Empirical Software Engineering
https://doi.org/10.1007/510664-019-09773-y

®

What distinguishes great software engineers? Check for
updates

Paul Luo Li' © . Amy J. Ko? - Andrew Begel®

Published online: 03 December 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

Great software engineers are essential to the creation of great software. However, today, we
lack an understanding of what distinguishes great engineers from ordinary ones. We address
this knowledge gap by conducting one of the largest mixed-method studies of experienced
engineers to date. We surveyed 1,926 expert engineers, including senior engineers, archi-
tects, and technical fellows, asking them to judge the importance of a comprehensive set of
54 attributes of great engineers. We then conducted 77 email interviews to interpret our find-
ings and to understand the influence of contextual factors on the ratings. After synthesizing
the findings, we believe that the top five distinguishing characteristics of great engineers
are writing good code, adjusting behaviors to account for future value and costs, practicing
informed decision-making, avoiding making others’ jobs harder, and learning continuously.
We relate the findings to prior work, and discuss implications for researchers, practitioners,
and educators.

Keywords Software engineering - Software development management - Collaboration -
Computer science education
1 Introduction

At the end of the day, to make changes [to software], it still takes a developer, a butt
in a seat somewhere, to type [Source Control System] commit. — Dev Manager

Communicated by: Kelly Blincoe

P< Paul Luo Li
paul.li@microsoft.com

Amy J. Ko
ajko@uw.edu

Andrew Begel

andrew.begel @microsoft.com

1 Microsoft, Redmond, WA 98052, USA
2 The Information School, University of Washington, Seattle, WA 98195, USA
3 Microsoft Research, Redmond, WA 98052, USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-019-09773-y&domain=pdf
http://orcid.org/0000-0001-5224-9594
mailto: paul.li@microsoft.com
mailto: ajko@uw.edu
mailto: andrew.begel@microsoft.com

Empirical Software Engineering

Great software engineers are essential to the creation of great software. Consequently,
understanding the attributes that distinguish great engineers is foundational to our world’s
rapidly growing software ecosystem: companies want to hire and retain great engineers,
universities want to train them, and aspiring engineers want to know what it means to be
great.

Software engineering research has long aspired to develop this understanding, with many
studies rigorously considering attributes of great engineers. For example, starting from the
early days of computing, many researchers and practitioners recognized that some software
engineers were better than others. Using metrics like lines of code produced and bug rate,
early studies attempted to quantify differences between great engineers and ordinary ones
in terms of productivity (Sackman et al. 1968). Often performed in laboratory or university
settings (Gugerty and Olson 1986; Robillard et al. 2004), studies attempted to isolate the
technical coding task. These observations led to the popular software engineering meme of
the “10X developer”.

Some notions of developer skill are prescriptively encoded in curriculum. For example,
the ACM curricular standards define software engineers as: people who write software to
be used in earnest by others. The curricula enumerates essential knowledge for software
engineers; it focuses almost entirely of technical skills like Programming Fundamentals
and Software Design (Joint Task Force on Computing Curricula 2014). The focus on skills
related to coding is also true of the Software Engineering Book of Knowledge (Bourque
et al. 2014), which attempts to enumerate everything a software engineer can and should
know to be competent.

While much prior work insists that programming and technical knowledge is central,
some evidence suggests that attributes of great engineers also lie in their ability to inter-
act effectively with teammates. For example, many studies examining everyday activities of
software engineers find that engineers spend significant time performing non-coding activi-
ties (Singer et al. 1997; Perry et al. 1994), including conflict resolution (Gobeli et al. 1998),
bug triaging (Anvik et al. 2006; Aranda and Venolia 2009) and information seeking (Ko
et al. 2007). Studies have also considered these factors from the perspective of new grad-
uates entering industry, examining the gaps between abilities of new graduates and skills
needed to engineer software in the real-world (Radermacher and Walia 2013). Researchers
commonly find that being effective engineers requires non-coding attributes, such as con-
fidence, eagerness to learn, and the ability to work effectively with others (Begel 2008;
Hewner and Guzdial 2010).

Research on software engineering process also imply skills required by engineers. Var-
ious guidelines (notably, CMM Herbsleb et al. 1997), methods (e.g., the Spiral method
Boehm 1988), and manifestos (e.g., Agile manifesto Beck et al. 2001), suggest many spe-
cific ways of working, planning, and deciding that are essential for productive teamwork.
These are consistent with claims by luminaries like (Brooks 1995) and others from compa-
nies like Microsoft (Brechner 2003) and Google (Fitzpatrick and Collins-Sussman 2009),
suggesting that great software engineers possess a collection of attributes that span the
socio-technical spectrum that are supportive of organizational needs. Collectively they point
to personality traits, technical abilities, and inter-personal skills combining to distinguish
great engineers in real-world settings.

Research efforts have culminated recently in two comprehensive studies, synthesizing
prior work into higher-level frameworks. Our prior ICSE paper (Li et al. 2015) laid the foun-
dations by providing a comprehensive enumeration of attributes of great engineers, deriving
a set of 54 attributes from 59 semi-structured interviews with experienced engineers at
Microsoft. Baltes and Diehl (2018) built upon our study by contributing a comprehensive

@ Springer

Empirical Software Engineering

theory that incorporates the software engineering process with the individual and social
characteristics of the engineers. However, both studies lack an understanding of the relative
importance of these characteristics. Thus, in this paper, we explore three research questions.
First, are some attributes viewed by experienced engineers as more important than others?
Second, how do the perceived importance of the attributes vary by the demographic, con-
text, and work experiences of the engineers? Third, how do these attributes distinguish great
engineers from the rest?

Answers to these questions require a very large sample of informants, in rich and diverse
contexts, making judgments on attributes that characterize great engineers. Therefore, we
conducted a large-scale mixed method study of experienced engineers. We quantitatively
surveyed 1,926 expert Microsoft engineers, covering 67 countries (13% of all expert
Microsoft engineers world-wide at the time of the survey). Additionally, we conducted 77
follow-up interviews to qualitatively interpret the relative importance of attributes and the
effects of contextual factors. Our work is one of the largest real-world studies to date of
software engineers.

In the rest of this paper, Section 2 discusses our prior interview study and the 54 attributes
of great engineers it produced, which serve as the foundation for this study. Section 3
describes the methodology of this study, both the survey and the follow-up interviews. We
follow in Section 4 with results. In Section 5 we first discuss prior work, then we synthe-
size insights and relate those insights to prior work. We discuss takeaways for researchers,
educators, and practitioners, as well as threats to validity. Finally, we conclude in Section 6.

2 Attributes of Great Software Engineers

In this section, before describing our study, we review the attributes from our prior study (Li
2016), which formed the basis for our survey and interviews. Figure 1 shows an overview
of these attributes and how they relate. The 54 attributes in the prior work include self-
focused attributes of the software engineer’s personality and of their ability to make effective
decisions, as well as externally-focused attributes of the impact that great engineers have on
people and products. A prior publication provides thorough descriptions of each attribute
(Lietal. 2019).
As Fig. 1 shows, the first group of 18 attributes pertained to engineers’ personalities:

Personality Teammate Interactions

Continuously improving
Open-minded
Executes

Self-reliant
Self-reflecting
Persevering

Curious

Craftsmanship

Turn ideas into reality

Decision-making

Passionate

Focused

Systematic

Adapts to new settings
Productive

Aligned with organization’s goals
Data-driven L
Hardworking “//
Willing to enter the unknown/&//

Updates decision-
making knowledge

Grows ability to make
good decisions

Sees the forest
and the trees

Handles complexity

The
‘Engmeer

-

Knowledgable about:
Tools and building materials
Their technical domain
Engineering processes
Customers and business

Coworkers and organization
J

Internal

|eulaixg

| Honest
Does due diligence beforehand
Asks for help
YaYa
"\ Is a good listener
Manages expectations
Integrates others’ understandings
Doesn't make it personal
Walks-the-walk

| Resists external pressure

The Engineer's Code

Has a good reputation
Creates shared understanding
Creates shared success
Well-mannered

Creates a safe haven
Mentoring

Challenges others to improve
Personable

Trades favors

-
Pays attention to coding details

1010107 | Fits with pieces around it
0100100 | Makes informed trade-offs

Evolving
El t
| Elegan

Long-termed

Creative

Anticipates needs

Uses the right processes during
construction

Fig.1 Model of attributes of great software engineers

@ Springer

Empirical Software Engineering

That is something that can’t be taught. I think it’s something a person just has to
have [...] They don’t need any outside motivation. They just go [...] They have just
an inner desire to succeed, and I don’t know why. It’s not necessarily for the money,
it’s not necessarily for the recognition. It’s just that whatever it is they do, they want
to do it extremely well [...] I've seen a lot of smart people that have none of these
characteristics [...] — Principal Dev Lead

Some attributes, such as passionate and curious, concerned who great engineers were as
people. Informants felt that many of these attributes were intrinsic to the engineer—formed
through their upbringing—and would be difficult (if not impossible) to change.

The second group consisted of 9 attributes that pertained to engineers’ ability to
make decisions. By decision-making, we mean “rational decision-making”, as described
by Simon (1955): assessing the current situation (i.e. understanding when/what decisions
were needed), identifying alternate courses of action, gauging probabilistic outcomes, and
estimating value of future states.

How do we make, what I often call, “robust decisions?” What’s a decision we could
make, depending on this range of potential outcomes, which we can’t foresee? [...] if
we can make a decision that is viable, whether A or B happens, then we don’t have to
fight about A or B right now. — Technical Fellow

Informants described software engineering as requiring many complex choices about
“what software to build and how to build it.” Furthermore, beyond book knowledge, great
engineers understand how decisions play out in real-world conditions. They not only knew
what should happen, but also what can and likely will happen. Combining internal knowl-
edge, mental models that tie the knowledge together, and the cognitive ability to reason
about their models, decision-making attributes were self-focused. Yet, unlike personality,
the sentiment among informants was that effective decision-making could be learned.

The third group of 17 attributes pertained to engineers’ interactions with teammates:

The way [this great software engineer] just kind of touches people, just dissolves
conflicts right there [...] that magic to make people respect him. That’s fun magic, 1
think that not everyone possesses. — Senior SDE

Most informants believed that great engineers positively influenced teammates. For many
informants (whose titles contained “Lead” or “Manager”), this was an important part of
their job as managers of other engineers. Attributes concerning interactions with teammates
generally revolved around four concepts: being a reasonable person, influencing others,
communicating effectively, and building trust. We deconstructed these four concepts into
their constituent attributes.

The final group consisted of 9 attributes that pertained to the
software produced by great engineers:

The style [...] always, an idea, and it was all clean [...] very concise. Just looking at it,
you can say, “Okay, this guy, he knew what he was doing.” [...] There’s no extra stuff.
Everything is minimally necessary and sufficient as it should be. It’s well thought out
off screen. — Senior SDE

Like artists appreciating masterpieces of other artists, our informants, many of whom
were great engineers themselves, saw beauty in software produced by other great engineers.
In this paper, we build upon this comprehensive set of attributes of great engineers,
using a mixed-method study (quantitative survey and qualitative follow-up interviews) to

@ Springer

Empirical Software Engineering

understand the relative importance of the attributes and how contextual factors impact their
importance. We then synthesize learnings from both studies to provide insights into what
distinguishes great engineers.

3 Method

To determine the relative importance of the attributes, we employed a large-scale quantita-
tive survey, seeking to rank the 54 attributes by agreement that the attribute was essential for
greatness. Additionally, we considered contextual factors that impact the practice of soft-
ware engineering, based on previous studies (Hewner and Guzdial 2010; Radermacher et al.
2014; Fisher and Margolis 2002; Margolis and Fisher 2003; Carver et al. 2008; Shackelford
et al. 2006) (and our own previous study): amount of experience, gender, country, computer
science educational background, and type of software (server-side, client-side, or both).
Table 2, shown later in Section 4, shows details on how these factors were operationalized.
Finally, since spurious correlations are possible with quantitative statistical tests, we used
qualitative follow-up interviews to help validate and interpret the findings.

For this study, we chose to continue investigations at Microsoft, the same setting as our
previous interview study (Li et al. 2015). Though there are obvious external validity lim-
itations with Microsoft being one organization, it also offers advantages. First, continuing
investigations at Microsoft helps construct and internal validity. Microsoft employees share
common understandings (e.g. terms and seniority based on titles), which helps consistent
interpretation of our questions as well as our interpretation of their responses. Furthermore,
the common organizational structure (e.g. job titles) allows us to identify experienced engi-
neers for the studies in a consistent manner (discussed in Section 3.1). Second, Microsoft
is a conglomerate of diverse products and settings. These include games, consumer elec-
tronics, OS, productivity, search, consumer services, enterprise services, enterprise resource
planning, customer relationship management, databases, developer tools, and communica-
tions, as well as regional-specific development centers around the world. This rich diversity
of contexts actually benefits external validity and increases the prospects of discerning
interesting contextual factors. Third, Microsoft consistently utilizes best practices and tech-
nologies, as well as employs top talent; this helps to factor out confounding deficiencies.
Finally, we acknowledge expediency considerations; two authors are Microsoft employees
with access to engineers and organizational permission to perform the studies. We leave
further validation of our results in other contexts to future work.

3.1 Survey Method

A key decision in our methodology was determining whose subjective opinions could be
considered valid judgments of attributes of “greatness.” For this study, we made the assump-
tion that experienced engineers were in the best positions to make these judgments, as they
regularly make them when interviewing and evaluating other engineers. We included Leads
and Managers of engineers in our sampling because, at Microsoft, nearly all of them had
hands-on experience as engineers. As with our initial interview study (Li et al. 2015), we
adopted the ACM’s definition of software engineer (Shackelford et al. 2006): people who
write software to be used in earnest by others. We operationalized this definition using the
Microsoft company directory. We identified software engineers based on titles that entailed
“software development” and then consolidated the list of titles, removing various address
book wording anomalies. To determine “experienced,” we used the approach utilized by

@ Springer

Empirical Software Engineering

researchers of human expertise (Ericsson et al. 1993). We identified those having achieved
some degree of recognition as experienced, either through hiring or promotion processes,
selecting engineers at or above the Software Development Engineer Level 2 (SDE II)
title.

Recognizing that insights of more experienced engineers are valuable (and more diffi-
cult to obtain), we had two sampling strata for experience level. First, for “experienced,” we
selected engineers with titles at SDE?2 level up to “Senior Software Development Engineer
Lead” promotion level; these engineers typically had at least 5 years of experience. Second,
for “very experienced,” we selected engineers above the promotion level of “Senior Soft-
ware Development Engineer Lead”; these engineers typically had 10+ years of experience
and were often responsible for critical technical areas.

We hosted our anonymous survey on a Microsoft Research website. We emailed engi-
neers asking them to participate, offering a report of the findings and entry into a gift
certificate raffle as incentives (two gift cards, $75 each, odds of winning proportional to
number of respondents). We personalized the solicitations with the software engineer’s
name, described the purpose of the research, and explained why we needed their perspec-
tive; these steps help to reduce inattentive survey responses (users providing insincere or
haphazard responses) (Meade and Craig 2012). Each solicitation had a separate anonymized
survey link to prevent multiple submissions (e.g. via bots, which may lead to bias and spu-
rious results). We sent reminder emails after the first week and after one month. The survey
was open from Dec 2014 to Feb 2015.

In the survey, after explaining the purpose of the study and the respondent’s right not
to participate, we asked questions about the respondent’s demographics, experience level,
and current work context (using numerical input boxes, e.g. years of experiences, or radio
select buttons, e.g. server- / client-side software). These are the contextual factors we later
correlate with their ratings.

We then sought respondents’ ratings for all of the attributes. In anticipation of respondent
fatigue, we presented the questions in four groups, corresponding to the four groups from
our interview study, discussed in Section 2. To address ordering bias and to enable analysis
of incomplete results, we randomized the ordering of the four groups, as well as randomized
(separately) the ordering of the attributes within each group. Questions about the attributes
were structured and phrased in a similar manner, allowing respondents to quickly read
and respond. To illustrate, Fig. 2 shows what the survey looked like for the hardworking
attribute. We concluded the survey with an open-ended catch all question, aiming to detect
operational problems and missing attributes.

We took several steps to ensure that respondents accurately understood the attributes.
In the first iteration of survey construction, we described an engineer who possessed the
attribute. We then piloted the survey to identify comprehension issues, leading to changes
in wording (e.g. “software engineer” to “developer” to differentiate people that did not
write code) adding supporting quotations for 37 attributes, adding clarifications for confus-
ing attributes (e.g. “practices and techniques” was appended with “e.g. unit testing, code
reviews, Scrum, etc.”).

To get an absolute rating of importance, we asked “If an experienced developer — whose
primary responsibility is developing software — did not have this attribute, could you still
consider them a great developer?” We gave respondents six Likert-style choices (see Fig. 2):
“Cannot be a great developer if they do not have this,” “Very difficult to be a great developer
without this, but not impossible,” “Can be a great developer without this, but having it
helps,” “Does not matter if they do not have this, it is irrelevant,” “A great developer should
not have this; it is not good,” and “I do not know.”

@ Springer

Empirical Software Engineering

- i Grounded
A hardworking developer is willing to work more than 8 hr days to deliver the ‘ .
-+ attribute
software product L.
definition
; : Contextual
sometimes there ymething that s just arduot You really just need to grind through, like
example, where
running a maratt tsa £8 1,/ and hours Server & Tools developer 5
appropriate
25. If an experienced developer---whose primary responsibility is
developing software---did not have this attribute, could you still
consider them a great developer? *
Canbea Ordinal rating
Cannot be great Does not Agreat | scale, soliciting
agreat developer matterif developer holistic
developer without theydo should not importance
if they do this, but not have have this;
not have havingit this, itis itis not | do not
this impossible helps irrelevant good know
O O O O O O

Fig.2 Screenshot of the survey question for the attribute: “hardworking”

Piloting the survey indicated that this negative operationalization of “importance” was
easier for respondents and was better at eliciting the attribute’s importance. Positively
phrased descriptions led to responses that lumped together because respondents could
almost always imagine a situation in which an attribute can be important. The nega-
tive wording yielded more differentiation and better matched our conceptualization of
importance: attributes that great engineers could not be without.

Once the survey construction was completed, we made an initial deployment to 200
developers (~100 in each experience stratum) to look for additional problems, and to project
response rates. After finding no issues, we deployed the survey to the full sample, aiming
for 500 responses in each sampling stratum.

The survey took respondents a median of 28 minutes to complete. Overall, we obtained
1,926 survey responses, 825 responses from experienced engineers (~7% of all experienced
engineers at Microsoft, and a response rate of 46%) and 1,101 responses from very experi-
enced engineers (~35% of all very experienced engineers at Microsoft, and a response rate
of 44%). Of the responses, 1,634 (84.3%) were complete, 292 had ratings for at least one
attribute. We found no item-response bias—there was no relationship between attributes and
having a response, at the o = .05 level using Logistic regression. There were also no issues
detected from the open-ended final question (e.g. no missing attributes). We used both com-
plete and partial data in our analysis because of randomization and because ranking of each
attribute was independent of other attributes (i.e. not relative ratings).

Our quantitative analysis assessed our notion of relative importance: the degree to which
respondents agree that an engineer cannot be considered great without the attribute. The

@ Springer

Empirical Software Engineering

two important aspects of the rankings are: the ratings and the agreement among respon-
dents about the ratings; statistically, this means the distribution of ratings: both the central
tendency (i.e. criticality) and the dispersion (i.e. agreement). The attributes that were more
important have distributions that were more concentrated at the higher ratings. Conse-
quently, we ranked the attributes by comparing the ratings distribution of each attribute to
the ratings distribution of every other attribute, counting the number of other distributions
for which an attribute’s distribution was significantly higher (53 was the largest possible
number). We did not use average ratings for three reasons: the data were ordinal (i.e. the
distance between rating levels is not uniform), our response levels were not centered (four
positive ratings and only one negative rating), and averages do not consider the dispersion
of ratings. To rank the attributes (i.e. compare distributions), we used the Mann-Whitney
rank-order test; the test can be used to compare ordinal data as well as distributions (both
central tendency and dispersion), and can be used when the number of observations is not
equal (Hollander et al. 2013). There were no abnormal bi-modal distributions. For each
attribute, we performed 53 one-sided Mann-Whitney rank-tests, one test against every other
attribute. We then calculated the number of statistically significant pairwise comparisons at
level @ = .05. Finally, we ranked the attributes based on the number of statistically sig-
nificant tests. For example, the ratings distribution of the most highly ranked attribute was
statistically higher than every other attribute.

To analyze the relationship between contextual factors and ratings, we used Ordinal
Logistic Regression. We assessed the first order relationships between the contextual factors
and the ratings of each attribute. Due to being optional, only 1,512 respondents provided
information on age. To maximize statistical power, we first fitted models with all factors to
assess the effects of age and then fitted separate models without age, to assess the effects of
other factors.

Since we tested for statistically significant relationships between each factor and each
attribute (over one thousand tests in all), to account for performing multiple statistical tests,
we used the Benjamini and Hochberg False Discovery Rate (FDR) adjustment at the stan-
dard FDR ¢ = 0.1 level. We filtered to only the statistically significant relationships by
removing the highest p-value relationships to achieve FDR ¢ = 0.1 (all relationships had
p < .05).

3.2 Follow-up Email Interview Method

The quantitative results tell us what (e.g. important attributes and statistically significant
relationships), but they do not tell us why. To interpret the rankings and the relationships, we
emailed respondents for insight into their survey responses, providing valid understandings
of the quantitative results.

We performed follow-up interviews for the highest ranked attributes (the top five ranked
attributes in Table 1), the potentially detrimental attributes (the two attributes with the
highest percentage of “A great developer should not have this; it is not good” ratings, at
the bottom of Table 1), as well as the attributes that were significantly affected by con-
textual factors (the relationships listed in Table 2). For the highest ranked attributes and
positive relationships, we picked respondents with the largest positive difference between
their rating of the attribute and their median ratings, aiming to avoid respondents that rated
all attributes highly. For the detrimental attributes and negative relationships, we similarly
picked respondents that had the largest negative rating differences.

In our survey, 771 respondents indicated that they were willing to answer follow-ups
questions. We sent follow-up emails to 111, receiving replies from 77 (69.4% response rate).

@ Springer

Empirical Software Engineering

Table 1 Attributes of great software engineers, along a scale of must have, should have, nice to have,
irrelevant, and should not have

Higher Mode Attribute and description

53 Must Pays attention to coding details, such as error handling, memory, performance, style

52 Must Mentally capable of handling complexity; can comprehend multiple interacting
software components

49 Must Continuously improving: improves themselves, their product, or their surroundings

49 Must Honest: provide credible information and feedback that others can act on

49 Must Open-minded: lets new information change their thinking

46 Must Executes: knows when to stop thinking and to start doing

45 Must Self-reliant: gets things done independently and does not get blocked easily

45 Must Self-reflecting: recognizes when things are going wrong with a plan and pivots

43 Must Persevering: not dissuaded by setbacks and failures

41 Must Fits together with other pieces around it: code accounts for surrounding con-
straints and products.

41 Must Knowledgeable about their technical domain, including product, platform, and
competitors

39 Must Makes informed trade-offs: code is responsive to time to market goals, critical
needs of the business

39 Must Updates their decision making knowledge: does not let their understanding stagnate

36 Must Curious: desires to know why things happen and how things work

36 Must Evolving: code is structured to be effectively built, delivered, and updated
incrementally.

35 Should Knowledgeable about tools and building materials: knows strengths and weak-
nesses of code

35 Should Grows their ability to make good decisions: builds understanding of possible
outcomes of decisions

34 Should Sees the forest and the trees: reasons through situations at multiple levels of
abstraction

31 Should Craftsmanship: wants their output to be a reflection of their skills and abilities

30 Should Does due diligence beforehand: examines available information before deciding

30 Should Elegant: designs solutions that others can understand and appreciate

29 Should Asks for help: knows the limits of their knowledge and supplements it with
knowledge of others

28 Should Desires to turn ideas into reality: takes pleasure in building software

28 Should Long-termed: considers costs and benefits over time, not just short-term goals

25 Should Willing to go into the unknown: can step outside of comfort zone to explore a
new area

24 Should Is a good listener: effectively obtains, comprehends, and understands others’
knowledge

22 Should Passionate: intrinsically interested in the area they are working in

22 Should Manages expectations: clearly communicates what they are going to do and by when

22 Should Focused: prioritizes time for the most impactful work

21 Should Systematic: address problems in an organized, principled manner

21 Should Adapts to new settings: continues to be valuable to the organization as environ-
ment changes

19 Should Integrates understandings of others: can build a more complete understanding

with others

@ Springer

Empirical Software Engineering

Table1 (continued)

Higher Mode Attribute and description

19 Should Does not make it personal: avoids deciding based on individual goals and feelings

19 Should Creative: generates novel and innovative solutions based on the context and its
limitations

18 Should Walks-the-walk: acts as an exemplar for others to follow

18 Should Knowledgeable about software engineering processes: knows the bests practices
and techniques

13 Should Anticipates needs: proactively determines potential problems and needs

13 Should Uses the right processes during construction: uses best practices and techniques
to construct software

13 Should Resists external pressure for the good of the software product: stands firm
against outside pressures

11 Should Has a good reputation: has the belief, respect, trust, and confidence of others

11 Should Productive: achieves the same results as others faster

10 Helps Knowledgeable about customers and business: understands their product’s value
proposition

10 Helps Creates shared understanding with others: shapes others’ knowledge via effec-
tive communication

9 Helps Creates shared success for everyone: establishes long-term goals that everyone
can buy into

8 Helps Aligned with organizational goals: takes actions for the good of the product and
the organization

7 Helps Well-mannered: treats others with respect

7 Helps Data-driven: lets data drive actions, not solely intuition

Helps Creates a safe haven for others: frees others to make decisions based on what is

right, not fear

5 Helps Mentoring: teaches, guides, and supports other developers

4 Helps Knowledgeable about people and the organization: aware of others’ responsibil-
ities and knowledge

2 Helps Challenges others to improve: encourages expanding capabilities and goals

2 Helps Personable: establishes trusting, positive social relationships

1 Helps Hardworking: is willing to work more than 8 hour days to deliver

0 Helps Trades favors: builds personal equity with others allowing them to call upon

others later

We tried to ask a single informant about multiple attributes (when the informant qualified
to answer questions about multiple attributes, per the selection criteria above), in order to
uncover insights that spanned multiple relationships. The email started with a salutation and
a thank you for participation in the study. It followed with: “Something interesting came
up when I analyzed the data, and I hope you can help me understand it better”. The email
then describe the attribute(s) or relationship(s), the reason for needing further understanding
(e.g. is one of the most important attributes, may not be an important attribute, having X is
associated with lower importance ratings for Y), the informant’s rating, and then: “Why did
you choose this answer? Can you help me understand your reasoning?”’.

We qualitatively analyzed the responses to gain understandings, selected representative
quotations, and then asked the informants’ permission to quote them anonymously.

@ Springer

Empirical Software Engineering

Table 2 Contextual factors, distribution in survey study, and significant effects. Rows are not ordered. Some
distributions listed as [min, median, max]

Row Factor Encoding Distribution Relationships (OLR,
FDR, q=0.1)
1 Experience Categorical by ~ Experienced (825, Executes (+) Knowledgeable
job title 43%) Very (1,101, about tools & materials (+)
57%)
Makes informed tradeoffs (+)
2 Age Numerical [20, 39, 73] Knowledgeable about
business (+) Knowledgeable
about processes (+) Aligned
with organizational goals (+)
3 Years as developer Numerical [0, 15, 41] Hardworking (+) Desire to turn
ideas into reality (+)
4 Years at Microsoft Numerical [0, 10, 30] Aligned with organizational
goals (+)
companies in career Numerical [0, 3, 10] Continuously improving (+)
Years on currentteam Numerical [0, 3, 25] —
Experienced as Yes/No Manager (1,028, —
manager 53%)
8 Is female-identified Yes/No Yes (149, 8%) Uses the right processes (+)
Has CS degree Yes/No Yes (1,228, 64%) —
10 Has non-MBA Yes/No Yes (762, 40%) Asks for help (-)
masters
11 Has MBA Yes/No Yes (49, 3%) —
12 Has doctorate Yes/No Yes (49, 3%) Walks-the-walk (+) Challenges
others to improve (+)
13 Has other degree Yes/No Yes (103, 5%) —
14 Has non-CS degree Yes/No Yes (537, 28%) —
15 Isn’t working in US Yes/No Yes (351, 18%) Aligned with org. (+)
16 Work experience in Categorical India (273, 14%) 31 attributes (+)
non-US countries China (168, 9%) 9 attributes (+)
Canada (77, 4%) Hardworking (-)
UK (63, 3%) Hardworking (-),
Israel (51, 3%) Aligned with org.
Other (383, 20%) =)
None (911, 47%)
17 Non-native English Yes/No Yes (926, 48%) Passionate (+)
18 Type of customer Categorical Internal (791, 41%) Persevering (+)
External (270, 39%
Both (865, 32%)
19 Server-side software Categorical Client-side (562, —_
29%) Server-side
(754,39%) Both
(610, 32%)
20 # developers worked Numerical [0, 15, 1,000] —

with in past year

@ Springer

Empirical Software Engineering

4 Results

In this section we focus on attributes and relationships that we asked about in follow-up
interviews, as these were the most interesting attributes and attributes for which we have
the most valid understanding. We discuss the top 5 (highest ranked) attributes, the bottom 2
(potentially detrimental) attributes, as well as overall rankings among attribute groups. For
differences due to contextual factors, we discuss each statistically significant relationship.

4.1 Attribute Ranking

Table 1 shows the attributes, ranked according to level of agreement across our survey
responses regarding their importance. The most important attributes are at the top and the
least important attributes are at the bottom, based on their ratings distributions. We observed
no abnormal bi-modal distributions and compared the distributions using the Mann-Whitney
test. The number in the first column is the number of other distributions for which that dis-
tribution is higher comparatively. A subjective rating of criticality is in the second column.
The third column lists and explains the attributes.

4.1.1 Highest Ranked Attributes

The most important attribute was pays attention to coding details (ranked 1, higher rat-
ings distribution than 53 attributes; 63.1% essential, 28.8% important, 7.5% helpful, 0.3%
doesn’t matter, 0.1% detrimental). Respondents explained that first and foremost, engineers
judged other engineers by their code. Therefore, engineers that could not get the basics
correct were not respected:

Another strong driver is the respect of our peers, which you won’t get by writing
shoddy code [...] — Principal SDE

Second, informants felt that software could be used in many ways, often unforeseen
by the engineer; therefore, engineers needed to pay attention to the details to avoid costly
problems:

This code is performance critical, compatibility sensitive, and is used in a huge variety
of contexts. If a developer fails to handle an error, some customer will hit it, and we
will likely need to issue a hotfix; if a developer implements an inefficient algorithm
(O(N 2) is not ok) [...] consumes memory excessively in some environment [... Jetc. —
Principal SDE

This may have been especially important at Microsoft, where software products are often
platforms, components, and/or used in contexts unforeseen by the engineer.

This understanding also underlies mentally capable of handling complexity (ranked 2,
higher ratings distribution than 52 attributes; 54.2% of respondents gave it the highest rat-
ing, 36.2% important, 20.1% helpful, 1.6% doesn’t matter, 0.2% detrimental) having a high
ranking. Informants felt that great engineers need to be able to think through complex
situations:

Most useful software has to be highly tolerant of incorrect usage by the user / caller
above it, and interacting with the supporting code below it [...] Developers who can-
not handle complexity tend to always be fixing bugs or having to do “another” release
to take into account situations they had not thought of [...] — Principal SDE

@ Springer

Empirical Software Engineering

Informants felt that continuously improving (ranked 3, higher ratings distribution than 49
attributes; 51.0% of respondents gave it the highest rating, 34.8% important, 13.5% helpful,
0.7% doesn’t matter, 0.1% detrimental) and open-minded (ranked 5, higher ratings distri-
bution than 49 attributes; 49.4% of respondents gave it the highest rating, 36.5% important,
13.2% helpful, 0.7% doesn’t matter, 0.1% detrimental) were important because the software
industry moves quickly; therefore, great engineers needed to be open to new ideas and also
to keep learning:

As the technology/technique evolves and better tools come along, the open-minded
developer picks up on these and is willing to apply them to be more productive /
effective [...] without an effort to continuously improve [...] developers will soon find
themselves lagging behind the industry and/or state-of-the-art with technology and
technique. — Principal SDE Lead

This thinking also contributed to honest (ranked 4, higher distribution than 49 attributes,
50.8% of respondents gave it the highest rating, 32.1% important, 14.3% helpful, 2.2%
doesn’t matter, 0.1% detrimental) being important. Informants indicated that great engineers
needed to acknowledge mistakes in order to make optimal future decisions for themselves
and their teams:

Lying to yourself is much easier in my profession than in any other profession I know
[...] It’s so easy to think that you know the topic and miss (subconsciously ignore) evi-
dence that contradicts your “knowledge.” Great developer [...] simultaneously knows
a lot and questions everything he knows. — Principal SDE

Informants also discussed developers’ dishonesty as potentially detrimental to others and
felt strongly that such behaviors were deleterious:

This has happened to me any number of times [...] a team which had such a component
would “lie” to me about its availability and maturity in order to get me to be a user
and justify their own existence to management |[...| — Principal

4.1.2 Lowest Ranked Attributes

Two attributes received negative ratings — “A great developer should not have this; it is
not good” — from more than 5% of the respondents: trades favors (ranked 54, higher dis-
tribution than O attributes; 4.0% essential, 15.1% important, 44.1% helpful, 29.1% doesn’t
matter, 6.0% detrimental) and hardworking (ranked 53, higher distribution than 1 attribute,
11.0% essential, 19.9% important, 36.0% helpful, 27.8% doesn’t matter, 5.0% detrimen-
tal). We did not expect the high detrimental ratings because the attributes —derived from
previous interviews — were all positive.

Follow-up interviews suggested that these attributes may not be inherently bad, but likely
reflected bad situations. For the hardworking attribute, informants believe that needing to
work more than an 8-hour day may be indicative of poor planning or unsustainable software
engineering practices:

[...] workload for a developer is a function of management and planning happening
above that developer. Usually long working hours are needed, because the planning
was not good, the decisions made during the project lifecycle were bad, the change
management wasn't “agile” enough. — SDE2

@ Springer

Empirical Software Engineering

For the trades favors attribute, informants believed that needing personal favors might
reflect a biased decision-making culture, where decisions were not based on reason but
rather on subjective opinions of individuals:

They should be totally separated, else what I have seen is we tend to make biased
decisions and opinions about others. — SDE2

Furthermore, needing undocumented processes to get things done might indicate poor
organizational practices, making it harder for engineers to operate effectively:

Once you “trade favors” you are getting into personal give and take and builds insti-
tutional memory around a couple of nodes in a people graph and possibly not visible
outside of that relationship [...] — Principal SDE

4.1.3 Overall Ranking Among Attribute Groups

Overall, attributes associated with interacting with teammates were rated the lowest (high
agreement on low importance), with a median ranking of 40 (lowest among the 4 groups)
and 77.8% of attributes in the bottom half of rankings; they are followed by personality
attributes (median ranking of 24 and 44.4% in the bottom half). In contrast, attributes asso-
ciated with decision-making were rated the highest (median ranking of 17 and 33.3% in
the bottom half), followed closely by attributes of the software product (median ranking of
17.5 and 33.3% in the bottom half). This can be seen visually in Fig. 3, which plots the
attributes based on their ranking (x-axis) and the percent of ratings in the top two boxes
(y-axis).

In follow-up interviews, many informants believed that a developer’s idea should demon-
strate value by its own merits, not via the persuasive powers of its presenter. For example,
the following is a quotation regarding the creates shared context with others attribute, which

Ordered Plot of the Attributes of Great Software Engineers In Groupings
By Ranking (X axis) and By Proportion of Ratings in Top 2 Boxes (Y axis)

100.0%
90.0%
80.0%

70.0%

60.0% . Software Product

50.0% A\ Decision Making
20.0% <> Personality
30.0% . Teammates
20.0%

10.0%

0.0%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

Fig.3 Attribute rankings of the four types of attributes

@ Springer

Empirical Software Engineering

was the most important component of “effective communications”, but ranked 43 out of 54
attributes:

[...] that feels like imposing your will on someone else [...] other devs pushing their
ideas through by controlling the conversation or talking over other people give me
a negative gut reaction to that particular attribute. Ideas should stand on their own
merits, not on how well / how strongly they’re sold. — Senior SDE

It is possible that lower relative rankings for these attributes reflect a culture of inclusive-
ness at Microsoft. With highest rankings for coding skills and mental capabilities (Section
4.1), the rankings may reflect beliefs that different kinds of people (personality) and dif-
ferent approaches (interactions with teammates) exist. As long as good software results,
different ways that each engineer reaches those objectives can (and should) be tolerated.
Informants felt that the primary job of the developer is to produce high-quality software, the
rest is non-essential:

A great developer furthers the commercial interests of the company. He does this
by producing software that is so bullet-proof and reliable [...] Outside of these
considerations, I have no interest in that developer [...] — Principal SDE

4.2 Influences of Context

Table 2 describes the 26 contextual factors in our survey: descriptions, descriptive statistics,
and summaries of the statistically significant relationships between the factors and ratings.
To facilitate statistical analysis, we split out only the top 5 countries (each with more than
51 respondents) for work experience in non-US countries; the other 61 non-US countries
were combined into Other (see row 16 in Table 2). Statistically significant relationships,
based on Ordered Logistic Regression (OLR) after FDR correction, are listed in column
5. We indicated positive relationships (the presence of the factor or higher values of the
factor related to higher ratings) with (+), and negative relationship (presence of the factor or
higher values of the factor related to lower ratings) with (-). Of the contextual factors, 10
did not have any statistically significant relationships (after the FDR correction), indicated
by “-”.

4.2.1 Level of Experience

We discuss the first five factors in Table 2 (Is very experienced, Age, Years as a professional
developer, Years at Microsoft, and Employment at software companies) collectively as level
of experience, because all the factors aim to measure the same underlying construct of
“experience” and are highly correlated with each other. The relationships between level of
experience and the eight attributes (first 4 rows in Table 2) were all positive.

Informants in our follow-up interviews — all of whom were very experienced
— suggested four underlying reasons for the observed positive relationships. First
(and most obviously), informants felt that developers with higher level of experi-
ence placed more importance on contributing to “business goals” because engineers at
higher levels were evaluated based on their contributions toward meta-organizational
goals. This likely underlies the relationships with aligned with organizational goals and
knowledgeable about the customer and business:

Our evaluation system(s) have always emphasized developers that deliver on the
organizational goals of the company [...] more experienced developers are likely

@ Springer

Empirical Software Engineering

to understand, that alignment with the company goals delivers greater rewards. —
Principal SDE Manager

Second, informants felt that developers with higher level of experience valued delivering
results, encompassing the relationships with hardworking, desires to turn ideas into reality,
and executes. Informants felt that, with experience, engineers gained the understanding that
to make meaningful contributions, engineers needed to deliver software:

20 years of experience managing engineers in startups and big companies alike [...]
No matter how talented, sharp minded and skillful one is, if they are not hardworking
(i.e. willing to work long hours to meet deadlines / deliverables) they will not succeed
[...] — Partner SDE Lead

Third, informants felt that developers with higher level of experience placed
more emphasis on gaining knowledge and making smarter decisions because they
had gone through multiple releases and experienced the pain of mistakes. This
encompassed the relationships with knowledgeable about tools and building materials,
knowledgeable about software engineering processes, and makes informed trade-offs:

“Knowledgeable” and “Informed” only come from experience. This is all about
breadth and exposure to lots of situations that let you generalize to new ones [...] you
learn to be less confident that you immediately know the best answer to a problem.
You actually become more flexible and are willing to trade off among goals you might
not even have considered earlier in your career [...] It takes a while for most people to
really appreciate the big picture and to be able to make decisions based on a broader
context [...] — Architect

Many informants further felt that this knowledge and understanding could only be gained
through actual first-hand experience:

Software engineering processes are there for a reason [...] The more experienced you
are, the more you see the pros and cons of process firsthand. — Principal SDE Lead

Finally, a corollary to the previous finding, informants felt that engineers with higher lev-
els of experience understood that they needed to be continuously improving to stay ahead.
Experienced software engineers recognized that if they did not continue to learn, they might
become obsolete:

Nobody can stay at the top without “improving” because the next wave of technology
will soon obsolete [sic] whatever was at the top. — Partner SDE

4.2.2 Gender

We observed a statistically significant positive relationship between gender and
uses the right process during construction. We asked female informants why they rated the
attribute highly and then attempted to infer the commonality in reasoning behind the
responses. It appears that female informants believed that processes existed for good reasons
and that good software engineers should not be attempting to “reinvent the wheel:

You cannot be great if you are constantly re-inventing the wheel or using out of date
tools/processes. — Senior SDE

@ Springer

Empirical Software Engineering

Furthermore, it appears that female informants felt more strongly that the engineering of
software should proceed in an orderly manner, not going-off on their own:

Good engineers MUST know the process of execution and follow it. Each
project/product/team may have a different process, but a good engineer must be aware
of it and follow it, or start a discussion if he/she thinks the process should be changed
[...] — Senior SDE Lead

4.2.3 Educational Background

We found that having a Master’s and/or PhD degree had negative relationships with
asks for help, challenging others to improve, and walks the walk (for Master’s, see row 11
in Table 2; for Ph.D., see row 12 in Table 2). Informants provided two interesting hypothe-
ses. First, informants felt that a graduate degree was largely optional for success in the
software industry (likely less important than hands-on experience, per the previous discus-
sion); therefore, engineers that get those degrees may be more intrinsically motivated than
others, leading them to be less inclined to give or to receive help:

They weren’t satisfied with the bare minimum of a bachelor’s degree [...] getting a
master’s degree doesn’t really impact your paycheck very much in this industry [...] I
think these people who seek knowledge |[...] they want to find things out for themselves.
— Principal SDE

Second, informants also suggested that engineers with graduate degrees were often hired
as technical experts such that they were often given novel problems to solve, rarely having
the opportunity to give or to receive help:

[...] problems which either nobody has tried to solve before, everyone else has failed
solving before, or handling some major sort of crisis [...] they operate under the
assumption that there’s nobody to ask help from when there’s a crisis and they will
need to be able to figure out the solutions themselves. — Principal SDE

We further examined this second explanation by comparing the number of developers
worked with in the past year (row 20 in Table 2) between engineers with and without
advanced degrees. We found that the number of engineers worked with in the past year
was statistically significantly less (« = .05) for both engineers with a Master’s degree
(p = 0.004, with medians of 12 for those with and of 15 for those without a Master’s
degree) and with a Ph.D. degree (p = 0.037, with medians of 11 for those with and of 15
for those without a Ph.D. degree) using the Mann-Whitney rank test. These results show
that engineers with advanced degrees worked with fewer engineers.

Overall, we conclude that the relationships were unlikely due to graduate schools teach-
ing engineers to devalue giving and getting help. Rather, as discussed, findings were likely
due to selection bias (conditions that lead an engineer to pursue a graduate degree) and
survivor bias (job assignments of Masters / Ph.D. graduates).

4.2.4 Work Experience in Another Country

We found many positive relationships between attributes and work experiences in another
country; qualitative follow-ups suggest four underlying themes. We asked informants about
their ratings and then inferred the underlying themes. First, informants suggested that there
was intense competition for well-paying software engineering jobs in some countries. This

@ Springer

Empirical Software Engineering

may be the underlying reason for the 31 positive relationships between attributes and having
work experience in India, as well as the 9 positive relationships between attributes and
having work experience in China. Competition necessitated engineers in those countries to
excel in many areas to compete:

1 think from the culture|...] If you’re not the top of your class, you’re not getting in. On
to your next thing, whatever. If you’re not rank number one, you’re not getting into the
IITs. You're not ranked number whatever, you're not getting that job [...] Doesn’t work
that way in the Western world because [...] population. There’s a lot of opportunity
[...] not only one person wins, ten people can win. In the Eastern side of the world
maybe not. — Senior Dev Manager

Second, informants felt that cultural norms influenced the practice of software engineer-
ing in some countries. The most salient example is the relationship between having work
experience in China (summarized in row 16 of Table 2) and the trades favors attribute.
While the trades favors attribute was the lowest ranked attribute overall, its ratings were sig-
nificantly higher for respondents in China. Follow-up interviews indicated that the higher
ratings were influenced by broader cultural norms in China:

Culturally there is a different perception [...] (“guanxi”) it’s just a part of how busi-
ness is done. Well of course, the best, the most successful are the ones that have those
relationships. That would be a positive thing [...] any career or profession [...] even
in an engineering context. — Principal SDE Manager

Beyond trading favors, informants implied that many other attributes (e.g. hardworking
and systematic) were similarly influenced by local practices and expectations:

Systematic, I wouldn’t be surprise if that’s skewed [...] Part of it is culture. There’s just
a daily grind of getting things done. People there would acknowledge that it doesn’t
make sense; it’s just the way it works, why would you change it. — Principal SDE
Manager

The third theme was distance. Informants felt that some software engineers lacked
visibility into company direction due to being far away from Microsoft headquarters—
based in Redmond, WA, USA. This might have impacted engineers’ perceptions on being
aligned with organizational goals. Some informants suggested that the numerous shifts in
company focus in recent years led engineers to focus on their immediate customers rather
than the overall company strategy:

[...] organizational goals are usually generic and change quite often [...] a developer
is great regardless of external happenings, conditions or events [...] a great developer
should take actions for the good of the product and customer. In good companies, such
actions will pay off and benefit the individual and the organization as well. — SDE2

The fourth theme was that some attributes were likely tied to the kind of software
products being engineered in those countries, as well as the state of software engineering
practices in those countries. For the negative relationship with hardworking, several devel-
opers, all with non-US work experience, reported having worked in the games industry
where they had to do “death marches”, needing to work excessive hours to ship the soft-
ware product. This may have been especially salient for respondents outside of the US,

@ Springer

Empirical Software Engineering

accounting for the negative relationships between hardworking and having work experi-
ences in the UK and Other countries (row 16 in Table 2):

I've definitely seen this firsthand, as people steadily become less productive over time
and tend to make more short-term decisions [...] Having previously worked in both
games and visual effects, where the “death march” is not uncommon — Senior SDE

4.2.5 Type of Customer

There was a statistically significant positive relationship between having both internal and
external customers and persevering (row 18 in Table 2). However, based on follow-up inter-
views, we believe this relationship was likely spurious (not surprising since FDR adjustment
reduces, but does not eliminate, statistically significant relationships occurring by chance).

One informant tentatively offered the possible explanation that having customers with
differing needs leading to conflicting requirements necessitating perseverance; though, even
he felt that the relationship could be coincidence:

It is also frustrating to deal with two sets of customers at once, as they often have
conflicting reqgs. It requires persevering to being able to battle out which ones to
implement and to persist in the face of conflict. I have no more thoughts vs. what I’ve
mentioned already, so it could be coincidental. —Principal SDE Manager

5 Discussion

In this section we synthesize and discuss learnings about what distinguishes great engineers.
First, we set the context by discussing prior work, then we discuss what our learnings tell
us, both about what distinguishes great engineers and about prior work. We discuss impli-
cations for researchers, educators, and practitioners. Finally, we conclude with a discussion
of threats to validity and future work.

5.1 Related Work

Prior work provides extensive and valuable insights into many aspects of being a software
engineer, but the literature fails to provide a holistic, developer-centric, ecologically-valid
perspective on developer skills. For instance, many studies focus only on technical skills:
comparing novice and expert programming skills (e.g., Sackman et al. 1968; Gugerty and
Olson 1986; Robillard et al. 2004) or propose skills software engineering graduates should
possess (e.g., Joint Task Force on Computing Curricula 2014; Bourque et al. 2014; Begel
2008; Hewner and Guzdial 2010). Some studies focus on human and social factors, but do
not relate these factors to technical skills (e.g., Kelley 1999; Rozovsky 2015; Ahmed et al.
2012). Other prior work provides team and organizational perspectives on best practices
and information needs that imply necessary skills, (e.g., Herbsleb et al. 1997; Boehm 1988;
Beck et al. 2001; Ko et al. 2007; Singer et al. 1997; Perry et al. 1994), but often do not
explicitly address individual skills. Some prior work by industry practitioners do provide
a more holistic and experiential view of developer skills, incorporating technical, interper-
sonal, and mental attributes; their insights are also supported by real-world examples and
explanations (Brooks 1995; Brechner 2003; Fitzpatrick and Collins-Sussman 2009). How-
ever, these works are neither rigorous nor complete in their investigations (nor were they
aiming to be).

@ Springer

Empirical Software Engineering

The most relevant prior work, Baltes and Diehl’s comprehensive theory of software engi-
neering expertise (Baltes and Diehl 2018), is an interesting complement to our study. While
being “great” and being an “expert” are closely related, they are not exactly the same.
Being an expert software engineer implies being successful at producing software; however,
being a great software engineer may extend beyond engineering outcomes. For example,
the “mentoring” attribute (see Table 1): while being a good mentor is a desirable attribute
of engineers (and many of our informants discussed benefiting from having mentors) it
is not clear how the attribute would make the mentor more of an “expert”. Consequently,
insights that our rankings provide are valuable, enabling understanding of how engineering
outcomes matter.

Therefore, relative to prior work, our study attempts to be holistic, developer-centric,
ecologically valid, and more scientifically rigorous than existing literature.

5.2 What Distinguishes Great Software Engineers

Relative to prior work, our research suggests that attributes that distinguish great engineers
comprehensively encompass internal personality traits, ability to engage with others, techni-
cal capabilities, and decision-making skills. Even though opinions of experts have pointed
to the “combined arms” nature of the distinguishing attributes of great engineers, few prior
research efforts have examined more than one kind of attributes. The need to examine soft-
ware engineers comprehensively and deeply is the key insight from our study, and one of
the key contributions of our work.

5.2.1 Being a Competent Coder

Our results suggest that, at least at Microsoft, the most important aspect of being a great
engineer is being a competent coder. While numerous studies about great engineers tout
various “soft skills” (Kelley 1999), the experienced engineers in our study rate the techni-
cal ability to write good code as the most essential. The understanding of how this aspect
distinguishes great engineers is straightforward: without code, there is no software; there-
fore, great software engineers need to be able to write good code. As ACM’s definition of a
software engineer (Shackelford et al. 2006) suggests, writing code is at the core of being a
software engineer.

Our survey results indicate that engineering of production software at its highest levels (at
Microsoft) can be a complicated and complex technical undertaking. Informants indicated
that uncertainty and complexity afflict their software, including underlying dependencies,
system states, external callers, and / or partner components. Pays attention to coding details
and mentally capable of handling complexity being atop the rankings likely reflects this
sentiment (see Section 4.1.1), as well as overall high rankings for other product and
decision-making attributes (see Section 4.1.3). This reinforces sentiments in Brooks’ The
Mpythical Man-Month (Brooks 1995); writing “production” code is hard.

Our findings align with the ACM’s Computing Curriculum for Software Engineering
(Shackelford et al. 2006) and the SWEBOK (Bourque et al. 2014), which focused largely
on technical coding skills. These findings also align with observations of everyday activi-
ties for engineers; though engineers spend time doing other activities, much of their time is
still spend coding (Ko et al. 2007; Latoza et al. 2006; Singer et al. 1997; Perry et al. 1994).
In addition, our findings largely justify research efforts aimed at understanding and clos-
ing the gap between novice and expert coders (Sackman et al. 1968; Valett and McGarry
1988; Gugerty and Olson 1986; Robillard et al. 2004; Baltes and Diehl 2018). Even though

@ Springer

Empirical Software Engineering

focusing on coding may be myopic, since it is the essential skill of software engineers,
ensuring that novices are competent coders first is likely a good starting point:

But when we talk about the quality of the code, performance, space, and how many
bugs it has — how robust it is — and how it handles exceptions [code of great software
engineers] will have great differences |[...] For example, when I used to make games
back in China, I worked on a board partitioning program that [... | took about 3 hours.
Then my CTO took the program to optimize. When he was finished with it, the program
took 10 minutes to run. That’s the amount of difference it can be between people |[...]
— SDE2

Conversely, our findings suggest that not considering technical skills is a major limitation
of research that focus solely on soft skills of engineers (e.g. Kelley 1999; Rozovsky 2015;
Ahmed et al. 2012). The lack of consistent relationships between various human factors
and engineering outcomes, as discussed by Cruz et al. (2015), may be due to omission of
technical skills. After all, if a software engineer cannot develop software, then all other
attributes are probably moot.

5.2.2 Maximizing Current Value of your Work

The economic concept of “risk and expected returns” may explain numerous seemingly
contradictory attributes and sentiments in our study. When applying an economic lens (Ven-
tures and Knowledge 2000), considering probabilistic future value (possibly negative) and
the time available for actions, a coherent theme emerges. Great engineers distinguish them-
selves from others by considering the context of their software product, maximizing the
value of their current actions, adjusted for probable future value and costs.

The first area of (apparent) contradiction was that many informants discussed great
engineers designing their software with the future in mind, e.g. long-termed and
anticipates needs, taking time and effort to ensure that their software was resilient to future
changes (see Table 1). However, other informants disagreed, believing that predicting the
future was futile. Experimentation, faster iterations, and a willingness to make changes
were better. In their view, long-termed and anticipates needs were detrimental attributes that
wasted effort on futures that may not occur. These opinions can be reconciled when viewed
through an economic lens. Engineering decisions may incur “technical debt” (Kruchten
et al. 2012); therefore, the current value of efforts needs to take into consideration proba-
ble future costs to service and repair. For software with long lifespans and high repair costs,
engineers need to think ahead. However, in other situations the software may have a short
lifespan or have low repair / update costs (e.g. online services compared to boxed software);
in those situations, great engineers may rightly defer future costs:

[...] you are writing software for the client? [...] for the cloud? It’s a different ball-
game. If you are writing software for the cloud [...] the cost for the bug is not that
high. I'll fix it. I don’t have to ship the fix to you,; I'll fix it on my server [...] the point
is that I will take the risk. — Senior Dev Lead

The second area of (apparent) contradiction was expecting great engineers to take the
time to thoroughly think through the problem. The systematic attribute entailed not jump-
ing to conclusions and not acting too quickly; the elegant attribute involved thinking deeply
to coming up with simple solutions; the fits together with other pieces around it attribute
entailed accounting for the relationships with surrounding components (see Table 1). How-
ever, many informants also expected great engineers to just go ahead and “do it”. The

@ Springer

Empirical Software Engineering

willingness to go into the unknown attribute was about the willingness to take action with
incomplete information, and the executes with no analysis paralysis attribute was explicitly
about the need to stop thinking (see Table 1). From an economic perspective, software has
value (e.g. makes money) only after deployment, and for some products, timing greatly
affects these future benefits. Products like games and consumer electronics have market
conditions that can incur significant revenue penalties for missing deadlines (e.g. the holi-
day season); defects in deployed software may be actively harming customers. Through this
lens, contradicting opinions about speed of actions makes economic sense. High-quality
code saves on future repair and maintenance costs; however, those savings must be weighed
against possible forfeiting of revenue due to inaction. Therefore, while high-quality code is
generally good, there may be situations, especially close to “shipping deadlines” or facing
high priority bugs, where producing a “hack” makes more economic sense than having a
complete solution that takes more time:

[...] there’s not even a non-magic bullet. People sometimes, even I do this under, say,
shipping deadline, you will do something quick and dirty, and unfortunately it always
happens [...] Often, when you do this, you are aware of this [...] — Principal SDE

The importance of risks and expected economic returns may be context specific, as
Microsoft is a for-profit organization. Nonetheless, related concepts — “regression” or
“reopen” — are often discussed in research literature on bug triaging for open source
software projects (Anvik et al. 2006; Ko and Chilana 2011).

Value maximization, as an economic concept, is broadly relevant to many aspects of
human behavior (Ventures and Knowledge 2000). However, interestingly, the software engi-
neering education literature (even those focusing on human factors in software engineering
Cruz et al. 2015) is largely silent on the application of economic thinking in the engineer-
ing of software. In our survey, influences of level of experience suggest that engineers need
real-world experience to understand when and how to do certain tasks. Informants felt that
many things sound good in theory or in isolation, but become unimportant when put into
real-world contexts, amid competing concerns and hard deadlines (see Section 4.2.1). In
contrast, ACM’s curriculum (Shackelford et al. 2006) and the SWEBOK (IEEE Computer
Society et al. 2014) prescribes a set of skills with little information about when or whether
to use those skills. Topics like software architecture and software verification are great
in theory; however, our findings suggest that, given the economics of real-world software
engineering, the optimal solution may sometimes be “quick and dirty.”

5.2.3 Practicing Informed Decision-Making

Engineers face myriad decisions about what software to build and how to build it; conse-
quently, effective decision-making is a critical attribute of great engineers. As engineers
grow in their careers, they are tasked with increasingly complex and ambiguous situa-
tions, often with significant ramifications for themselves and their organizations. Rather
than outcomes (which were often confounded by future uncertainties and outside factors),
we believe the process of acquiring needed information to be the most important aspect of
effective decision-making. Great engineers differentiated themselves from others by going
through the right processes for making informed decisions.

Collectively, decision-making attributes (Section 4.1.3) ranked the highest among the
four groups of attributes; we found attributes associated with “information gathering”
to be the most important. Engineers often did not have the information they needed
to make decisions; great engineers distinguished themselves by effectively acquiring the

@ Springer

Empirical Software Engineering

necessary information and then making an informed decision. Viewed within the ratio-
nal decision-making framework, the systematic attribute, described actually undertaking
the “information gathering” activity, the asks for help attribute concerned seeking out those
with the best information, and the open-minded and data-driven attributes both describe
great engineers’ willingness to let new information influence their decisions:

Unlearning. That’s like, the things that I used to do five years ago that make me
successful don’t matter anymore; in fact, they can get me into trouble right now [...] I
start to get to a point where I would assess [an engineer’s] ability to unlearn. After a
while, like two thirds or three quarters of what you know is still valuable, quarter to
a third is the wrong thing [...] — Technical Fellow

Conversely, many negative attributes of bad engineers discussed by our experts were
symptoms of not gathering or not using the right information to make decisions. For exam-
ple, in discussing the data-driven attribute, informants lamented that some engineers had
confirmation bias, selecting only the information that confirmed their initial understanding:

One thing that surprises me [...] even though we are driven by data, at least we try
to believe we are |[...] Some data gets shown to us, we figure out some ways to ignore
it. So, maybe everybody thinks that they’re data driven, but I've seen people come up
with excuses for why the data doesn’t apply to them. I've seen that a million times. —
Senior SDE

Decision-making is an everyday activity for everyone; however, the process of making
good decision has only recently received attention in Baltes and Diehl’s theory of software
development expertise (Baltes and Diehl 2018). It is not mentioned in the ACM curricula.
Nonetheless, aspects of decision-making — good and bad — are sprinkled throughout the
software engineering literature. Bug triaging, examined by many researchers (Anvik and
Murphy 2007; Jeong et al. 2009; Podgurski et al. 2003; Runeson et al. 2007; Bertram et al.
2010) is effectively a decision-making process. Gobeli et al., who examined effective (and
ineffective) conflict resolution approaches within software engineering teams touched on
making decisions (Gobeli et al. 1998). Consulting with team members to decide how best to
implement a feature or to fix a bug is mentioned in nearly all studies that examine everyday
activities of engineers (Ko et al. 2007; Latoza et al. 2000). It is time for software engineering
educators and researchers to pay more attention to decision-making within their education
and research efforts.

5.2.4 Enabling Others to make Decisions Efficiently

Shrouded in polite descriptions like creates shared understanding with others and creates
shared success for everyone, we saw a theme in our findings as: please don’t make my job
any harder. Great engineers distinguished themselves by making others’ jobs easier, helping
them to make their decisions more efficiently (or, at minimum, they did not make them
worse). This aspect is an organizational issue generally applicable to most teams (Simon
1973), and may be especially important to information-driven and coordination-intensive
professions like software engineering. It also corresponds with Baltes and Diehl’s inclusion
of the personality traits agreeableness and conscientiousness (Baltes and Diehl 2018).

This theme surfaced during explanations of the benefits of engineers having — though
more commonly, downsides of not having — various attributes. This sentiment was most
apparent for the honest attribute (see Section 4.1.3); in almost every instance, informants

@ Springer

Empirical Software Engineering

described negative situations where engineers lacking honesty caused problems for other
team members:

Influence comes to someone else trusting you, part of that trust is that they go, “You
know what? I know that this person always speaks the truth.” As a result of that, when
they say something is good, I will totally believe them because they are not trying to
kind of misrepresent something or make them look better or whatever. — Principal
Dev Manager

The manages expectations attribute contained discussions about engineers derailing a
project by not speaking up about potential delays. The self-reflecting attribute entailed engi-
neers proactively changing plans when they realized current plans were untenable, and the
same sentiment underlies the asks for help attribute (see Table 1). In addition, for many
informants, the creates shared understanding attribute was about great engineers helping
them understand the reasoning — commonly, pitfalls and potential problems — behind
various options so they can make appropriate decisions. For these attributes, informants dis-
cussed engineers without the attributes preventing others from taking corrective actions to
avoid bad outcomes for the team and ultimately making everyone’s jobs harder:

[...] you really want to have [great software engineers] have a lot more input. If some-
one disagrees with the tradeoffs that we’re making, have a voice [...] They really do
participate and give their opinion. — Principal Dev Manager

There is little direct mention of don’t make my job harder in the research literature,
even though there are hints in various studies of software engineering efforts. For example,
Ko et al. found maintaining awareness to be an important concern for software engineers
(Ko et al. 2007), Latoza et al. found team code ownership and the moat (which facilitated
understanding within the team and limited outside perturbations) to be a common theme
(Latoza et al. 2006), and stand-ups mandated in Scrum development processes (Rising and
Janoff 2000) are likely meant to enforce information sharing. Latent sentiments like this
may be especially difficult to detect using research methods that do not dig deeper into
the reasoning behind answers. Consequently, various research methods like meta-analysis
(Radermacher and Walia 2013) and secondary analysis (Ahmed et al. 2012) may leave gaps
in understanding when used to study engineers.

5.2.5 Continuously Learning

Our findings suggest that because the field of software engineering is changing constantly,
those who do not grow and evolve risk becoming obsolete (see Section 4.1.3). Consequently,
we believe it is not a specific set of knowledge but rather the desire, ability, and capacity to
learn that distinguishes great engineers.

The theme of constant learning was prevalent throughout our study; informants fre-
quently indicated that greatness was attained and maintained over time. This contributed
to multiple related attributes — honesty, open-minded, and continuously improving — to
being atop the rankings (see Section 4.1.3), as well as high rankings for numerous person-
ality attributes related to learning and improving. Informants also explained how numerous
attributes contributing to learning. The curious attribute — wanting to know how things
work — was a motivating factor behind learning:

A curiosity [...] how things work, why things work, the way they work, having that
curiosity is probably a good trait that a good engineer would have. Wanting to tear

@ Springer

Empirical Software Engineering

something apart, figure out how it works, and understand the why’s. — Principal Dev
Lead

Both grows their ability to make good decisions and updates their decision-making
knowledge involved learning and continuously re-learning how to make the best decisions.
Asks for help and integrates understanding of others both involved effectively learning
from others (see Table 1).

We found that the ability to learn new technical skills may be as important (if not more so)
than any individual technical skill. Informants, even those in the same division, used diverse
technologies. There was no consensus on which specific technical topic (e.g. architecture)
was essential. Rather, most informants stressed the importance of learning new skills and
technologies as requisite.

Greatness is not a one-time designation; it is an ongoing progress. This aligns with sen-
timents in related work. The need to continue learning is closely related to “continuous
learning” in Baltes and Diehl’s software expertise theory (Baltes and Diehl 2018), and to
“continuing professional development” discussed in the ACM Curricula (Joint Task Force
on Computing Curricula 2014). This edict is also in the code of ethics for many professions
like medicine (AMA 2001) and “traditional” engineering (NSPE 2007). Though continu-
ously learning appears to be a fundamental aspect of all learned professions, this may be
the most important and the most difficult aspect for software engineers. As a relatively new
field, the pace of innovation and change is rapid:

Computer technology, compared to other sciences or technology, it’s pretty young.
Every year there’s some new technology, new ideas. If you are only satisfied with
things you already learned, then you probably find out in a few years, you're out of
date [...] good software engineer [sic], he keeps investigate, investment. [sic] — SDE2

Unlike most professions (e.g. medicine), fundamental underpinnings of computing can
change; requiring software engineers to vigilantly keep pace to avoid obsolescence:

So, way back in the day, if you wanted to performance optimize something you counted
instructions. Processors got faster and faster, but memory references didn’t. There
became a day when it made more sense to count memory references than it did to
count instructions. Unless you’re conscious of when those things will intersect, you’ll
be on the wrong side of history and be frustrated. — Technical Fellow

5.3 Implications for Research and Practice

Our learnings about the distinguishing attributes of great software engineers can have wide-
ranging implications for software engineering research, practice, and training. We note
considerations that may be unique to software engineering; however, software engineers are
engineers, are employees, are people. Many of our insights are likely broadly applicable /
beneficial to many people.

5.3.1 Researchers
Our findings may have several implications for researchers. Foremost, to better understand
and leverage attributes discussed in this paper, we would benefit from metrics that opera-

tionalize the attributes. These are essential for enabling rigorous science to better understand
how the attributes vary and their effects on teams and outcomes. Such metrics may also

@ Springer

Empirical Software Engineering

form a foundation for managers to identify and cultivate talent, for novices to improve, and
for educators to assess learning outcomes.

Second, our findings identify several pain-points that software engineering methodology
researchers may want to address. For example, we discussed problems with engineers miss-
ing needed information (see Section 5.2.3). Better processes that address these issues (e.g.
by enforcing information sharing) may help software engineering teams.

Third, researchers may also want to look deeper into cultural variations and the impact
on effective software engineering. Since many software development organizations are
multinational, researchers may want to examine the conditions in which organizations
should (or should not) adapt to local cultural norms (versus instituting organizational
standards).

Finally, our results suggest several new directions for tools research. For example,
we are not aware of any tools that help engineers be more well-mannered in emails
or evaluate trade-offs when making decisions. Tools research may also explore training
engineers, especially novices, in desirable attributes.

5.3.2 Aspiring Software Engineers

Our findings have several possible implications for new software engineers. Obviously, our
findings enumerate a prioritized set of attributes that new engineers may consider improving
through training, practice, mentoring, or self-reflection. Furthermore, this information may
also help engineers better present themselves to employers. Whether or not the attributes
we identified actually lead to greatness, our findings indicate that experienced engineers
(including managers) value these attributes; therefore, aspiring engineers may consider
demonstrating them to employers, whether in resumes or during interviews.

5.3.3 Software Engineering Leaders

Our findings also have possible implications for leaders of engineers. Our findings
enumerate multiple attributes that are important for engineers in senior and leadership posi-
tions, such as mentoring, raising challenges, and walking the walk. Therefore, engineers in
leadership positions (or seeking to become leaders), may want to improve those areas.

Beyond improving themselves, our findings may also help managers make more effec-
tive hiring decisions. They may better identify candidates — with desired attributes — that
fit the team. Furthermore, our findings also suggest that current hiring practices — typi-
cally, one-day interviews — can be improved. Some important distinguishing attributes of
great engineers, such as the “desire, ability, and capacity to learn,” require more time to
assess. Approaches like internship programs — over several months and based on real-world
projects — may allow managers to better assess applicants’ abilities and growth potential.

Finally, our findings suggest that managers of software engineers may want to cultivate
desirable attributes within their teams, building a culture that is conducive to attracting,
producing, and retaining great engineers.

5.3.4 Educators

Lastly, our findings may have various implications for educators. Foremost, educators may
consider adding courses on topics not found in their current curricula. While decision-
making is not a part of the ACM’s Curricula (Shackelford et al. 2006), we found attributes
related to effective decision-making to be key distinguishing attributes of great engineers.

@ Springer

Empirical Software Engineering

A course specifically about decision-making (e.g. Simon’s model of rational choice (Simon
1955) or case studies of software engineering decisions) may be valuable.

Educators may also want to reexamine their teaching methods. Most distinguishing
attributes of great engineers involve how rather than what, whereas most instructions in
software engineering focus on knowledge (the what), such as techniques for testing and
analysis. Educators may consider improving how software engineering goals are attained.
For example, existing project-based courses can consider evaluating behaviors and non-
functional attributes of the code, such as elegance, anticipates needs, and creative. Educators
may also consider teaching when various skills should be used, since our results indicate that
real-world conditions exist when eschewing best-practices may makes the most economic
sense.

Finally, educators may consider explicitly discussing what students will not learn in
school, allowing them to be aware of potential knowledge gaps and empowering them
to seek out opportunities outside of the academic setting. For example, attributes like
self-reliant may not be reasonable to teach in an academic setting and might be better learned
through mentorships/internships.

5.4 Threats to Validity

As with any empirical study, our results are subject to various threats to validity. First, there
are some threats to construct validity. The obvious issue is differing interpretations of terms
by participant. We reduced this risk at the outset, by choosing to conduct our research at
a single organization, where employees are more likely to have common understandings.
We further mitigated risks by conducting pre-tests, adjusting and clarifying survey question
as needed (e.g. adding supporting quotes and switching to using the term “developer”), as
well as having an open-ended conclusion question to catch problems. Non-existence of bi-
modal distributions indicate no obvious issues, and our large sample sizes and statistical
tests reduce the impact of noise due to occasional misinterpretations (unavoidable given
the diverse contexts of respondents, including many non-native English-speakers). Another
issue is whether the attributes actually distinguish great engineers or are simply attributes
that makes engineers more attractive to other experienced engineers: while advantageous
for career advancement, the attributes may not yield good software.

Second, there are several threats to infernal validity. The use of the FDR adjust-
ment and the numerous significant relationships with having work experience in India
and China may have hidden other interesting relationships. Also, our analysis examined
only the first-order relationships between ratings and contextual variables. Though, while
second-order relationships may exist, we feel that our choice was appropriate given lit-
tle prior research to support investigating second-order relationships. Participants in our
study are a self-selected group of engineers (particularly for the follow-up interviews);
they may be biased in their opinions and other interpretations of the rankings and rela-
tionships may exist. Finally, even though the authors are experienced researchers with
real-world software engineering experience, other valid interpretations of the data may
exist.

Third, there are various interesting external validity questions that future work may
consider investigating. Other than experience, we did not sample for other characteristics
(e.g. gender and non-US software engineers). Even though we received many responses
from both female (149 responses, 7.7%) and non-US respondents (351 responses, 18.2%),
which should have allowed us to detect large systematic differences, more in-depth studies
of interesting sub-populations are worthwhile. Comprehensiveness of attributes is another

@ Springer

Empirical Software Engineering

external validity concern. We used a set of attributes derived from the interview study of
Microsoft engineers. Furthermore, even though we had an open-ended question at the end
of the survey asking about anything we may have missed (finding no missing attributes),
it is questionable how well respondents can identify missing after seeing 54 attributes in
rapid succession. Therefore, prior to repeating our survey at other organizations, repeat-
ing the interview study to identify possible missing attributes is advisable. Microsoft itself
presents some issues; the obvious one being that it is a single organization. We also explic-
itly over-sampled very experienced engineers who may exhibit thinking and perspectives
that were particularly well-suited to the Microsoft environment. Therefore, even though our
study is a solid starting point, in the future, researchers may want to examine other con-
texts. For example, informants discussed unfavorable conditions in non-software-centric
industries such as finance and retail, which many impact perspectives; replicating this study
at other successful software-centric organizations (e.g. Google) may also yield interesting
findings.

5.5 Future Work

All the issues discussed in this section are interesting topics and justifications for future
studies. Investigations are unlikely to be experimental (i.e. we cannot assign attributes to
engineers and withhold them from others), and no single observational study can estab-
lish causal relationships. The path forward is to have many studies, conducted by many
researchers in many contexts, triangulating the way forward towards us deepening our
understanding of what makes great software engineers.

6 Conclusion

In this paper, we have contributed holistic, developer-centric, ecologically valid, and scien-
tifically rigorous insights into what distinguishes great software engineers. As our society
grows increasingly software dependent, studies like ours and others that our work may
inspire will be critical. After all, great software cannot exist without great software engineers
— a butt in a seat somewhere — to type “Commit.”

Acknowledgements The authors wish to thank the Microsoft software engineers who participated in our
research. This work was supported in part by Microsoft, Google, and National Science Foundation (NSF)
Grants CCF-0952733, CNS-1240786, and IIS-1314399.

References

Ahmed F, Capretz LF, Campbell P (2012) Evaluating the demand for soft skills in software development. IT
Prof 14(1):44-49

AMA (2001) American Medial Association Principles of Medical Ethics. http://www.ama-assn.org/ama/pub/
physician-resources/medical-ethics/code-medical-ethics/principles-medical-ethics.page?

Anvik J, Murphy GC (2007) Determining Implementation Expertise from Bug Reports. In: Pro-
ceedings of the Fourth International Workshop on Mining Software Repositories, Minneapolis,
pp 298-308, https://doi.org/10.1109/MSR.2007.7. http://ieeexplore.ieee.org/lpdocs/epicO3/wrapper.
htm?arnumber=4228639

Anvik J, Hiew L, Murphy GC (2006) Who Should Fix This Bug? In: Proceedings of the 28th International
Conference on Software Engineering, pp 361-370

@ Springer

http://www.ama-assn.org/ama/pub/physician-resources/medical-ethics/code-medical-ethics/principles-medical-ethics.page?
http://www.ama-assn.org/ama/pub/physician-resources/medical-ethics/code-medical-ethics/principles-medical-ethics.page?
https://doi.org/10.1109/MSR.2007.7
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4228639
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4228639

Empirical Software Engineering

Aranda J, Venolia G (2009) The secret life of bugs: going past the errors and omissions in software
repositories. In: Proceedings of the IEEE 31st International Conference on Software Engineering,
pp 298-308

Baltes S, Diehl S (2018) Towards a theory of software development expertise. In: Proceedings of
the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, ESEC/FSE 2018. ACM, New York, pp 187-200.
https://doi.org/10.1145/3236024.3236061

Beck K, Beedle M, van Bennekum A, Cockburn A, Cunningham W, Fowler M, Grenning J, Highsmith J,
Hunt A, Jeffries R, Kern J, Marick B, Martin RC, Mellor S, Schwaber K, Sutherland J, Thomas D (2001)
Manifesto for Agile Software Development. http://www.agilemanifesto.org/

Begel A (2008) Pair Programming: What’s in it for me? In: Proceedings of the Second ACM-IEEE
International Symposium on Empirical Software Engineering and Measurement, pp 120-128

Bertram D, Voida A, Greenberg S, Walker R (2010) Communication, collaboration, and bugs: the social
nature of issue tracking in small, collocated teams. In: Proceedings of the 2010 ACM Conference on
Computer Supported Cooperative Work, pp 291-300

Boehm BW (1988) A spiral model of software development and enhancement. IEEE Comput 21(5):61-72

Bourque P, Fairley RE et al (2014) Guide to the software engineering body of knowledge: Version 3.0. IEEE
Computer Society Press

Brechner E (2003) Things they would not teach me of in college: what Microsoft developers learn later. In:
Proceedings of the 18th annual ACM SIGPLAN Conference on Object-oriented Programing, Systems,
Languages, and Applications, pp 134-136

Brooks FP (1995) The Mythical Man-Month: Essays on Software Engineering, 2nd edn. Addison-Wesley
Professional, Reading

Carver JC, Nagappan N, Page A (2008) The impact of educational background on the effectiveness of
requirements inspections: an empirical study. IEEE Trans Softw Eng 34(6):800-812

Cruz S, da Silva FQ, Capretz LF (2015) Forty years of research on personality in software engineering: a
mapping study. Comput Hum Behav 46:94-113

Ericsson KA, Krampe RT, Tesch-romer C (1993) The role of deliberate practice in the acquisition of expert
performance. Psychol Rev 100(3):363-406

Fisher A, Margolis J (2002) Unlocking the clubhouse: the carnegie mellon experience. ACM SIGCSE Bullet
34(2):79-83

Fitzpatrick B, Collins-Sussman B (2009) The Myth of the Genius Programmer

Gobeli DH, Koenig HF, Bechinger I (1998) Managing conflict in software development teams: a multilevel
analysis. J Prod Innov Manag 15:423-435

Gugerty L, Olson GM (1986) Debugging by skilled and novice programmers. ACM SIGCHI Bull 17(4):171-
174

Herbsleb J, Zubrow D, Goldenson D, Hayes W, Paulk M (1997) Software quality and the Capability Maturity
Model. Commun ACM 40(6):31-40

Hewner M, Guzdial M (2010) What game developers look for in a new graduate: interviews and surveys
at one game company. In: Proceedings of the 41st ACM Technical Symposium on Computer Science
Education, pp 275-279

Hollander M, Wolfe DA, Chicken E (2013) Nonparametric Statistical Methods, 3rd edn. Wiley, New York

IEEE Computer Society, Bourque P, Fairley RE (2014) Guide to the Software Engineering Body of
Knowledge (SWEBOK), 3rd edn. IEEE Computer Society Press, Los Alamitos

Jeong G, Kim S, Zimmermann T (2009) Improving bug triage with bug tossing graphs. In: Proceedings
of the 7th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, pp 111-120

Joint Task Force on Computing Curricula (2014) Software Engineering 2014: Curriculum guidelines for
undergraduate degree programs in software engineering. Technical report. ACM

Kelley RE (1999) How to Be a Star at Work: 9 Breakthrough Strategies You Need to Succeed. Crown
Buisness

Ko AJ, DeLine R, Venolia G (2007) Information needs in collocated software development teams. In:
Proceedings of the 29th International Conference on Software Engineering, pp 344-353

Ko AJ, Chilana PK (2011) Design, discussion, and dissent in open bug reports. Proceedings of the 2011
iConference, pp 106-113

Kruchten P, Nord RL, Ozkaya I (2012) Technical debt: From metaphor to theory and practice. IEEE Softw
29(6):18-21

Latoza TD, Venolia G, DeLine R (2006) Maintaining mental models: a study of developer work habits. In:
Proceedings of the 28th International Conference on Software Engineering, pp 492-501

@ Springer

https://doi.org/10.1145/3236024.3236061
http://www.agilemanifesto.org/

Empirical Software Engineering

Li PL, Ko AJ, Zhu J (2015) What Makes A Great Software Engineer? In: Proceedings of the 37th
International Conference on Software Engineering

Li PL (2016) What Makes a Great Software Engineer. PhD thesis, University of Washington. https://digital.
lib.washington.edu/researchworks/handle/1773/37160

Li PL, Ko AJ, Zhu J (2019) Appendix to What Makes a Great Software Engineer? Tech-
nical Report MSR-TR-2019-8, Microsoft. https://www.microsoft.com/en-us/research/publication/
appendix-to-what-makes-a- great-software-engineer/

Margolis J, Fisher A (2003) Unlocking the Clubhouse: Women in Computing. The MIT Press, Cambridge

Meade AW, Craig SB (2012) Identifying careless responses in survey data. Psychol Methods 17(3):437—
455

NSPE (2007) National Society of Professional Engineers Code of Ethics for Engineers. http://www.nspe.org/
resources/ethics/code-ethics

Perry DE, Staudenmeyer NA, Votta LG (1994) People, organizations, and process improvement. IEEE Softw
11(4):36-45

Podgurski A, Leon D, Francis P, Masri W, Minch M, Sun J, Wang B (2003) Automated support for
classifying software failure reports. In: Proceedings of the 25th International Conference on Software
Engineering, pp 465-475

Radermacher A, Walia GS (2013) Gaps between industry expectations and the abilities of graduates: sys-
tematic literature review findings. In: Proceeding of the 44th ACM Technical Symposium on Computer
Science Education, pp 525-530

Radermacher A, Walia G, Knudson D (2014) Investigating the skill gap between graduating students and
industry expectations. In: Proceedings of the 28th International Conference on Software engineering, pp
291-300

Rising L, Janoff NS (2000) The Scrum software development process for small teams. IEEE Softw 17(4):26—
32

Robillard MP, Coelho W, Murphy GC, Society IC (2004) How effective developers investigate source code
: an exploratory study. IEEE Trans Softw Eng 30(12):889-903

Rozovsky J (2015) The five keys to a successful Google Team. re:Work p 1. https://rework.withgoogle.com/
blog/five-keys-to-a-successful-google-team/

Runeson P, Alexandersson M, Nyholm O (2007) Detection of duplicate defect reports using natural language
processing. In: Proceedings of the 29th International Conference on Software Engineering, pp 499—
510

Sackman H, Erikson W, Grant E (1968) Exploratory experimental studies comparing online and offline
programmmg performance. Commun ACM 11(1):3-11

Shackelford R, McGettrick A, Sloan R, Topi H, Davies G, Kamali R, Cross J, Impagliazzo J, LeBlanc R,
Lunt B (2006) Computing curricula 2005: The Overview Report. SIGCSE Bullet 38(1):456-457

Simon H (1955) A behavioral model of rational choice. Q J Econ 69:99-188

Simon H (1973) Applying information technology to organizational design. Public Adm Rev 33(3):268—
278

Singer J, Lethbridge T, Vinson N, Anquetil N (1997) An examination of software engineering work practices.
In: Proceedings of the 1997 Conference of the Centre for Advanced Studies onf Collaborative Research,
pp 174—-188

Valett JD, McGarry FE (1988) A summary of software measurement experiences in the software engineering
laboratory. In: Proceedings of the 21st Annual Hawaii International Conference on System Sciences,
pp 293-301

Ventures CBS, Knowledge CUD (2000) Risk and return: expected return. http://ci.columbia.edu/ci/premba-
test/c0332/s6/s6_3.html

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

https://digital.lib.washington.edu/researchworks/handle/1773/37160
https://digital.lib.washington.edu/researchworks/handle/1773/37160
https://www.microsoft.com/en-us/research/publication/appendix-to-what-makes-a-great-software-engineer/
https://www.microsoft.com/en-us/research/publication/appendix-to-what-makes-a-great-software-engineer/
http://www.nspe.org/resources/ethics/code-ethics
http://www.nspe.org/resources/ethics/code-ethics
https://rework.withgoogle.com/blog/five-keys-to-a-successful-google-team/
https://rework.withgoogle.com/blog/five-keys-to-a-successful-google-team/
http://ci.columbia.edu/ci/premba_test/c0332/s6/s6_3.html
http://ci.columbia.edu/ci/premba_test/c0332/s6/s6_3.html

Empirical Software Engineering

Paul Luo Li is a Principal Data Scientist in the Core Operating Sys-
tem & Intelligent Edge organization at Microsoft in Redmond, WA,
USA. He received his Ph.D. in Information Sciences from the Univer-
sity of Washington in 2016, and his Masters in Software Engineering
from Carnegie Mellon University in 2007. In addition to his research
on “what makes great software engineers”, Paul also has research
publications on software reliability engineering, large-scale exper-
imentation systems, statistical analysis of local differential private
data, and numerous other areas of Al and ML.

Amy J. Ko is an Associate Professor at the University of Washing-
ton Information School, where she studies human aspects of pro-
gramming. Her earliest work included techniques for automatically
answering questions about program behavior to support debugging,
program understanding, and reuse. Her later work studied interac-
tions between developers and users, and techniques for web-scale
aggregation of user intent through help systems; she co-founded
AnswerDash to commercialize these ideas. Her latest work inves-
tigates programming skills and new methods for learning them,
including the programming language knowledge, APIs knowledge,
and programming strategies. She received her Ph.D. at the Human-
Computer Interaction Institute at Carnegie Mellon University in 2008,
and degrees in Computer Science and Psychology with Honors from
Oregon State University in 2002.

Andrew Begel is a Principal Researcher in the Ability group at
Microsoft Research in Redmond, WA, USA. He received his Ph.D.
in Computer Science from the University of California, Berkeley
in 2005. Andrew focuses on studying and helping people on the
autism spectrum achieve employment and facilitate social interac-
tion. Andrew also explores evolving job roles in the software industry
and studies the growing impact of Al technologies on software
engineering.

@ Springer

	What distinguishes great software engineers?
	Abstract
	Introduction
	Attributes of Great Software Engineers
	Method
	Survey Method
	Follow-up Email Interview Method

	Results
	Attribute Ranking
	Highest Ranked Attributes
	Lowest Ranked Attributes
	Overall Ranking Among Attribute Groups

	Influences of Context
	Level of Experience
	Gender
	Educational Background
	Work Experience in Another Country
	Type of Customer

	Discussion
	Related Work
	What Distinguishes Great Software Engineers
	Being a Competent Coder
	Maximizing Current Value of your Work
	Practicing Informed Decision-Making
	Enabling Others to make Decisions Efficiently
	Continuously Learning

	Implications for Research and Practice
	Researchers
	Aspiring Software Engineers
	Software Engineering Leaders
	Educators

	Threats to Validity
	Future Work

	Conclusion
	References

