rela-
tively small sample size of approximately 180 participants,
which may not be representative of the broader population
of programming learners. This limitation could affect the
generalizability of the findings, as a more diverse and larger
sample size might yield different insights into the complexities
of programming skill acquisition. As the small sample size
could also affect the reliability of the CDM results, in the
future, we can examine its impact using the standard errors of
the parameter estimates and estimating the classification un-
certainty as suggested in [13]. Additionally, the simplification
from a seven-skill to a four-skill model, driven by the need for
more reliable parameter estimations, might have overlooked
some nuances in the skill sets required for programming,
potentially oversimplifying the relationships between different
skills. The reliance on digital logs to capture the coding
process also raises concerns regarding the completeness and
accuracy of data, as these logs may not precisely reflect a
learner’s cognitive processes or problem-solving strategies.
Moreover, the study utilized a limited number of programming
tasks, which might not encompass the full breadth of program-
ming skills and concepts typically involved in a comprehensive
computer science curriculum. Lastly, the conclusions drawn
from demographic subgroup analyses might be constrained by
the self-reported nature of demographic data, which can be
prone to inaccuracies and inconsistencies.

The next phase of this research will involve the collection of
additional data to enhance the model-based inferences and to
gather detailed evidence on the reasons behind errors in each
coding attempt. This will allow for expanding detailed item-
level analysis such as in [6] and a more thorough analysis of
the coding process data, potentially uncovering patterns that
inform better teaching methods. Additionally, we are exploring
the feasibility of automatically generating personalized feed-
back for students, tailored according to their performance and
specific challenges identified through the data. Furthermore,
we will investigate the relationship between task variation and
coding processes, particularly examining these dynamics from
a fairness perspective. This entails ensuring that all students
have the same opportunity to demonstrate their abilities,
leading to more inclusive and effective educational practices.

ACKNOWLEDGMENTS

This research is supported by the National Science Founda-
tion Grant No. 2055550 and 2100296.

REFERENCES

[1] S. A. Fincher & A. V. Robins (Eds.). (2019) “The Cambridge handbook
of computing education research.“ Cambridge University Press.

[2] B. Xie, D. Loksa, G. L. Nelson,M. J. Davidson, D. Dongsheng, H.
Kwik, A. H. Tan, L. Hwa, M. Li, & A. J. Ko. (2019) “A theory
of instruction for introductory programming skills.“ Computer Science
Education, 26(2–3), 205–253.

[3] Xie, B., Davidson, M. J., M. Li, & A. J. Ko. (2019) “An item
response theory evaluation of a language-independent CS1 knowledge
assessment.“ In SIGCSE ’19: Proceedings of the 50th ACM Technical
Symposium on Computer Science Education (pp. 699–705). ACM.

[4] G. L. Nelson, A. Hu, B. Xie & A. J. Ko. (2019) “Towards validity for
a formative assessment for language-specific program tracing skills.“
In Koli Calling ’19: Proceedings of the 19th Koli Calling International
Conference on Computing Education Research (pp. 1-10). ACM.

[5] E. Thompson, A. Luxton-Reilly, J. L. Whalley, M. Hu & P. Robbins.
(2008) “Bloom’s taxonomy for CS assessment.“ In Proceedings of the
Tenth Conference on Australasian Computing Education-Volume 78.
155–161.

[6] H. Guo, M. Zhang, A. J. Ko., M. Li, B. Zhou, J. Lim, P. Pham & C. Li.
(2024) “Measuring Students’ Programming Skill via Online Practice.“
In Proceedings of the 8th Educational Data Mining in Computer Science
Education (CSEDM) Workshop. Atlanta, GA.

[7] G. Uyumaz & O. Çokluk-BÖKEOĞLU. (2017) “Effect of Q-matrix
misspecification on parameter estimation in differing sample sizes and
test length for DINA.“ EBAD - JESR, 7(1), 91–108.

[8] T. Basokcu. (2014) ”Classification Accuracy Effects of Q-Matrix Val-
idation and Sample Size in DINA and G-DINA Models.“ Journal of
Education and Practice; Vol 5, No 6 2014; 220-230.

[9] M. A. Sorrel, S. Escudero,P. Nájera, R. S. Kreitchmann & R. Vázquez-
Lira. (2023) “Exploring Approaches for Estimating Parameters in Cogni-
tive Diagnosis Models with Small Sample Sizes.“ Psych, 5(2), 336-349.

[10] SY Lee. (2016) “DINA model with independent attributes.“ Technical
report, University of California at Berkeley. https://mc-stan.org/users/
documentation/case-studies/dina independent.html.

[11] S. Sen & R. Terzi. (2020) “A Comparison of Software Packages Avail-
able for DINA Model Estimation.“ Applied Psychological Measurement,
44(2), 150–164.

[12] A. C. George, A. Robitzsch, T. Kiefer, J. Groß & A.Ünlü. (2016) “The
R Package CDM for Cognitive Diagnosis Models.“ Journal of Statistical
Software, 74(2), 1–24.

[13] M. S. Johnson, & S. Sinharay. (2018) ”Measures of agreement to as-
sess attribute-level classification accuracy and consistency for cognitive
diagnostic assessments.” Journal of Educational Measurement, 55(4),
635-664.


