
Cross-Disciplinary Perspectives on Collaborations with Software Engineers
Paul Luo Li
Microsoft

Redmond, WA USA
paul.li@microsoft.com

Andrew Begel

Microsoft Research
Redmond, WA USA

andrew.begel@microsoft.com

Abstract—Software engineering teams are usually
interdisciplinary, consisting of both software engineers and non-
software-engineers. While numerous studies have examined the
success and failure of software engineering efforts from the
perspective of software engineers, little is known about
perspectives of expert non-software-engineers. In this study, we
interviewed 46 experts across 10 roles at Microsoft (artists,
content developers, data scientists, design researchers,
designers, electrical engineers, mechanical engineers, product
planners, program managers, service engineers) about their
collaborations—good and bad—with software engineers.
Overall, our experts described great software engineers as
masters of their own technical domain, open-minded to the
input of others, proactively informing everyone, and seeing the
big picture of how pieces fit together. We discuss implications of
our findings for practitioners, educators, and researchers.

Keywords - team work, interdisciplinary teams, collaboration,
software engineering expertise

I. INTRODUCTION

Engineering of software commonly entails collaborations
not only between software engineers, but also with expert non-
software-engineers. Artists [1], data scientists [2], designers
[3], writers [4], program managers [5], and other experts
perform essential tasks, important to the success of software
engineering teams.

While software engineering educators [6], researchers [7],
and practitioners [8] have examined success and failure of
software engineering efforts from the perspective of software
engineers, we know little about the perspectives of non-
software-engineers. Their perspectives on attributes of
software engineers that lead to successful collaborations is a
gap in our understanding of why software engineering efforts
succeed (or fail). We address this gap with an interview study
of 46 expert non-software-engineers, across 10 roles at
Microsoft. Our two research questions are
• What do expert non-software-engineers think are attributes

of software engineers that lead to successful collaborations?
• How and why are these attributes important for successful

engineering of their products?
In the rest of this paper, we describe our approach to

answering these questions, and detail our discoveries from our
interviewees’ insights. We end with discussion of two meta-
problems for future work.

II. RELATED WORK

Numerous studies and industry reports have examined
software engineers’ perspectives on software engineering
expertise, but few directly examine perspectives of other
experts that engineers collaborate with. Trifonova et al.
surveyed more than 50 research publications about software
development projects with artist participation [9], finding that
artists are involved in the engineering of software and that

they have needs (e.g. tools, education, and engagement
methods) and concerns (e.g. aesthetics) that differ from
software engineers. The survey indicates that studies have not
examined artists’ perspectives on software engineering
expertise.

Begel and Zimmermann surveyed Microsoft software
engineers about the questions they would like data scientists
to answer (e.g. how do users typically use my application and
what parts of a software product are most used and/or loved
by customers) [2]. Fisher et al. examined challenges analyzing
‘big data’ at Microsoft [10]. These reports indicate data
scientists help software engineers perform important and
challenging functions.

Numerous studies (e.g. [11] [12]) indicate that project
managers help teams manage risks in software engineering
projects. Some of the top issues like scheduling and timing
risk indirectly imply that great software engineers managed,
mitigated, or avoided these issues.

Lee and Mehlenbacher (in follow-up to a 1991 study that
interviewed software engineers at DEC about attributes they
wanted in technical writers [13]) surveyed 31 technical
writers, including 16 that worked for software companies,
about working with subject matter experts (SMEs) [4]. The
most commonly reported issues when working with SMEs
were ‘time and accessibility’, ‘respect for the documentation
process’, and ‘communication skills’.

In the well-known book “The Inmates Are Running the
Asylum,” Cooper describes software engineers (‘the inmates’)
as making too many engineering decisions that impact product
usability and providing biased information (e.g. over
estimating costs of features) to intentionally derail projects
(‘running the asylum’) [14]. The author calls for designers to
use a disciplined approach (e.g. using personas) to ensure
better products.

Existing literature indicates that perspectives on software
engineering expertise from expert non-software-engineers is
an important knowledge gap that neither existing literature nor
our previous study examining attributes of great software
engineers (from the perspective of software engineers) [15]
have addressed directly.

III. METHOD

To address our research questions—from the perspective
of expert non-software engineers, what are attributes of
software engineers that lead to successful collaborations, and
how do those attributes contribute to their collective success—
we sought to balance depth of understanding, breath of
perspectives, and relevance of insights. We conducted semi-
structured interviews with 46 senior-level employees across
10 distinct roles at Microsoft. We asked these them open-
ended questions about attributes of engineers they have
worked with that lead to success, as well as semi-structured

2017 IEEE/ACM 10th International Workshop on Cooperative and Human Aspects of Software Engineering (CHASE)

978-1-5386-4039-5/17 $31.00 © 2017 IEEE

DOI 10.1109/CHASE.2017.3

2

Amy J. Ko
The Information School

University of Washington, Seattle
ajko@uw.edu

questions about a set of attributes that software engineers self-
identified as important [15] (to overcome saliency bias and to
ensure holistic thinking). We analyzed the data using an
inductive approach, identifying key themes about software
engineering expertise and distinguishing them by role.

A. Selecting Expert Non-Software-Engineers

Though non-software-engineers in many roles work with
software engineers, we wanted to focus on ones most likely be
essential to successful engineering efforts. We selected non-
software-engineers within two Microsoft-defined
categories—Engineering and Hardware Engineering—since
nearly all software engineers are in these two areas. Because
of the organizational arrangement, expert non-software-
engineers in these two professions at Microsoft are likely
collaborating closely with software engineers.

To ensure that we obtained in-depth and relevant
knowledge, we focused on full-time employees at the ‘senior’
level or above—typically 5+ years of experience at Microsoft
or elsewhere—based on their titles in the company address
book. Via the hiring and/or promotion processes, these
individuals have been affirmed by their peers as experts in
their field. We organized our experts into 12 roles based on
our understanding of titles. We pruned down the roles to 10—
requiring at least 50 employees in that role in the Seattle
area—to ensure sufficient people to sample for interviews.
This scoping was also necessary to facilitate face-to-face
interviews, and to ensure relevance of insights, as Microsoft’s
product development is centralized around Seattle, WA. We
solicited interviewees via personal emails from the 1st author,
who was a Microsoft employee.

We conducted interviews in a round-robin among the
roles, which facilitated identification of cross-cutting themes
and interesting questions. Of the 102 people recruited, we
interviewed 46 across the 10 roles (a response rate of 45%),
including at least 3 employees in each role, (see Table I).

B. Interview Protocol

After explaining the study and obtaining consent, we
asked: “What is your background? And how did you come to
be a <role> at Microsoft?”, “What—in your opinion—is the
function of <role> in engineering teams?” Then we asked:
“How have you engaged with developers?”, “How does that
engagement vary in the various phases of development?”
These provided important context for understanding and
interpreting their perspectives. Next, we asked: “What are the
positive attributes of good developers you’ve worked with that
you believe contributed to successful outcomes?”, “What are
negative attributes that you’ve seen contribute to less than
successful outcomes?”

We then asked interviewees about a list of 54 attributes of
software engineering expertise from our previous studies of
software engineers [15]: “Read through the list of attributes
and note any that stood out as too high or too low, and tell us
why. Then we’d like your top five attributes, from the
perspective of successfully collaborations with <role>.” For
example, the highest rated attribute was: ‘Pays attention to
coding details, including error handling, memory
consumption, performance, and style.’ Examining this list
helped interviewees overcome saliency effects; numerous

interviewees amended or clarified their perspectives after
reading the attributes.

When appropriate, we asked clarifying questions, seeking
explanations, details, examples, etc. This facilitated
understanding why that attribute was important in real-world
engineering projects. We concluded by asking, “Ideally, how
would you like to see people in your role and developers
collaborating together to engineer software products?”
Interviews lasted approximately one hour.

C. Analysis

To analyze the 38+ hours of interviews and 350,000+
words of transcripts, we analyzed the data using a ‘Straussian’
grounded theory approach [16], focusing on software
engineering expertise, making three coding passes through the
data. First, we read through the entire transcript to gain an
overall understanding of the data and to tag relevant
discussions. A second pass identified key themes and
highlighting key excerpts. Third, we analyzed the qualitative
data for each role separately. We extracted contextual
perspectives about collaborations, and then analyzed
important attributes for each role. Finally, we interpreted the
data through the lens of both prior work and contexts of
interviews. The first author performed the coding, and then the
other authors validated the interpretation. Additional detail
about the coding and approach is in the first author’s
dissertation [17].

IV. RESULTS

Broadly, our expert non-software-engineers described
great software engineers as masters of their own technical
domain, open-minded to the input of others, proactively
informing everyone (enabling others to make optimal
decisions), and seeing the big picture of how the pieces (even
non-code-related parts) fitted together. Table I shows a
synopsis of the attributes that our experts felt contribute to
success (and avoid failure). In the following sections, we

TABLE I. ATTRIBUTES CONTRIBUTING TO SUCCESS FROM THE
PERSPECTIVE OF EXPERT NON-SOFTWARE-ENGINEERS

Collaborator Attributes Contributing to Success
Artists Resourceful; egalitarian; voice of engineering

reality; open to changing objectives and
requirements; hardworking; artistically aware

Content
Developers

Technically competent; customer oriented;
responsive; cognizant of impact to others

Data
Scientists

Data-driven; thoroughly knowledgeable of their
software; willing to change directions

Design
Researchers

Open to uncertainties of customer reactions; avoids
self-referencing; respectful of qualitative research

Designers Respectful of the design discipline; not rushing to
coding; seeks shared understanding

Electrical
Engineers

Knowledgeable about electrical engineering; system
thinkers/problem-solvers

Mechanical
Engineers

Knowledgeable about mechanical engineering;
system thinkers/problem-solvers

Product
Planners

Avoids self-referencing; not dogmatic; helps others
understand technicalities

Program
Managers

Proactive communicators; takes on new challenge
to enable team success; creates shared
understanding technical reasoning

Service
Engineers

Respects the networking discipline; open to
feedback and collaborations

3

detail how these attributes manifest (often in different ways)
in collaborations with experts.

In this paper, we focus on roles and insights that were the
most interesting and the most relevant to overall themes across
all interviews—omitting design researchers, mechanical
engineers, product planners, and service engineers. Interested
readers can refer to the first author’s dissertation [17] for more
details.

A. Program Managers

Across all roles, the largest group, by far, was program
managers (PMs); nearly every software engineering team at
Microsoft had a PM. We focus on ‘feature’ PMs, who worked
closely with software engineers in the development of
products. Almost all interviewees had deep technical
knowledge. Most had degrees in computer science or their
specialty area, and many had experience as software
engineers. One interviewee stated that being a PM at
Microsoft was not merely being a ‘schedule jockey’.

At a broad level, program management at Microsoft
combined requirements definition and prioritization
(commonly done by engineering managers elsewhere),
scheduling, tracking (typically done by project managers
elsewhere), as well as coordinating with other teams and
experts. PMs were the primary points of contact for many
other expert non-software-engineers. For some, this bridge
was beneficial because PMs helped facilitate conversations
with engineers. However, for others, PMs were a hindrance,
blocking access to engineers who had the accurate technical
answers they needed.

With their focus on facilitating successful completion of
projects, our PMs emphasized attributes that helped to avoid
problematic plans and schedule deviations. Our interviewees
felt that software engineers often had critical insights, during
plan formulation and during execution; therefore, they needed
to ‘speak up’:
Be blunt and honest with me. Tell me how it is, why it is… I want to know it
upfront. If it's sugar-coated, you can't address it in as timely manner as
probably as needed or in a direct manner as probably as needed… That
can later come back and cause more problems than good.

– Senior HW Program Manager, Devices

Our interviewees felt that engineers, too often, get
recognition for ‘fighting fires.’ PMs preferred to work with
great engineers ‘who prevent the fires before they even start.’
Great engineers foresaw challenges with plans, asked the right
questions, and helped PMs to avoid problems, Literature on
project management commonly discusses risk management
for teams [11][12]. Our findings indicate that an important
aspect of risk management may be proactively providing
needed information:
And we have methods and we have ways to do it. We have a daily scrum.
You should just go surface these things there, just don't sleep on
them…there is some level of transparency between the devs… they
minimize risks and they surface risks and the PM or the dev manager can
have a backup plan. The more you identify these problems early in the
process, the better. If you just keep them as surprising issues at the end,
nobody is able to handle them. When the plane is landing, you cannot just
go say, "Oh, the engine is not working now. Oh, I knew about it a week
ago."

– Senior Program Manager Lead, Web Applications

B. Electrical Engineers

Our electrical engineers described their role as “making
physical things with electrons flowing through them,”
typically consumer electronics (e.g. Xbox). All our electrical
engineers had degrees in electrical engineering.

Our interviewees stated that the software engineers they
interacted with were predominantly ‘embedded’ software
engineers (also referred to as ‘firmware’ engineers), who had
extensive knowledge of electronics and hardware, far beyond
the knowledge of the typical ‘Windows’ software engineer:
It could be something like sampling registers, checking for button presses,
reading the data from an optical engine and then doing something with it…
That's the embedded firmware software aspect of it. There's a tight
coupling of system level design architecture between the hardware folks,
which is myself, and the embedded firmware folks.

– Senior Electronic Engineer, Devices

Our electrical engineers worked on program teams with
software engineers (and other experts, such as Program
Managers and Mechanical Engineers) to produce consumer
electronics: Xbox (encompassing Kinect), HoloLens, Surface,
Keyboard/Mice, and phones. At project initiation, a group of
very experienced engineers from various disciplines gathered
to scope the project, choosing the functions and features to
deliver as well as hardware and software components. Many
of these choices were tightly coupled, had great uncertainty,
and occurred years in advance of actual product development.

For example, one interviewee described selecting the
scrolling wheel for a mouse. Mechanical engineers would
choose the physical component based on physical dimensions
and functional requirements. Electrical engineers would then
take into consideration how data was obtained from the
component (e.g. optically or electronically) to decide how to
read and transport the data to microcontrollers. Embedded
software engineers would then decide how to communicate
the data to the PC, including considerations for efficient
algorithms and sampling intervals. When problems arose, the
team would have to decide where an adjustment—
mechanical, electrical, or firmware—should best be made.

After plans were set, individual disciplines independently
fleshed out and produced their own parts. The program team
would continue to work closely throughout the development
process. In addition to periodic sync ups, the program team
would usually come together during major milestones (e.g.
prototype complete) to verify that the project was progressing
on-schedule.

All our electrical engineers felt that great software
engineers should be able to ‘speak hardware.’ They needed to
understand the limitations and capabilities of available
hardware, as well as work within electrical constraints:
The really great ones have a really good understanding of both, the
software and the hardware. Like I said, figuring out the limitations of what
the hardware can do and what it can't do and asking the right questions
and phrasing it right to get it either in software lingo or hardware lingo.
You know, the people that can do that are fairly rare…there's different
terminologies and different expectations.

– Senior Architect, Devices

A common complaint was the lack of understanding about
scheduling. Our interviewees stressed that the hardware
operated with very different timelines (designs can take

4

months to produce, fabrication can take weeks, and testing can
be another several weeks) and therefore, software engineers
who did not understand the differences were difficult to work
with:
Since [software] programs are very malleable, they can make changes up
to the last second, right? … And it's hard to get across, "No this is fixed.
Once it's burned it's not going to change."

– Senior Architect, Devices

Finally, since their products were composites of hardware
and software, problems could commonly be solved by
software or hardware, but with different compromises. Lack
of holistic understanding often resulted in inferior products
despite similar hardware (e.g. worse battery life).

C. Artists

Our artists were concentrated within teams that develop
games. All our interviewees had training as artists, with
industry experiences in games (e.g. Ubisoft, Bungee) or
entertainment (e.g. Disney, Industrial Light and Magic) prior
to joining Microsoft. Our expert artists emphasized that games
were entertainment products, necessitating a holistic
experience, including both technical game play as well as
‘look and feel.’ Our interviewees felt that, in years past, games
were commonly engineer-constrained (i.e. teams built what
was technically possible), leading to engineering dictating
direction of projects, often (imperiously) influencing artistic
choices. However, with technology advancement and industry
maturation, interviewees felt that game development was
increasingly even-handed, with artists having an equal voice
in decisions. They felt game development Microsoft as
balanced between artistic and engineering concerns.

 The primary challenge facing their teams was needing to
‘push the envelope,’ under technical constraints while
shipping on time. Due to the competitive nature of the gaming
industry, interviewees discussed needing to offer something
outstanding, which was checked by limits of technology (e.g.
hardware) as well as time (e.g. yearly refresh cycles or
shipping for the holiday season). Consequently, many
attributes of great software engineers emerge from
collaborations to overcome these challenges. Our
interviewees had an overarching desire for software engineers
to have some understanding of the art domain, with the focus
on mindset and language. This enabled productive and
meaningful communications—understanding ‘what we’re
talking about.’

Our interviewees described great software engineers as
having great technical knowledge, which was valuable in
three ways. First, it enabled them to scope the project to keep
within bounds of technical feasibility and schedule. Our
interviewees hinted that artists suggested “pure fantasy” and
needed engineers to be the “voice of reality.” Second, they
offered alternatives or novel possibilities, even predicting
future technical advances. This enabled the team to achieve
even better look and feel than envisioned by artists. Third,
great engineers worked with artists on creative solutions:
[Engineers] who, like the MacGyver kind of attitude where, "Hey, given
these constraints, here's what we can make." … So the ability to be able to
say, "Well, what is it gonna take to get us there in the timeframe that we
need?" And so the best software engineers that we've worked with from an

art perspective are the ones who can think quickly on their feet and
improvise to come up with creative solutions to help meet the needs.

– Technical Art Director, Gaming

(‘MacGyver’ is a fictional American TV character famous for
being resourceful and possessing expansive knowledge.)

Furthermore, our interviewees believed that engineers in
the game industry needed certain mentalities. Foremost, to be
successful, teams needed to ‘push the envelope’; therefore,
engineers could not be risk-adverse. Second, engineers needed
to be open-minded and adaptable. ‘Correct’ and ‘best’ may
not be known ahead of time, prototyping was often required
to understand the optimal solution (the mentality behind
knowing by doing [18]). Engineers needed to adapt to “deliver
what's actually useful and maybe not what was on paper.”
Finally, our interviewees felt that Engineers needed to be
hardworking. In addition to myriad challenges throughout
development, extra work was often needed at the end to ‘push
the product across the finish line.’

D. Designers

Our designer interviewees characterized their role as
ensuring enjoyable user interactions by engaging visual and
interaction design process. Our designers had backgrounds in
art and graphic design, and most worked on teams with high
concentrations of user-facing features.

Interaction designers focused on ensuring that users can
easily use interfaces and can understand the information
presented in those interfaces. Our interviewees felt that
interaction design also involved ‘information architecture’,
showing users the right amount of information, at the right
time and at the right place, to enable users to accomplish their
tasks without overwhelming them. In contrast, visual
designers made visual elements, including icons, logos,
background, layouts, and even marketing materials. They also
ensured that the software product was atheistically sound.
While sharing some of the same tasks (e.g. creating visual
assets) as Artists (Section C), in addition to visual aesthetics
visual designers also considered usability. Adjusting for
context of the user, rather than focusing on athletics, is a key
differentiator between Artists and Designers. In small teams,
designers provided both visual and interaction designs,
contributing whatever the team needed.

Designers usually worked alongside software engineers to
produce features. The prevailing sentiment among
interviewees was that engineers were responsible for what
happened “underneath the covers,” getting the software
feature to “work just right,” whereas designers were
responsible for how users interacted with the software feature,
ensuring that users can use the software.

Interviewees felt that the primary challenge facing
software engineers and designers was reducing complexity.
They felt that many features involved large amounts of
technology, which would overwhelm and frustrate the typical
user; therefore, engineers and designers needed to work
together to iteratively design features that were easy and
enjoyable for users.

The dominant sentiment among our interviewees was that
great engineers left design decisions to designers. Great

5

engineers respected the design discipline and did not think that
they could do the designers’ job:
An important attribute is when developers also respect the expertise of
designers, understanding that there's a time for feedback… but for them to
also defer to designers when it comes to the design and the user
experience.

Because just as a user experience designer will not tell a developer how to
do their job, so too should a developer be very respectful of the designer's
position and their years of expertise in the field.

– User Experience Visual Designer, Gaming

Many interviewees discussed cases when engineers lacked
respect. Some engineers, when encountering problems with
design, would produce fixes without consulting designers.
These would usually be suboptimal as the engineers had
neither design training nor the ‘hundreds and hundreds of
hours’ of experience observing actual users. Some engineers
felt that designers only made things ‘look pretty’—telling
them to “put some UI on it” at the end of development. This
commonly resulted in unusable features that required
substantial redesign.

Our interviewees also felt that great engineers did not rush
into coding, rather they took the time to fully understand the
problem and worked with designers on optimal trade-offs.
This helped to avoid suboptimal designs that were
unchangeable (or too costly to change):
We end up getting dev involved in building code too early… we are doing
design and research that may actually go against what is being built and it
becomes this awkward…we are saying you actually need to change it based
on our user research, but they have already invested time into it so they
don't want to change it or it’s already too far along… the end product
doesn't meet the user’s goals or they are not able to use it as easily as they
should.

– Senior UX Designer, Web Applications

Finally, interviewees felt that great engineers worked to
clarify understanding, identifying missing elements or
inconsistencies in designs. As designers and engineers may
have different interpretations of the problem, great
engineers—often using face-to-face meetings—worked to
avoid divergent efforts:
 …there were a couple of developers that really understood how to pull
information out of you. So if they didn't understand something, they would
drill in deeper and get more clarity to the point where there wasn't any
ambiguity so you both knew exactly what was expected for the best
outcome… And that's probably one of the most important aspects of the
process, is just being able to come together and sit down and talk through
things. And the more you can sit down and get clarity upfront, the more
successful the outcome is going to be at the end.

– Senior UX Designer, Web Applications

E. Data Scientists

Data scientists existed in many engineering teams across
Microsoft, doing disparate tasks. This is likely because ‘data’
pervades software engineering: the software feature itself,
logs for usage analysis, or the target of software features.
There was no simple grouping or explanation of the ‘data
scientist’ role within Microsoft. We discuss the three kinds of
data scientists we interviewed separately.

Some data scientists at Microsoft were essentially
engineers; our interviewee explained that his team was
converted to be data scientists because their features involved
extensive ‘experimentation’. Rather than a ‘build to last’
mentality, their team had a ‘fail quickly’ mentality—getting

to the best answer quickly by iterating through variations. This
may reflect emerging trends within the software engineering
domain to better leverage data [19]. All members of his team,
both data scientists and software engineers, performed the
same set of tasks, which expedited development and reduced
‘lost in translation’ problems:
I'm used to our model, where data scientists also are engineers themselves.
I think that works better… There's no handoff. Right? There's no
interpretation… I think if you have scientists who can actually implement
code and ship it, that's useful.

– Principal Applied Sciences Manager, Web Applications

In discussing engagement with software engineers, our
interviewee referred to working with platform teams on
infrastructural improvements. The interviewee singled out one
attribute—data-driven—as not given enough attention by
software engineers:
I think data-driven is very low on the list, which surprises me… So I guess
there's an opinion that measuring the software outcomes is not important,
but I think that's extremely important. I think a lot of work you do needs to
be data-driven. You can't just say, "Well, I have a feeling this will work."

– Principal Applied Sciences Manager, Web Applications

A second kind of data scientist were those who prototyped
data features that software engineers then implemented:
My neighbor is a software engineer and my neighbor's neighbor is a
software engineer…We do models then we kind of close the gap between
business and engineers. We develop strategies and then we figure out how
we want to do [them]. Then software engineers, they help realize our
wishes, so we work really close.

– Principal Data Scientist, Web Applications

Our interviewee felt that, in his domain, great software
engineers need to be detail-oriented with a full technical
understanding of the software system. Since his team dealt
with financial transactions, even minor issues could be costly.
Great software engineers fully understood the risks and
consequences of their choices, since ‘I don’t know why’ was
not acceptable when problems resulted in loss of money.

Our interviewee further described great engineers as
flexible and fast, since issues involving money needed to be
fixed immediately, often outside of regularly planned
development cycles. Our interviewee appreciated engineers
who quickly fixed (or at least temporarily patched) issues:
When you are working on business, you actually impact the customers in
real time. You cannot ask the customer, "Okay. We know that there's a bug.
Wait for three days, we're going to fix the bug." It's not going to work…
Sometimes it can be short term solution, but need to pay immediate
attention.

– Principal Data Scientist, Web Applications

The third type of data scientists produced software that
reported on product use: monitoring systems that leveraged
logs to report on the status of the software product. These were
‘shadow’ systems; their value was in providing information
about the actual product and would not exist without the
original. Our interviewees believed that insights about the
software system was essential for improvement, allowing
teams to track progress, assess outcomes, and identify new
opportunities.

In this process, our interviewees felt that data scientists
were consultants to engineers. Data scientists helped to clarify
vague concepts (e.g. success and failure) and to instantiate and
track them with metrics. Data scientist and software engineers

6

collaborated to analyze the data iteratively and quickly
improve the software product:
…it's actually more that the data scientist is more on the engineer side to
help improve the system…

.. analyzing the data, provide a daily scorecard. I provide a metrics that the
developer can come and see whether their changes improved, with what
they have done actually had made the system better. But at the same time
data is used to improve our system automatically, programmatically,
interacting [sic] with developer.

– Principal Data Science Manager, Web Applications

In addition to being data-driven and improvement-
minded, our interviewees also wanted engineers to be
intimately familiar with their software products, making error-
free changes, and to proactively notify data scientists when
changes could affect reporting:
Data, it's very hard to be accurate. Data is very hard to be correct. I get
garbage data almost all the time…

However, I work with some developers that are just incredible. I get mail
from them. "Hey, I'm changing this today because of this. I realize the data
I feed to you can be better. I make these changes." That's the best
experience I've ever had.

…And they make my life much better. And the worse thing is, sometimes I
don't even know the data is wrong, and I publish the data. I make a big
business decision based on the data, and it can hurt. It can be millions of
dollars because the data is wrong. So, yes, pay attention to detail!

– Principal Data Science Manager, Web Applications

Since data validation and data cleansing are commonly the
most expensive and time-consuming parts of data analyses
[10], our interviewees’ perspectives likely reflect a desire for
software engineers to help ameliorate a pain point.

F. Content Developers

Our content developers were generally technical writers
(one a writer by profession, the other two were software
engineers prior to transitioning to content development). All
viewed content development as bridging engineering intent
and customer needs. Our experts worked with software
engineers to produce a wide variety of content to help
customers understand the software product (e.g. display string
in dialog boxes and ‘how to’ information), as well as content
to address post-release concerns from feedback channels (e.g.
MSDN, Customer Service and Support).

While acknowledging that content was ancillary, our
writers felt that great software engineers treated them (and
their writing tasks) with respect. Great software engineers did
not ignore or put-off requests from technical writers, which
was especially important for products with fast shipping
cycles (e.g. online services):
It's continuous because there are things coming out. [We] ship something
every day… you have to go in there and understand how something is
going to ship, have an idea of that sort of thing, and then you put up
something quickly…

– Senior Content Developer, Enterprise

When shown the full list of attributes, all our interviewees
commented that technical competency was critical. They had
assumed the attribute was a given:
…if the code is broken, it doesn't matter what word I put.

– Senior Content Developer, Enterprise

Software engineers’ technical competency was also important
in avoiding problematic decisions (e.g. breaking existing

workflows) and to understand potential pitfalls. These
allowed engineers and writers to work together to create
appropriate explanations and guides for customers.

Finally, our interviewees felt that great engineers valued
customer needs. They accept that many customers may less
technically savvy with low computing self-efficacy.
Therefore, they undertook constructive actions to understand
customer problems and to address the underlying confusion.

V. DISCUSSION AND IMPLICATIONS

We observed four overall themes in attributes that
software engineers needed to excel as collaborators in
interdisciplinary teams. First, our interviewees expected
software engineers to be experts of their own technical
domain. Our experts recognized that engineers performed a
critical task—writing code—without which the product would
not exist. This expertise also extended to knowledge about
options, trade-offs, and workarounds, based on the ‘truth in
code’ and possible future technical developments. Non-
software-engineers rarely had this knowledge (nor were they
expected to); therefore, for the team to be successful, great
engineers were expected, foremost, to excel in their own
domain.

Second, software engineers were expected to proactively
communicate information to their team. This included, during
the planning phase, helping to scope and innovate, as well as
updating timelines and expectations during development.
Great engineers proactively ensured that teammates had
information they needed to make decisions.

Third, our interviewees overwhelmingly wanted software
engineers to recognize that they were not experts on all aspects
of the product, staying open-minded to the input of other kinds
of expertise.

Finally, underlying all previous attributes was our
interviewees’ desire for engineers to see the big picture of how
pieces fit together across disciplines. Great engineers
understood how all experts and the tasks they performed
contributed to the success of a product, enabling them to
optimally leverage their expertise.

Generally, when software engineers lacked these
attributes, interviewees described engagements that fueled
resentment and led to poor software products. Consequently,
software engineers should, at minimum, strive for proficiency
in these areas. Nonetheless, contexts for engagements greatly
influenced the importance of various attributes, as we discuss
in the next two sections.

A. Conditions for Equality

Some experts felt that software engineers did not view
them (and their discipline) as equals, reflecting themes
reported in past studies (e.g. [4], [14], [20]). While we did hear
some evidence of these dysfunctional collaborations, most
experts across our sample at Microsoft expressed feeling of
overall equality in their collaborations, including Artists and
Electrical Engineers. Better understanding actions and
conditions that lead to equality—real or perceived—may be
valuable future work.

7

B. Challenging Engineering Processes

Conflicts in engineering processes also produced
collaboration challenges, mirroring prior studies of specific
software domains. For instance, game development is highly-
competitive [21] and overly ambitious scope is prevalent. A
survey of 20 game projects (including Diablo II, Unreal
Tournament, and Resident Evil 2) reported it occurring in
79% of teams [22]. This engineering process is likely
detrimental to code quality [23] and software engineers dislike
being expected to do extra work [15]. Easy solutions may not
exist, as any additional resources would probably be put
towards more features (to ‘push the envelope’), instead of
reducing the strain on the team.

Consumer electronics was another problematic area. Due
to the interconnected nature of consumer electronics, great
software engineers needed to think through implications of
decisions (upfront) as well as comprehend and communicate
decisions and implications with experts in other domains.
However, asking software engineers to have expertise in
multiple separate engineering disciplines may not be realistic;
research into new engineering processes that address these
structural problems may be needed.

VI. THREATS TO VALIDITY

As with any empirical study, our study has many threats
to validity. Our study’s construct validity is threatened by our
interviewees’ understanding of the attributes of software
engineering expertise from our previous study [15]. This was
partially mitigated by our selection of experts that worked
with software engineers at Microsoft. Also, we did not attempt
to pigeonhole attributes described by our interviewees—we
examined each role separately, retaining their contexts.

Threats to internal validity come from our interpretation of
the data; other researchers may have interpreted the data
differently. Our familiarity of Microsoft’s engineering
processes (having shipped engineering features in Windows)
and of the domain (having published numerous research
papers), may have improved our interpretation.

Our study is qualitative and specific to Microsoft. In
smaller organizations, experts may take on multiple roles, in
both technical and non-technical areas. Replicating this study
by other researchers and in other contexts can strengthen and
expand on our findings.

VII. CONCLUSION

As software is increasingly embedded into our social and
physical worlds, software engineering is becoming
increasingly interdisciplinary. This paper suggests that with
this change, great software engineers need to be more than
masters of code, but also masters of interdisciplinary
communication and systems-level thinking. Future work

should explore the implications of this findings, investigating
how these skills impact software teams and ultimately how to
effectively teach these skills to future software engineers.

REFERENCES
[1] M. Hewner and M. Guzdial, “What game developers look for in a

new graduate: interviews and surveys at one game company,” in
Proc. SIGCSE, 2010.

[2] A. Begel and T. Zimmermann, “Analyze this! 145 questions for data
scientists in software engineering,” in Proc. ICSE, 2014.

[3] H. R. Beyer and K. Holtzblatt, “Apprenticing with the customer,”
Commun. ACM, vol. 38, no. 5, May 1995.

[4] B. Mehlenbacher, “Technical writer/subject-matter expert interaction:
the writer’s perspective, the organizational challenge,” Tech.
Commun., vol. 47, no. 4, 2000.

[5] J. Aranda and G. Venolia, “The secret life of bugs: going past the
errors and omissions in software repositories,” in Proc. ICSE, 2009.

[6] Joint Task Force on Computing Curricula, “Software Engineering
2014: Curriculum Guidelines for Undergraduate Degree Programs in
Software Engineering,” 2014.

[7] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in
collocated software development teams,” in Proc. ICSE, 2007.

[8] E. Brechner, “Things they would not teach me of in college: what
Microsoft developers learn later,” in Proc. OOPSLA, 2003.

 [9] A. Trifonova, S. U. Ahmed, and L. Jaccheri, “SArt: towards
innovation at the intersection of software engineering and art,” Inf.
Syst. Dev., 2009.

[10] D. Fisher, R. DeLine, M. Czerwinski, and S. Drucker, “Interactions
with big data analytics,” interactions, vol. 19, no. 3, May 2012.

[11] B. W. Boehm, “Software risk management: principles and practices,”
IEEE Softw., vol. 8, no. 1, 1991.

[12] J. Ropponen and K. Lyytinen, “Components of software development
risk: how to address them? a project manager survey,” IEEE Trans.
Softw. Eng., vol. 26, no. 2, 2000.

[13] D. Walkowski, “Working successfully with technical experts—from
their perspective,” Tech. Commun., vol. 38, no. 1, 1991.

[14] A. Cooper, The Inmates Are Running the Asylum. Sams - Pearson
Education, 1999.

[15] P. L. Li, A. J. Ko, and J. Zhu, “What Makes A Great Software
Engineer?,” in Proc. ICSE, 2015.

[16] K. Stol, P. Ralph, and B. Fitzgerald, "Grounded Theory in Software
Engineering Research: A Critical Review and Guidelines," in Proc.
ICSE, 2016.

 [17] P. L. Li, “What Makes a Great Software Engineer,” Ph.D. thesis,
University of Washington, 2016.

[18] R. C. Schank, T. R. Berman, and K. A. Macpherson, “Learning by
doing,” in Instructional-design Theories and Models: A New
Paradigm of Instructional Theory, 1999.

[19] Economist, “Data, data everywhere,” Economist, Feb-2010.
[20] G. P. Zachary, Showstopper!: The Breakneck Race to Create

Windows NT and the Next Generation at Microsoft. Free Press, 1994.
 [21] J. Blow, “Game Development: Harder Than You Think,” ACM

Queue, vol. 1, no. 10, 2004.
[22] F. Petrillo, M. Pimenta, F. Trindade, and C. Dietrich, “Houston , we

have a problem ...: A Survey of Actual Problems in Computer Games
Development,” in Proc. SAC, 2008.

[23] N. Nagappan and T. Ball, “Use of relative code churn measures to
predict system defect density,” in Proc. Int’l Conf. on SWE, 2005.

8

