

What Makes A Great Software Engineer?

Microsoft+

Seattle, WA
{pal,jiaminz}@microsoft.com

The Information School*
University of Washington

ajko@uw.edu

Abstract—Good software engineers are essential to the creation
of good software. However, most of what we know about software-
engineering expertise are vague stereotypes, such as ‘excellent
communicators’ and ‘great teammates’. The lack of specificity in
our understanding hinders researchers from reasoning about
them, employers from identifying them, and young engineers from
becoming them. Our understanding also lacks breadth: what are
all the distinguishing attributes of great engineers (technical
expertise and beyond)? We took a first step in addressing these
gaps by interviewing 59 experienced engineers across 13 divisions
at Microsoft, uncovering 53 attributes of great engineers. We
explain the attributes and examine how the most salient of these
impact projects and teams. We discuss implications of this
knowledge on research and the hiring and training of engineers.

Index Terms—Software engineers, expertise, teamwork

I. INTRODUCTION
Software engineering research has considered a vast number

of factors that affect project outcomes, from process and tools,
to programming languages and requirement elicitation. We
rarely give consideration, however, to one of the most
fundamental components of software engineering: the engineers
themselves. Specifically, what makes a software engineer great?
This basic question is at the foundation of nearly every part of
our world’s rapidly growing software ecosystem: employers
want to hire and retain great engineers, universities want to train
great engineers, and young engineers want to become great. And
yet our understanding of what characteristics define software
engineering expertise still lacks specificity, breadth, and rigor.

The research we do have on this subject is directionally
sound, but often too indirect or abstract to form a foundational
understanding of software-engineering expertise. For example,
some research has considered experiences of new hires [1][2],
finding that engineers need to contribute value to the team, not
become blocked (i.e. have self-efficacy and be persistent), and
effectively navigate large organizations. Other research hints at
important attributes, but only indirectly. For example, research
on teaching novices [3] and programmer productivity [4][5]
indicate experts are generally more productive: producing
solutions faster, producing more in the same amount of time,
and/or having fewer bugs.

Software engineering education research is another source of
information about software engineering expertise, but it is
prescriptive rather than descriptive. For example, several studies
suggest what ought to be in the ACM Computing Curricula
[6][7][8][9], arguing that engineers need knowledge of technical
areas and techniques such as programming fundamentals,
verification/validation, and project management.

In this study, we sought to remedy the lack of specificity,
breadth, and rigor in prior work by investigating the following
about software engineers:

• What do expert software engineers think are attributes of
great software engineers?

• Why are these attributes important for the engineering of
software?

• How do these attributes relate to each other?
To answer these questions, we performed 59 semi-structured

interviews, spanning 13 Microsoft divisions, including several
interviews with architect-level engineers with over 25 years of
experience. The contribution of this effort is a thorough, specific,
and contextual understanding of software engineering expertise,
as viewed by expert software engineers.

In the rest of this paper, we detail our current understanding
of software engineering expertise. We then discuss our interview
and analysis methodology, the attributes we discovered, and the
implications of this knowledge for software engineering
research, practice, and training.

II. RELATED WORK
Much of our knowledge of software engineering expertise

come from studying new engineers rather than experienced ones.
For example, the closest work to ours is Hewner and Guzdial’s
investigation of what employers in a small game company look
for in new graduates [2]. The authors interviewed and surveyed
over 30 engineers, managers, and artists about qualifications for
recent graduates. The authors identified programming skills as
well as people skills, like the ‘ability to work with others and
check your ego at the door’. In addition to biases for the gaming
industry, the authors also suggested differences in expectations
between new and senior hires. Begel and Simon’s 2008 ICER
paper performed a similar investigation [1], following 8 new
hires at Microsoft for 4 weeks and examining their daily tasks.
The authors found that novices need to identify ‘tasks that have
an impact’, to be ‘persistent’ (avoid lack of self-efficacy), and to
collaborate effectively in a ‘large-scale software team setting’.
However, it was unclear whether experienced engineers had
similar issues.

Some works are prescriptive, offering recommendations, but
often providing few insights into why topics are (or are not)
important. For example, Lethbridge [10] surveyed 168 software
professionals about the relevance of computer science education
topics from the ACM Computing Curricula [6]. A notable
exception is Kelley’s work examining star performers, including
software engineers at HP and Bell Labs [11]. The authors
prescribed nine working strategies and described how they lead
to high productivity—blazing trails, knowing who knows,

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE
DOI 10.1109/ICSE.2015.335

700

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE
DOI 10.1109/ICSE.2015.335

700

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE
DOI 10.1109/ICSE.2015.335

700 ICSE 2015, Florence, Italy

 Paul Luo Li*+, Amy J. Ko*, Jiamin Zhu+

proactive self-management, getting the big picture, the right kind
of followership, teamwork as joint ownership of a project, small-
I leadership, street smarts, and show and tell.

Other works have considered related occupations such as
“Information Technology” [8] and “Information Systems” [12].
Many of the needs, like ‘supporting existing portfolio of
applications’ and ‘analyze business problems and IS solutions’
were directed towards selecting software rather than creating it.

Some insights into software engineering expertise have
come from luminaries. At OOPSLA 2003 [13], Brechner—a
director of development training at Microsoft—discussed the
need for design analysis, embracing diversity (e.g. other
nationalities), multidisciplinary project teaming, large-scale
development, and quality code. Dijkstra, in his Turing Award
speech [14], argued that good developers create obvious and
elegant solutions, constructed with provable correctness. These
attributes are likely important, but the luminaries were probably
not aiming to exhaustively or rigorously identify key attributes.

Popular press and best-practice guides have also considered
the topic. In a New York Times’ interview [15], Bock—
Google’s vice president of people operations—indicated that a
software engineer’s ability to learn on the job was critical, also
claiming that human judgment, inspiration, and creativity were
more important than technical knowledge. Similarly, McConnell
[16] argued that effective developers, in addition to technical
skills, had various personality traits like being humble about
their intelligence, curiosity, and intellectual honesty.

Comparisons of novices and experts also reveal insight into
software engineering expertise, showing that experts are more
productive, systematic, and well-prepared [3][17][18]. Sackman
et al., in one of the first comparisons of developer productivity
in 1968 [5], found that completion times of programming and
debugging tasks can vary as much as 28:1 between the best and
worst engineers. Researchers also suggest qualitative and
environmental differences. Robillard et al. [19] found that
effective developers were more methodical and better at
recognizing relevant information. Ericsson et al. [20]—origin of
the meme that 10,000 hours of deliberate practice is needed to
achieve expertise—found that attaining expertise required time,
materials, teachers, and facilities.

Research into various aspects of teamwork suggests other
important attributes. Simon’s research into effective
organizations [21] argued that setting, communicating, and
alignment of goals within teams are important. Gobeli et al. [22]
found that effective conflict management (e.g. confronting and
give and take) are important for successful projects. Research on
collaborations [23][24][25][26][27][28] suggests that expert

software engineers have knowledge of code ownership, the
technical domain, and argumentation skills.

While related research is extensive, few works directly
address software engineering expertise. Those that do, focus on
a narrow subset of factors. In our work, we give greater breadth,
depth, and rigor to our understanding of software engineering
expertise than the current literature offers.

III. METHOD
Ideally, an empirical study of software engineering expertise

would sample a wide-range of software companies, software
products, and company cultures. As an initial effort, we tried to
approximate the ideal by interviewing experienced engineers at
Microsoft, a large company with a diverse set of software
products and engineers. We chose face-to-face semi-structured
interviews to identify an exhaustive list of attributes with
detailed and contextualized understanding of their meaning and
importance.

A key decision in our method was determining whose
subjective opinions of software engineering expertise could be
considered credible. Licensure and accreditation of engineers is
still uncommon. The ACM's definition of software engineers as
'people who produce software for earnest use’ [6] is vague. We
therefore used the approach utilized by researchers of human
expertise [20], basing our definition of expertise on people
having achieved some degree of recognition as software
engineering experts. We selected engineers at or above the
Software Development Engineer Level 2 (SDEII) title. These
engineers were confirmed as experts by other engineers via the
hiring or promotion processes.

Based on prior work, we aimed to obtain a stratified random
sample of engineers across two important dimensions: product
type (10 major divisions at Microsoft plus one for all others
including Skype, Data Center Ops, and Distribution) and
experience level (‘experienced’—titles at or above SDEII—and
‘very experienced’—titles at or above Senior Dev Manager—
typically with 15+ years of experience). We used the corporate
address book, which the 1st author had access to as a full time
Microsoft employee. We randomly sampled engineers in the 22
strata in a round-robin fashion with 3 employees each round,
aiming for at least 2 informants in each stratum. Of the 152
engineers we contacted, we interviewed 59 (39%), see Table 1.

The interviews were semi-structured and about 1 hour in
duration. We started by describing our study, explaining how we
located the interviewee, asking permission to record the
interview, informing them that all personally identifiable

TABLE 1. STRATIFIED RANDOM SAMPLE OF EXPERIENCED ENGINEERS AT MICROSOFT

Experience Level \ Product Type Ad
Platform Bing Corp

Dev Dynamics Office Phone Server &
Tools Windows Windows

Services Xbox Other Totals

Experienced titles:
SDE II, Senior SDE, Senior Dev Lead 2 2 2 2 2 3 3 6 3 2 2 29

Very Experienced titles:
Architect, Technical Fellow,
Partner Dev Manager, Partner Dev
Lead, Principal Dev Lead, Senior
Dev Manager, or Principal SDE

3 3 3 2 3 2 2 5 2 3 2 30

Totals 5 5 5 4 5 5 5 11 5 5 4 59

701701701 ICSE 2015, Florence, Italy

information will be removed, and detailing their rights to refuse
to answer any question and to have their responses removed
later. We began the interview by asking: “I want to start by
learning a bit more about you. What software products, at
Microsoft and elsewhere, have you worked on?” This helped us
to establish rapport and facilitated informants’ reflections; this
prior history was later removed during transcriptions to preserve
anonymity. We then asked: “Think back to someone you've
worked with that you thought was a great software engineer.
What were some attributes that made the person 'great' in your
mind?” We asked follow-up and clarification questions for
attributes that we thought were interesting (e.g. novel, vague, or
counter to prior informants).

In the second part of the interview, we asked about attributes
that either lacked clarity or (we thought) might vary in
interpretation. As we learned more about the attributes from
interviewees, we updated the set of attributes we inquired about
(once every ~10 interviews). For time considerations, we limited
our discussions to 5 attributes of interest. We closed the
interview by restating the purpose of the research and asking
interviewees whether they had anything else to add.

To analyze the more than 60 hours of interviews and 388,000
words of transcripts, we used a grounded theory approach [29].
We began with open coding, identifying and assessing all
excerpts that discussed attributes of great software engineers.
Once we developed our initial attributes, descriptions, and
groupings, we made a selective coding pass through our data—
consolidating the attribute set. To validate our interpretations,
we then solicited the help of a Senior Software Development
Engineer (3rd author) to analyze roughly 1/3 of the interviews,
developing her own attributes, definitions, and groupings, and
then consolidating with the initial set. We made a final pass
through all transcripts to produce the final set of attributes.

IV. FINDINGS
Our analysis identified a diverse set of 53 attributes of great

software engineers. At a high level, our informants described
great engineers as people who are passionate about their jobs and
are continuously improving; who develop and maintain practical

decision-making models based on theory and experience; who
grow their capability to produce software that are elegant,
creative, and anticipate needs; who evaluate tradeoffs at multiple
levels of abstraction, from low-level technical details to big-
picture strategies; and whom teammates trust and enjoy working
with.

To give readers a sense of how the attributes interconnect,
we present a model of the 53 attributes in Fig 1. We organize the
attributes into internal attributes of the engineer’s personality
and ability to make effective decisions, as well as external
attributes of the impact that great engineers have on people and
product. Making effective decisions involved recognizing
situations as well as knowing alternative courses of action, likely
outcomes, and values of outcomes. The external attributes
focused on great engineers applying their emotional intelligence
and decision-making models to their software, their teammates,
and the potentially millions of users and stakeholders they serve
via their software engineering efforts.

Many of the attributes are applicable to many professions,
and some, to simply being a good person. Our objective was to
identify, among all possible attributes, the set that expert
software engineers viewed as important for the engineering of
software. More importantly, we aimed to provide a
contextualized understanding of why these attributes are
important in real-world practice.

In the rest of this section, we provide a description of each
attribute and quotes from informants (including their title and
division when this information would not reveal their identity)
that capture the sentiment in interviews. Due to space
limitations, we focus detailed descriptions on attributes that we
felt—based on prior work—were particularly interesting.

A. Personal Characteristics
Informants mentioned 18 attributes of engineers’

personalities (see Table 2). With attributes like passionate and
curious, these concerned who great engineers were as people.
For many attributes, informants felt that the attributes were
intrinsic to the engineer—formed through their upbringing—
and were difficult (if not impossible) to change.

Fig. 1. Model of attributes of great software engineers, with attributes we discuss in detailed in bold.

702702702 ICSE 2015, Florence, Italy

1) Improving
Informants described great engineers as improving: not

satisfied with the status quo and constantly looking to improve
themselves, their product, and/or their surroundings. Informants
believed that engineers did not start their careers being great, but
that young engineers needed to learn and improve. Informants
also felt that because the software field was rapidly changing and
evolving, unless engineers kept learning, they would not become
and would not continue to be great software engineers. This
notion of running up an infinite escalator was prevalent among
informants:
“Computer technology, compared to other sciences or technology, it's pretty

young. Every year there's some new technology, new ideas. If you are only
satisfied with things you already learned, then you probably find out in a few
years, you're out of date… good software engineer [sic], he keep investigate,
investment. [sic]” -SDE2, Corp Dev
2) Passionate

Informants described great engineers as passionate:
intrinsically interested in the area they are working in, and not
just for extrinsic rewards such as money. Informants felt that
software engineering required a tight fit between a person's
passion and the project to achieve high quality:

“I think that there are people who are great software engineers who are in the
wrong place and aren't motivated and they end up not performing well.” -
Principal Dev Lead, Dynamics

There was also a sentiment that no matter the subject matter,
there will be someone with a natural affinity towards it:
“I found that there's always a person who's passionate about every type of

thing, you just have to find the right people… I ended up in the wrong job for
six months. It was painful. People around me, they loved their work” -
Principal Dev Lead, Phone
3) Open-minded

Informants described great engineers as open-minded:
willing to judiciously let new information change how they
think, not taking the current understanding as gospel. Informants
felt that outcomes in software engineering (e.g. user reactions
and commercial success) were difficult to predict:
“You should be open… what you think need not be the right thing tomorrow…

like the Facebook explosion, when Myspace was already there, but it
exploded… no one knew that Facebook would explode when it started”. -
Senior SDE, Windows Services

TABLE 2. PERSONAL CHARACTERISTICS OF GREAT SOFTWARE ENGINEERS. ATTRIBUTES DISCUSSED IN DETAIL ARE IN BOLD.
Attribute and description Excerpt that capture interviewees’ sentiment
Improving—not satisfied with the status quo: constantly looking
to improve themselves, their product, and/or their surroundings.

“…Always looking to do something better, always looking for the next thing, studying
about the newer thing… to do things better.” -Senior Dev Lead, Xbox

Passionate—intrinsically interested in the area they are working
in (i.e. not just in it for extrinsic rewards like a pay check).

“You can't be a great engineer and not enjoy what you're doing… 9 to 5 wouldn't make
you a great engineer…not just to get a paycheck.” -Principal SDE, Xbox

Open-minded—willing to judiciously let new information change
how they think.

“The problem is... not being willing to take the input of others…not invented here, that’s
a huge problem.”-Principal Dev Lead, Office

Data-driven—taking and evaluating measurements of their
actions and of the software, often relative to expectations.

“The difference between fact and hypothesis… How can I prove that? A new fact might
show up, that this proves what I thought was my theory.” -Principal Dev Lead, Xbox

Systematic—taking actions in logical and ordered steps “…Have to be patient and not rush to the solution... go through a mental gymnastics in
order to get to a solution.” -Principal SDE Lead, Windows

Productive—achieving the same results as others faster, or taking the
same amount of time as others but doing more.

“He codes quickly and fast… Just write the code and figure out how to get it working.” -
Principal Dev Manager, Bing

Perseverant—not discouraged by setbacks and failures. “I will try to find out a solution. Those people always succeed …There is always a way.” -
Senior Dev Lead, Dynamics

Hardworking—working more than is expected to finish deliverables
and/or to accomplish their improvement goals.

“Sometimes… that’s just arduous. You really just need to grind through” -SDE2, Server &
Tools

Curious—wanting to know how and why things happen (i.e. how the
code and the conditions produce a software behavior or customer
reaction).

“I was always asking why. Why does that thing work? Why does it do this? What is it? For
me, I kind of had to have a need to know what made something tick and it's that
curiosity…” -Technical Fellow, division removed to preserve anonymity

Risk-taking—willing to go into high-value areas even though they
may not have knowledge or expertise (e.g. new technologies).

“They're willing to take on the challenge. So that's the most important one.” -Senior Dev
Lead, Bing

Adaptable—adapting to changes in their environment, including
changes in what they do (e.g. the software product) and how they do
it (e.g. people, processes, and tools).

“Things are going to change, what are you going to do about that?… move forward…
adapt to work with what you have to work with?”-SDE2, Service Engineering

Self-reliant—getting things done independently (i.e. not always going
to their manager for help); removing roadblocks by leveraging their
abilities and resources (e.g. asking experts for help).

“Rather than looking around for somebody to solve it for them... try to figure out how they
can do this on their own… get yourself unblocked attitude works really well.” -Principal
SDE, Windows

Self-aware—continuously assessing one’s situation and taking
corrective actions when necessary.

“A little bit of an intuition… being able to recognize this ain't working, I better start over.”
-Principal Dev Lead, Xbox

Aligned—acting for the good of the product and the organization, not
for one’s own self-interest.

“A mismatch of value… their number one goal is really to learn… you are paid because we
are a business.”-Principal Dev Manager, Windows Services

Executing—knowing when to execute; no analysis paralysis “They should not get into analysis paralysis… most optimal solution for the problem on
hand, not the most accurate solution.” -SDE2, Phone

Prideful—taking pride in oneself and ones’ product; letting their
output be a reflection of their skills and trying their best to deliver.

“Really being able to demonstrate something that you've done, that you're really proud of
… it's quality work.”-Principal Dev Lead, Xbox

Creating—wanting to bring ideas and thoughts into reality (e.g. a
software product or a feature).

“They feel more accomplished at the end of the day if they’ve actually built something…
designed something, maybe they wrote some code.” -Senior SDE, Windows

Focused—allocating and prioritizing their time for the most impactful
work.

“In an environment like Microsoft where there’s a lot of meeting and interruptions… get
focus and when to get their focus.” -Principal Dev Lead, Xbox

703703703 ICSE 2015, Florence, Italy

Informants also felt that because software products were
large, complex, and constantly changing; it was rare for anyone
to have a complete understanding. Therefore, even great
engineers needed to be open to changing their understanding:
“No matter how much you know, the software industry is so large… there’s so

many other areas… If that person has something to say that hadn’t occurred
to me, I’ll stop everything and say, ok, explain this. What did you see, that I
didn’t see?” -Senior SDE, Office
4) Data-driven

Several informants described great engineers as data-driven:
taking and evaluating measurements of their actions and of the
product, creating behavioral feedback loops for optimizing
software and processes. Informants believed that decisions,
when possible, should be made using data, not intuition or
arguments. Many viewed this approach as a way to avoid
confirmation bias, but lamented that it was no panacea:
“One thing that surprises me… even though we are driven by data, at least we

try to believe we are… Some data gets shown to us. We figure out some ways
to ignore it. So, maybe, maybe everybody thinks that they’re data driven, but
I’ve seen people come up with excuses for why the data doesn’t apply to them.
I’ve seen that a million times.” -Senior SDE, Office

B. Decision Making
Informants mentioned 9 attributes of engineers’ ability to

decide (see Table 3): synthesizing the current context, decision
alternatives, probabilistic outcomes, and values of outcomes.
Informants felt strongly that having book knowledge was not
sufficient; great engineers understood how decisions play-out in
complicated real-world conditions. Great engineers not only
knew what should happen, but also what can and likely will
happen.

To make effective decisions, our informants discussed
engineers needing knowledge about context along several

dimensions—technical domain, customers and business, tools
and building materials, and engineering practices—as
foundational to engineering decisions. We detail one area of
knowledge, people and organizations, because it had insights
into interpersonal dynamics not often discussed in the literature.

We also discuss engineers updating their mental models,
seeing the forest and the trees, and handling complexity.
Informants’ insights into these attributes revealed that great
engineers have complex and multi-faceted decision-making
models that were continuously being updated. This reflected the
complex decisions that great engineers often had to make.

1) Knowledgeable about people and the organization
Informants described great engineers as knowledgeable

about people and the organization. This included being informed
about their coworkers’ responsibilities, knowledge, and
tendencies. For example, knowing ownership enabled great
engineers to determine key stakeholders for decisions and to
communicate with the right people to align their work. This
alignment commonly meant their management chain, but
informants also discussed aligning with key partner teams (e.g.
other parts of a product offering):
“Make sure that you are aware of that big picture, you know where you fit in

and how you interact with everyone else to optimize what you are doing.” -
Principal Dev Lead, Ad Platform

Knowing who had expertise enabled great engineers to find
the right people for help—often domain experts—and for great
engineers in leadership positions, to take corrective actions to
address knowledge gaps (e.g. assigning a more senior person):
“[This great engineer] would go through his organization and looked very

carefully at the tasks that were being assigned and whether people had the
right level of training and understanding and if they didn’t, who their
supervisor and whether that person did and would demand code reviews...”-
Software Architect (division removed to preserve anonymity)

TABLE 3. DECISION MAKING OF GREAT SOFTWARE ENGINEERS. ATTRIBUTES DISCUSSED IN DETAIL ARE IN BOLD.
Attribute and description Excerpt that capture interviewees’ sentiment

Knowledgeable about people and the organization—informed
about the people around them: their responsibilities (i.e.
organizational structure), their knowledge, and their
tendencies

“Companies like Microsoft, there's literally people here who have created a world, the
technological world that we live in today. They’re stars in that regard… tap into this
wealth of knowledge that Microsoft brings to the table, the talent pool that’s here.” -SDE2,
Xbox

Sees the forest and the trees—considering situations at
multiple levels, including technical details, industry trends,
company vision, and customer/business needs

“…Both a very, very narrow extremely technical prospective on his code, but also know
where it fits in with the bigger picture, and to be aware of how it affects even our major
external customers, and the company vision.” -Principal SDE, Windows

Updates their mental models—keeping up to-to-date their
mental models through evaluating changes in their context

“Unlearning… two thirds or three quarters of what you know is still valuable, quarter to a
third is the wrong thing in this world and so the trick is to figure out which is which really
quickly.” -Technical Fellow, division removed to preserve anonymity

Handles complexity—able to grasp and reason about complex
and intertwining ideas

“Frighteningly intelligent and smart, and they just walk around with this picture in their
head all the time of how everything fits together.” -Principal SDE, Windows

Knowledgeable about their technical domain—thoroughly
conversant about their software product, including knowledge
about the domain and competitors

“You should have a very good understanding of the entire system as well as all of the moving
parts… the architects behind big systems, complex systems, and know it, all the gotchas, in
and out.”-Senior SDE, Windows Services

Knowledgeable about customers and business—conversant about
the role their software product plays in the lives of their customer
and the business proposition that entails

“Really understanding the point like who is the customer, why are we doing this.” -Principal
Dev Lead, Xbox

Knowledgeable about tools and building materials—versed in
strengths and limitations of the tools and building materials used to
construct their software product

“The fundamentals, you've got to learn your ... data structure, algorithm stuff inside out…
because everything else is building on them.” -Partner Dev Manager, Corp Dev

Knowledgeable about engineering processes—skilled in best
practices for building the product: their purpose, how to do them
effectively, and their cost in time and effort

“Having good practices around, how you do the code reviews and check ins and having unit
tests that enforces things don’t break and that kind of thing it is way, way more important
than the actual having a beautiful architecture.” -Principal Dev Lead , Windows Services

Models states and outcomes—building mental models linking the
current state, alternative actions, probabilistic outcomes, and value
of outcomes

“I think that mostly just comes from experience… learning where the hard parts of the
problems are probably lurking and what trouble they might cause you or something like
that… having a good pattern of recognition” -Principal Dev Lead, Corp Dev

704704704 ICSE 2015, Florence, Italy

Knowing people’s tendencies enabled great engineers to
adapt their engagement techniques to obtain desired outcomes:
“You have to understand people so that you can influence or impact them... You

have to do that both down and up and out.” -Principal Dev Lead, Phone
2) Sees the Forest and the Trees

Informants described great engineers as seeing the forest and
the trees, considering situations at multiple levels of abstraction,
including technical details, industry trends, company vision, and
customer/business needs. Informants indicated that mental
models could exist at various levels and that great engineers
reasoned at all levels quickly and accurately:
“What differentiated [this great engineer] from other people in management

positions… capability to zoom into the details, and he was not just a high level
guy, …know the reality of the stack or the reality of the software…” -Senior
Dev Lead, Ad Platform

Informants felt that this ability enabled great engineers to
make globally optimal decisions, avoiding local optimizations:
“The challenge is having the ability to look at things from many different

perspectives, at many different levels of abstraction or detail. Then, being able
to choose how to lay things out… make a set of choices.” -Technical Fellow
(division removed to preserve anonymity)
3) Update Their Mental Models

Informants described great engineers as continuously
updating their mental models at all levels of abstraction—
ranging from technical details to industry trends—by explicitly
evaluating changes in their context. Related to being open-
minded, this attribute concerned the process of updating mental
models, sometimes discarding existing models for new ones:
“You can always follow patterns too much... It's worked in the past, but

conditions have changed. You always need to look and take a little bit of risk
with each one of your tasks. If you're not then you're not really going to find
out what's possible.” -Principal Dev Lead, Office

Important contextual changes discussed by informants were
commonly shifts in long-held understandings in software.
Informants felt that these foundational shifts and their
implications were critical for great engineers to understand and
adapt to:
“Sometimes what used to be a second or third order effect comes to dominate.

So way back in the day, if you wanted to performance optimize something you
counted instructions. Processors got faster and faster, but memory references
didn't. There became a day when it made more sense to count memory
references than it did to count instructions. Unless you're conscious of when
those things will intersect, you'll be on the wrong side of history and be
frustrated.” -Technical Fellow (division removed to preserve anonymity)
4) Handling Complexity

Many informants described great engineers as handling
complexity with ease, grasping and reasoning about complex
and intertwining ideas with agility. Informants felt that some
software problems were inherently complex. This might have
been especially salient at Microsoft, where products commonly
build on top of multiple layers of technologies and interact with
many other components. Building an accurate mental model of
dependencies and connections was seen as critical:
“To solve the problem, [great engineers] have to have the ability to connect

things… You are always debugging layers of stacks of code… this layer talks
to some other layer in the horizontal... you need to solve the problem and you
don't know what's going on.” -Senior SDE, Windows Services

Some informants felt that the ability to handle complexity
was a natural ability. Others felt that great engineers could

effectively augment their natural abilities using tools and
processes (e.g. externalizing knowledge by writing it down):
“Ability to capture… simulate the architecture in their head… there's probably

a little bit of innate skill and cognitive ability… That said, the fact that you
don't have that skill doesn't mean that there's no other ways of doing it that
may be more brute force… writing things down and studying very carefully
the architecture you've put down is putting the brute force time into studying
a problem.” -Partner Dev Lead, Windows

C. Teammates
Informants mentioned 17 attributes of engineers’

interactions with teammates (see Table 4). Informants felt that
great engineers were expected to positively impact teammates.
For many informants, this was an important part of their job as
leads or managers.

Attributes in this area revolved around four concepts: being
a reasonable person, being a good leader, communicating
effectively, and building trust. We discuss, in detail, attributes
related to communicating effectively and building trust, as these
concepts are frequently mentioned in the literature but often with
little contextual understanding.

1) Creates Shared Context
Informants felt that creating shared context, which involved

molding another person’s understanding of a situation, was the
most important aspect of “communicating effectively”. This
involved tailoring the message to another person’s perspective:
“You perceive who you are talking to, and you are able to judge on those levels

that they are, or you just ask important questions. Do you know about this?
And then, be able to simplify the problem to the level that they’re working in,
or you estimate the amount of information given to them.” -Senior SDE,
Windows

This sentiment is closely related to the concept of
“grounding” proposed by Clark and Brennan, which, when done
successfully, required parties to “coordinate the content and the
process” of communication [30]. Since the engineering of
software involves many people, getting everyone to have a
shared understanding was seen as essential to success:
“One person can only accomplish so much so you've always got to be working

as part of the bigger group. People who can't communicate are only going to
be sort of so-so effective…” -Principal Dev Lead, Corp Dev

Informants also stated that great engineers, especially ones
at higher-levels, often had to communicate with people that do
not have a complete (or the same) understanding of the situation
but are critical to success (e.g. partner teams, customers, or
management). Therefore, crafting the message such that others
can comprehend the situation was important:
“Our areas where the things are inherently difficult to talk about… business

partners or with a customer… When you go outside and you talk to customers,
they think about things in much different terms and so in some ways you have
to kind of switch gears… why you should care about it and here is how you
should think about it.” -Principal Dev Lead, Corp Dev
2) Creates Shared Success

Informants described great engineers as creating shared
success for everyone involved, possibly involving personal
compromises. Informants felt that software engineering was a
collaborative process, requiring many people, often with
different personal motivations and organizational objectives.
Great engineers needed to get everyone making decisions
aligned to a shared goal:

705705705 ICSE 2015, Florence, Italy

“No matter how good is our code, if our partner [sic] cannot give it a good
product for us then we cannot share our greatness to the whole world. A lot
of time I see our support to our client is not very well [sic]… we should have
a good result combined together.” -Senior SDE, Phone

Many informants said that great engineers made shared
success bidirectional between managers and individual
contributors. Managers needed to put engineers in positions to
succeed; great engineers needed to engage management to
facilitate mutual success. Great engineers often had better
understandings of the details; managers often had a broader
perspective of the situation:
“It's a two-way communication… there's something going to happen down the

road, this piece of code or this feature going to have some issues, need to make
your manager aware.” -SDE2, Phone

This attribute likely helped to avoid dysfunctional ‘time
famine’ situations as discussed by Perlow [31], where crises
arise in teams due to a lack of shared understanding about status
and objectives.

3) Creates A Safe Haven
Many informants described great engineers as creating a safe

haven where other engineers can learn and improve from
mistakes and situations without negative consequences. Usually
associated with leaders, informants felt that if engineers are
afraid of mistakes, then their growth would slow:
“Chasing after a career path or something… you will deliver your best

performance if you are not insecure… One of the challenges as a manager
people face these days is retaining talent because there is so much attrition
all over.” -Senior Dev Lead, Ad Platform

Informants also saw the lack of this attribute as a major
contributing factor for talent loss. Informants did not want to
work in environments where they felt insecure, and often
avoided those teams/organizations:
“If you make one mistake or don’t know something and you’re sort of dinged

by that… and you’re only judged if you say everything’s perfect even if it
isn’t… Then you start to have this really kind of I think dysfunctional
environment set up where everybody just doesn’t say the truth.” - Principal
Dev Manager, Windows Services

TABLE 4. GREAT SOFTWARE ENGINEERS’ ENGAGEMENT WITH TEAMMATES. ATTRIBUTES DISCUSSED IN DETAIL ARE IN BOLD.
Attribute and description Excerpt that capture interviewees’ sentiment

Creates shared context—molding another person’s
understanding of the situation while tailoring the
message to be relevant and comprehensible to the
other person.

“Most compellingly relate the value of that abstraction as it goes to non-abstract to very abstract to
each person… empathize with your audience... get them to get it.” -SDE2, Windows

Creates shared success—enabling success for everyone
involved, possibly involving personal compromises.

“Find the common good in a solution… express here’s the value for you... It’s a win-win situation.”
-Senior Dev Lead, Windows

Creates a safe haven—creating a safe setting where
engineers can learn and improve from mistakes and
situations without negative consequences.

“If you learn something from a failure, that’s a wonderful sort of thing… [but not] If you’re afraid
of getting smacked upside the head… encourage the people to experiment, possibly succeed,
possibly fail”. -Senior SDE, Office

Honest—truthful (i.e. no sugar coating or spinning the
situation for their own benefit).

“When you do make mistakes, you've got admit you made a mistake. If you try to cover up or kind of
downplayed mistake, everybody will see it, it's super obvious. It affects your effectiveness.” -
Partner Dev Manager, Corp Dev

Integrates contexts—integrating different contexts
together into their own understanding, including noticing
and asking questions about gaps and incongruities.

“Disparate ideas and pieces of information… put pieces together… asking good questions... organize
your thoughts that will help you make those connections.” -Principal Dev Lead, Dynamics

Well-mannered—treating others with respect, not
obnoxious about their title, accolades, or knowledge.

“Smart but not cocky… He’s the one who knows all the information. He never comes across that
way… [does not] make the other people seem like, ‘Oh, I feel so stupid.’ ” -Senior SDE, Windows
Services

Acquires context—effectively acquiring contexts and
knowledge from others.

“To get the software to work… each things need to be integrate together [sic]... learn from others and
you need to know the things others are working on.” -SDE2, Corp Dev

Not making it personal—divorcing oneself from personal
feelings and biases.

“You can have a very open and heated discussions. But it is all very professional; none of this is ever
taken personally.” -Principal Dev Lead, Server & Tools

Mentoring—instilling knowledge to others; helping others
improve.

“He’s seen stuff that you haven’t seen yet, and he’s willing to share his knowledge… Let’s spread
some of that good knowledge around.” -Senior SDE, Office

Raises challenges—pushing others to action, expanding
the team’s limits.

“…Shared confidence: so it's like he's done it and so you can do it… spark your imagination and your
sense of self confidence for you to boot strap yourself up.” -SDE2, Windows

Walking-the-walk—acting as the exemplar (e.g. using
good practices) for others to follow.

“I would like to model myself against that behavior (of a great software engineer)… it inspires me to
do the same thing.” -Senior Dev Lead, Ad Platform

Manages expectations—setting clear expectations,
updating them, and then delivering on them.

“Your leads, your managers … setting expectations, they know what you’re going to do, you do it.” -
SDE2, Servers and Tools

Has a good reputation—having the belief, respect, and
confidence of others to make good decisions.

“Build up that reputation and that trust through your years… worth of good deeds essentially, so that
when you make that recommendation, they go, I am going to listen to him.” -Principal Dev Manager,
Windows Services

Stands their ground—firm against outside pressure (e.g.
management), when appropriate, based on sound
principles

“He will say no, if he has to. If what they're asking him to do jeopardizes something else… stand up
and be brave about it.” - Principle SDE, Windows

Trading favors—creating personal equity with others. “Returning a favor here and there… above and beyond to help somebody else out and then somewhere
down the road that person has that extra good will to come help you out.” -Senior Dev Lead,
Windows

Personable—cool people that one would engage with in a
non-work setting.

“One of the characteristics I look for in every person that I get… Can I have a beer with this guy?
…but they’re very, very stubborn and you know that you can only put them on one thing and that’s
it.” - SDE2, Servers and Tools

Asks for help—finding and engaging others with needed
knowledge and information.

“He does his homework and anything that he doesn't know… he goes and finds a person that does
know. He doesn't try to know it all himself.”-Principal SDE, Windows

706706706 ICSE 2015, Florence, Italy

Though informants felt that safe havens were important,
many expressed the need to balance a safe environment with
feeling the pain of mistakes. The reasoning was that pain from
mistakes was the best teacher: if an engineer was hurt by
something, then the engineer quickly learned to avoid it:
“I believe in having people feel the pain of their own mistakes… dealing with

the ramifications of the decisions that are being made, I guess is the best way
to learn.” -Principal Dev Lead, Office
4) Honest

Informants felt that being honest was the most important
attribute related to ‘trust’. This was about great engineers
providing credible information. Engineers that presented a
version of the situation that suited their own benefits were
viewed negatively. Informants felt that they needed to be able to
take action based on information that an engineer provided:
“Influence comes to someone else trusting you, part of that trust is that they go,

‘You know what? I know that this person always speaks the truth.’ As a result
of that, when they say something is good, I will totally believe them because
they are not trying to kind of misrepresent something or make them look better
or whatever.” -Windows Services Principal Dev Manager

Informants also did not appreciate wasting time shifting the
blame for problems. They felt that great engineers focused their
attention and efforts on addressing the problem:
“Rather than thinking about how to actually fix the problem at hand, [other

engineers were] more like "How do I make sure that nobody will come back
and think that maybe that happened because of something that I might have
done?" [This great engineer] has a way of kind of saying: It doesn't
matter…What matters is right now. How do we actually work through it?” -
Senior SDE, Windows

D. Software Product
Informants mentioned 9 attributes regarding the software

that great engineers produced (see Table 5). Like artists
appreciating masterpieces of other artists, our informants, many
of whom are great engineers themselves, saw beauty in the
software produced by other great engineers.

1) Elegant
Informants described software of great engineers as elegant:

possessing simple and intuitive designs that another person (or

themselves later) could easily understand. Among all software-
related attributes, elegance was the most revered. Informants
recognized that some problems in software were complex and
highly constrained, making it difficult to have a simple solution
that met the requirements:
“The style… always, an idea, and it was all clean… very concise. Just looking

at it, you can say, "Okay, this guy, he knew what he was doing."… There's no
extra stuff. Everything is minimally necessary and sufficient as it should be.
It's well thought-out off screen.” -Windows, Senior SDE

Informants also felt that it was critical to avoid complexity.
Complex solutions increased the likelihood of bugs and
increased maintenance costs (if problems were fixable at all).
Evolving the software was also more costly when the design was
brittle to change:
“Never complicate any things… when you simplify things it becomes easier for

you to maintain, going forward for customers… You get lesser number of
issues reported by a customer.” -Senior Dev Lead, Dynamics
2) Creative

Many informants described the software of great engineers
as creative, involving novel solutions based on understanding of
the constraints of the context, existing solutions, and the
limitations of existing solutions. Informants felt that there were
two important parts to having creative solutions. First, great
engineers understood constraints and requirements of the
particular context/problem:
“If you're looking for really an innovative …or just a solution that’s outside the

current norm… think through the problem…constraints that are currently
imposed on the environment.” -Principal SDE Lead, Windows

Second, great engineers knew of and knew when to apply
existing solutions (and not be creative). This was important
because informants felt that known solutions were generally
preferable since they were less costly and less error-prone:
“You are now using all of your creativity to reinvent things that are already

invented and that is just basically wasteful.”-Principal Dev Manager,
Windows Services

Still, most informants felt that novel problems occurred
frequently in software engineering, needing great engineers with
the ability to come up with innovative solutions:

TABLE 5: GREAT SOFTWARE ENGINEERS’ SOFTWARE AND DESIGNS. ATTRIBUTES DISCUSSED IN DETAIL ARE IN BOLD.
Attribute and description Excerpt that capture interviewees’ sentiment
Elegant—simple and intuitive (i.e. not complex)
software/designs that others can understand.

“They are simple... very easy to understand in a sense that it’s very simple. Doing something well
and in a very simple way is very very hard.” -Principal Dev Lead, Bing

Creative—novel solutions based on understanding of the
context, existing solutions, and the limitations of existing
solutions.

“Think outside the box… here's a traditional solution… often have constraints...take the difficult
circumstance and actually make it into something that could actually still work, but without a
huge complex overhead.” -Senior SDE, Principal Dev Lead

Anticipates needs—producing software that
accommodate likely needs and problems based on
contextual knowledge

“Think where you're going to get into trouble potentially… What are we ultimately trying to do,
and what can I do today that will save me time over the lifetime of the system?” -Technical
Fellow, division removed to preserve anonymity

Makes tradeoffs—making trade-offs (e.g. quality for time to
market) based on the context and the situation.

“Weight the tradeoffs. Is this really the right thing to do?” - Principal SDE Lead, Windows

Attentive to details—paying attention to coding details
during development including error handling, memory
consumption, performance, and style.

“The quality of the code, performance, space, and how many bugs it has, how robust it is, and how
it handles exceptions will have great differences.” -SDE2, Severs & Tools

Fitted—thought-through designs that take the context (e.g.
other components) into consideration.

“You understand better, interactions around you or around your code. How your code is supposed
to work… if I tweaked this here I’m not going to break something else.”-Senior Dev Lead, Xbox

Evolving—structure the software to be efficiently delivered
iteratively or in pieces.

“A very clean step-wise process moving forward… how can we break this down so that we have
really concrete deliverables on an ongoing basis.” -Senior Dev Lead, Bing

Long-termed—acting with an eye towards the future, not just
short term gratification.

“A bunch of isolated, fragmented, short-term solutions together, what do you get? Not something
great. Definitely, someone needs to have this long-term vision and say: we make decisions not
based on the immediate problem…” -Partner Dev Manager, Corp Dev

Carefully constructed—using the right processes (e.g. unit
testing) to produce the software.

“Unit testing, of the code. Well before that was fashionable… almost no bugs ever found in the
product and that was actually his track record.” -Senior Dev Manager, Windows

707707707 ICSE 2015, Florence, Italy

“Understanding patterns and understanding how to apply something is very
important so you don’t recreate wheels all the time… when there isn’t an
obvious pattern… Are you creative enough… come up with something new?”
-Senior Dev Lead, Windows
3) Anticipates Needs

Many informants described software of great engineers as
anticipating needs, accommodating possible future requirements
not known at the time when the software was initially produced.
Informants commonly mentioned scale (e.g. more users),
feasibility (e.g. technology advancing to the point where new
things were possible), and integration (e.g. working together
with additional software products):
“QQ, the Chinese chat program. It now has hundreds of millions of users. That

system was designed fifteen years ago, when QQ only had a few million users.
It still works today, that’s amazing, to have a system that scales that well, to
foresee all the issues it would have to face.” -SDE2, Severs & Tools

More than any other attribute, informants discussed the
propensity to overly anticipate needs in the face of uncertainty,
incurring high costs to add unneeded flexibility. Some thought
that any prediction of the future was foolish and preferred to
design for current needs and being open to rewrites:
“‘..Architect something now that's going to survive well 20 years from now?’

Nobody is that smart to be able to predict the future that well, I will refactor
towards new requirements and I constantly do that.”-Senior SDE, Office

V. THREATS TO VALIDITY
As with any empirical study, our results are subject to

various threats to validity. There are threats to the construct
validity from the lack of a clear and shared definition of a
‘software engineer’. Though, in general, informants understood
that we meant people that wrote code to be used by customers,
and we clarified whenever there was confusion. Our interview
and analysis processes contain threats to internal validity.
Informants could generally only mention a few salient attributes
unprompted; given more time to think, informants may have
produced more attributes. Moreover, while our analysis was
systematic, other researchers may discern different attributes,
definitions, or models than ours. Our sampling method also
contain threats to external validity. Though our 59 interviews
yielded rich insights, it was a small sample, even for Microsoft,
which employs tens of thousands of engineers. This led to some
natural biases, such as underrepresentation of women; we had
only 3 among our 59 informants. In addition, we only sampled
engineers in Seattle, USA. Findings may not generalize to other
cultures, especially attributes associated with management. The
size of the organization may also affect generalizability,
especially for attributes related to people and organizations.
Microsoft also had an established set of practices, tools, and
products; findings may not generalize to other situations (e.g.
start-ups). Microsoft is a software-centric company; informants
discussed unfavorable conditions in non-software centric
industries, like finance and retail. It is unclear whether the same
attributes (or their standards) would generalize. Nonetheless,
since Microsoft is a successful organization that produces
software used by billions, findings are relevant and interesting.

VI. DISCUSSION
Overall, nearly all of the attributes of great software

engineers we uncovered have been mentioned to some degree in

prior work, e.g. [1][3][27], and many attributes overlap with
ones important to other professions, e.g. [11][21]. Our results,
however, are the first time a comprehensive set of attributes for
software engineering has been identified and described. In
addition, there are several important implications. First, our
results suggest that productivity is only one criterion for
excellence. How the engineering is conducted, relative to
management (e.g. managing expectations), subordinates (e.g.
creating a safe haven), teammates (e.g. asking for help), partners
(e.g. creating shared success), and even oneself (e.g.
perseverant), are all critical. This reinforces the perspective that
software engineering is a sociotechnical undertaking, and not
just a technical one. Furthermore, simply delivering the code is
also insufficient. With attributes like elegant, creative, long-
termed, and seeing the forest and the trees, our results indicate
that good software engineering requires engineers to make
complex, experienced-driven, contextual considerations.

Second, though rarely discussed in the software engineering
literature, results suggest that effective decision-making is
critical. Informants felt that there are usually myriad options—
not all good—for what to do and how to do it. And as engineers
grow in their careers, they are tasked with making decisions in
increasingly more complex and ambiguous situations, often with
significant ramifications. Making effective decisions, entailing
attributes in Section IV.B as well as other sections, is an
important skill for engineers to develop.

Third, results suggest that being able to learn new technical
skills is likely more important than any individual technical
skills. Informants, even ones in the same division, used diverse
technologies—sometimes project specific tools (e.g. Cosmos, a
Microsoft version of Hadoop). There was no consensus on any
specific technical topic (e.g. architecture) as being essential.
Rather, most informants stressed needing to learn new skills (i.e.
continuously improving) and nearly all viewed it as a critical
attribute of great engineers.

The attributes we have identified and described may have
wide-ranging implications for researchers, novice engineers,
managers, and educators. In the rest of this section, we discuss
implications and opportunities to build upon our results.

A. For Researchers
Our findings raise important questions about our current

understanding of what affects software engineering outcomes.
Much of the prior work on this topic focuses on processes [32],
cost-estimation (e.g. COCOMO [33]), coordination [34], and
requirements engineering [35]. While many of the attributes we
uncovered underlie these concerns, such as creating shared
context and carefully constructed, there are also others that have
not been considered, such as aligned, creates a safe haven, and
fits. These likely reflect higher-level concerns such as
individuality, organizations, and productization.

Our results also suggest several new directions for tools
research. For example, we are not aware of any tools that help
engineers be more well-mannered in emails or evaluate tradeoffs
and see the forest and the trees when making decisions. Tools
research may explore facilitating and training engineers,
especially novices, in these attributes

708708708 ICSE 2015, Florence, Italy

An important part of better understanding these attributes is
developing measurements that operationalize these attributes.
These may enable rigorous science to better understand how the
attributes vary and their effects on teams and outcomes. Such
measurements may also form a critical foundation for managers
to identify and cultivate talent, for novices to improve, and for
educators to assess learning outcomes.

B. For Novice Engineers
New software engineers are often unsure of how to become

great engineers [1]. Our findings enumerate a set of attributes
that they might aspire to achieve. Improvements might come
from trainings, projects at work, mentoring, or self-adjustments
(e.g. for personality traits). Researchers might also investigate
interventions that help achieve the attributes quickly and
effectively.

Furthermore, novice engineers may also use our results to
assess their fit with prospective employers. As mentioned in
Section IV.A.2 on passionate, the fit of the engineer with the
project is critical. Novice engineers might assess their fit, in
terms of the attributes they value, with a prospective team.

Our findings may also help novices better present themselves
to employers. Since experienced engineers and managers value
these attributes, novice engineers might consider demonstrating
to employers that they have or can develop these attributes. This
also extends to highlighting the qualities when authoring their
resumes or presenting themselves in interviews.

C. For Managers
Our informants discussed many attributes that were

important for engineers in senior and leadership positions, such
as mentoring, raising challenges, and walking-the-walk. New
research may explore ways to help engineers improve these
attributes to become better managers.

Beyond improving themselves, our results may also help
managers make more effective hiring decisions. Managers may
better identify candidates that fit the culture and context of the
team. They may also better avoid engineers without the
attributes, such as not aligned (off doing their own projects), not
well-mannered (being an ‘ass’, as many engineers described it),
or not asking for help.

Finally, our results strongly suggest that managers may
consider cultivating the attributes within their teams. Managers
may consider using the findings—with help from further
research—to build a culture that is conducive to attracting,
producing, and retaining great engineers.

D. For Educators
Our findings also raise significant questions about

curriculum choices, teaching methods, and learning objectives
in formal computer science and software engineering education.
Educators may consider adding courses on topics not found in
their current curricula. For example, we found decision making
to be a key part of software engineering, but this specific topic
is not a part of the ACM’s Computing Curricula [6]. A course
specifically about decision making (e.g. discussing Simon’s
model of rational choice [36], Klein’s naturalistic decision-

making approach [37], or case studies of software engineering
decisions), might be valuable to students.

Software engineering educators might also use our results to
examine their teaching methods. Most attributes of great
engineers focus on how rather than what, whereas most
instructions in software engineering focus on teaching skills and
knowledge (the what), such as prior work on tools for automated
testing and analysis. Educators might consider improving how
software engineering goals are attained. For example, existing
project-based courses might use attributes presented in this paper
to help student evaluate each other’s behavior, as well as grading
non-functional attributes of the code, such as elegance,
anticipates needs, and creative.

Finally, educators might consider explicitly discussing what
students will not learn in school, allowing them to be aware of
potential knowledge gaps and empower them to seek out
opportunities outside of the academic setting (e.g. internships or
open-source projects). For example, attributes like self-reliant
may not be reasonable to teach in an academic setting and might
be better learned through mentorship on the job; nevertheless,
educators should consider informing students that it is a critical
component of software engineering expertise.

VII. FUTURE WORK
Though this paper is a good start at better understanding

software engineering expertise, there are countless opportunities
for future work. The combinations of attributes that are
interesting or prevalent could be examined. Each specific
attribute we uncovered in this study could also be the subject of
future empirical studies to provide deeper and more nuanced
definitions, approaches for measurement, or assessments of
impacts on software engineering outcomes. Comparison of the
attributes of software engineering expertise to attributes in other
fields could provide more insights into the unique qualities of
the software engineering phenomenon.

Our results provide little insight into the relative importance
of the attributes (e.g. weighting or criticality) and the effects of
contextual factors (e.g. gender or background). We did not
conduct an analysis for those insights for our interview study
because it would have lacked validity. We did not ask informants
about all the attributes, and informants often agreed or amended
their thinking when prompted with attributes from other
interviews. Future studies can examine this rich area.

With studies like these and the many others that our findings
provoke, our research community can begin to understand
software engineering not just as a purely technical discipline of
tools and processes, but a sociotechnical one, with individual
human contributors and their collaborations fueling software
progress.

ACKNOWLEDGMENTS
This work was supported in part by Microsoft, Google, and

the National Science Foundation (NSF) under Grants CCF-
0952733, CNS-1240786, and IIS-1314399. Any opinions,
findings, conclusions or recommendations are those of the
authors and do not necessarily reflect the views of NSF.

709709709 ICSE 2015, Florence, Italy

REFERENCES
[1] A. Begel and B. Simon, “Novice software developers, all over

again,” Int’l Computing Education Research Workshop, 2008,
vol. 1, no. 425, pp. 3–14.

[2] M. Hewner and M. Guzdial, “What game developers look for in
a new graduate: interviews and surveys at one game company,”
ACM Technical Symposium on Computer Science Education,
2010, pp. 275–279.

[3] L. Gugerty and G. M. Olson, “Debugging by skilled and novice
programmers,” ACM Conference on Human Factors in
Computing Systems, 1986, pp. 171–174.

[4] J. D. Valett and F. E. McGarry, “A summary of software
measurement experiences in the software engineering
laboratory,” Hawaii Int’l Conference on System Sciences, 1988,
pp. 293–301.

[5] H. Sackman, W. J. Erikson, and E. E. Grant, “Exploratory
experimental studies comparing online and offline programmmg
performance,” Communications of the ACM, vol. 11, no. 1, pp.
3–11, 1968.

[6] R. Shackelford, Andrew McGettrick, Robert Sloan, H. Topi, G.
Davies, R. Kamali, J. Cross, J. Impagliazzo, R. LeBlanc, and B.
Lunt, “Computing curricula 2005: the overview report,” SIGCSE
Bulletin, vol. 38, no. 1, pp. 456–457, 2006.

[7] T. C. Lethbridge, J. LeBlanc, R.J., A. E. Kelley-Sobel, T. B.
Hilburn, and J. L. Diaz-Herrera, “SE2004: recommendations for
undergraduate software engineering curricula,” IEEE Software,
vol. 23, no. 6, pp. 19–25, 2006.

[8] C. S. Miller and L. Dettori, “Employers’ perspectives on it
learning outcomes,” Information Technology Education, 2008,
pp. 213–217.

[9] E. M. Trauth, D. W. Farwell, and D. Lee, “The IS expectation
gap: industry expectations versus academic preparation,” MIS
Quarterly, vol. 17, no. 3, pp. 293–307, 1993.

[10] T. C. Lethbridge, “A survey of the relevance of computer science
and software engineering education,” Conference on Software
Engineering Education and Training, 1998, pp. 56–67.

[11] R. E. Kelley, “How to be a star engineer,” IEEE Spectrum, vol.
36, no. 10, pp. 51–58, 1999.

[12] D. M. S. Lee, E. M. Trauth, and D. Farwell, “Critical skills and
knowledge requirements of IS professionals: a joint academic /
industry investigation,” MIS Quarterly, vol. 19, no. 3, pp. 313–
340, 1995.

[13] E. Brechner, “Things they would not teach me of in college  : what
Microsoft developers learn later,” ACM SIGPLAN Conference
on Object-oriented Programing, Systems, Languages, and
Applications, 2003, pp. 134–136.

[14] E. W. Dijkstra, “The humble programmer,” Communications of
the ACM, vol. 15, no. 10, pp. 859–866, 1972.

[15] A. Bryant, “In head-hunting, big data may not be such a big deal,”
The New York Times, 2013. [Online]. Available:
http://www.nytimes.com/2013/06/20/business/in-head-hunting-
big-data-may-not-be-such-a-big-deal.html.

[16] S. McConnell, Code complete: a practical handbook of software
construction, 2nd Edition. Microsoft Press, 2004.

[17] M. T. H. Chi, R. Glaser, and Ernest Rees, Expertise in problem
solving. University of Pittsburgh, 1981.

[18] J. W. Alba and J. W. Hutchinson, “Dimensions of consumer
expertise,” Journal of Consumer Research, vol. 13, no. 4, pp. 411–
454, 1987.

[19] M. P. Robillard, W. Coelho, G. C. Murphy, and I. C. Society,
“How effective developers investigate source code  : an
exploratory study,” IEEE Transactions on Software Engineering,
vol. 30, no. 12, pp. 889–903, 2004.

[20] K. A. Ericsson, R. T. Krampe, and C. Tesch-romer, “The role of
deliberate practice in the acquisition of expert performance,”
Psychological Review, vol. 100, no. 3, pp. 363–406, 1993.

[21] H. Simon, Administrative behavior, 3rd ed. The Free Press, 1976.
[22] D. H. Gobeli, H. F. Koenig, and I. Bechinger, “Managing conflict

in software development teams: a multilevel analysis,” Journal of
Product Innovation Management, vol. 15, pp. 423–435, 1998.

[23] J. Anvik and G. C. Murphy, “Determining implementation
expertise from bug reports,” Int'l Workshop on Mining Software
Repositories, 2007, pp. 298–308.

[24] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage
with bug tossing graphs,” European Software Engineering
Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, 2009, pp. 111–120.

[25] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun,
and B. Wang, “Automated support for classifying software failure
reports,” Int'l Conf. on Software Engineering, 2003, pp. 465–475.

[26] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of
duplicate defect reports using natural language processing,” Int’l
Conference on Software Engineering, 2007, pp. 499–510.

[27] D. Bertram, A. Voida, S. Greenberg, and R. Walker,
“Communication, collaboration, and bugs: the social nature of
issue tracking in small, collocated teams,” ACM Conference on
Computer Supported Cooperative Work, 2010, pp. 291–300.

[28] J. Aranda and G. Venolia, “The secret life of bugs: going past the
errors and omissions in software repositories,” Int’l Conference
on Software Engineering, 2009, pp. 298–308.

[29] J. M. Corbin and A. Strauss, Basics of qualitative research:
techniques and procedures for developing grounded theory,
Fourth Edi. SAGE Publications, Inc, 2014.

[30] H. Clark and S. Brennan, Perspectives on socially shared
cognition. American Psychological Association, 1991.

[31] L. A. Perlow, “The time famine  : toward a sociology of work
time,” Administrative Science Quarterly, vol. 44, no. 1, pp. 57–
81, 1999.

[32] J. Herbsleb, D. Zubrow, D. Goldenson, W. Hayes, and M. Paulk,
“Software quality and the Capability Maturity Model,”
Communications of the ACM, vol. 40, no. 6, pp. 31–40, 1997.

[33] B. W. Boehm, C. Abts, A. W. Brown, S. Chulani, B. K. Clark, E.
Horowitz, R. Madachy, D. J. Reifer, and B. Steece, Software cost
estimation with COCOMO II. Prentice Hall, 2000.

[34] J. D. Herbsleb and A. Mockus, “Formulation and preliminary test
of an empirical theory of coordination in software engineering,”
European Software Engineering Conference and ACM SIGSOFT
Int’l Symposium on Foundations of Software Engineering, 2003,
pp. 138–147.

[35] B. W. Boehm, “Verifying and validating software requirements
and design specifications,” IEEE Software, vol. 13, no. 2, pp. 25–
35, 1996.

[36] H. Simon, “A behavioral model of rational choice,” Quarterly
Journal of Economics, vol. 69, pp. 99–188, 1955.

[37] C. E. Zsambok and G. Klein, Naturalistic decision making.
Lawrence Erlbaum Associates, 1996.

710710710 ICSE 2015, Florence, Italy

