
Wordplay: Accessible, Multilingual, Interactive Typography
Amy J Ko

The Information School
University of Washington
Seattle, Washington, USA

ajko@uw.edu

Carlos Aldana Lira
Middle Tennessee State University
Murfreesboro, Tennessee, USA
carlos.aldana.lira@gmail.com

Isabel Amaya
University of Washington
Seattle, Washington, USA

iamaya@uw.edu

Abstract
Educational programming languages (EPLs) are rarely designed
to be both accessible and multilingual. We describe a 30-month
community-engaged case study to surface design challenges at
this intersection, creating Wordplay, an accessible, multilingual
platform for youth to program interactive typography. Wordplay
combines functional programming, multilingual text, multimodal
editors, time travel debugging, and teacher- and youth-centered
community governance. Across five 2-hour focus group sessions,
a group of 6 multilingual students and teachers affirmed many of
the platform’s design choices, but reinforced that design at the
margins was unfinished, including support for limited internet
access, decade-old devices, and high turnover of device use by
students with different access, language, and attentional needs.
The group also highlighted open source platforms like GitHub as
unsuitable for engaging youth. These findings suggest that EPLs
that are both accessible and language-inclusive are feasible, but
that there remain many design tensions between language design,
learnability, accessibility, culture, and governance.

CCS Concepts
• Social and professional topics → Computing education; •
Software and its engineering → Development frameworks
and environments; Compilers.

Keywords
programming language, computing education

ACM Reference Format:
Amy J Ko, Carlos Aldana Lira, and Isabel Amaya. 2025. Wordplay: Accessible,
Multilingual, Interactive Typography. In CHI Conference on Human Factors in
Computing Systems (CHI ’25), April 26–May 01, 2025, Yokohama, Japan. ACM,
New York, NY, USA, 20 pages. https://doi.org/10.1145/3706598.3713196

1 Introduction
Programming languages are a foundational way people interact
with computers. But, they can only play this role because peo-
ple learn them. From Pascal and BASIC in the 1970s to the count-
less research prototypes in the 1980s and 1990s, such as LogoB-
locks, ToonTalk, and Squeak, to ubiquitous block-based platforms
like Scratch and Snap!, educational programming languages (EPLs)

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 Inter-
national License.
CHI ’25, Yokohama, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1394-1/25/04
https://doi.org/10.1145/3706598.3713196

have been a key resource for enabling this learning [38] over past
decades.

Today, however, EPLs have become critical infrastructure for
global computing education reform movements in primary and
secondary education. Countries worldwide have adopted computer
science (CS) learning standards, created teacher learning pathways,
developed curricula, and taught classes, striving to broaden partici-
pation in computing. These efforts depend tightly on an ecosystem
of EPLs and the network of for-profit, not-for-profit, and research
teams who maintain them.

While these reform movements have made some progress, they
have not been equitable, with schools lacking in funding, most
youth lacking access, and pedagogy overlooking diverse learner
needs [63]. EPLs, as critical infrastructure, are part of these in-
equities, determining who can and cannot participate in computing
education, and who ends up creating our digital worlds. Two eq-
uity gaps in particular, and their intersection, have been broadly
overlooked in EPL design:

• Most EPLs are inaccessible to youth who are blind or low
vision (BLV), deaf or hard of hearing (DHH), or neurodiver-
gent in that they require youth to be able to use a keyboard,
mouse, and/or touchscreen, are not screen-readable, and pro-
vide limited flexibility over how programs are presented,
executed, explained, or shared.

• Most EPLs are illegible to youth who cannot read English or
do not know cultural ideas from Western civilization since
syntax, libraries, and documentation are primarily in English
and use Western metaphors.

Consequently, many youth are either partly or wholly excluded
from learning to code. For example, some disability data estimates
that about 15% of students in U.S. public schools have speech, lan-
guage, or vision impairments [31]. Globally, roughly 10% of youth
are fluent in English [50]. If we want future generations globally to
have literacy in programmable media, then EPLs must be designed
without assuming ability, culture, or language fluency.

The question is how. Prior work has explored support for BVI
learners [45, 60]. For instance, Quorum offers a more screen-
readable syntax that avoids punctuation, places keywords first to
streamline screen readability, and provides sonifications for graphi-
cal output [69]. Others have examined how to make code editors
more screen readable, primarily by giving structural navigation
[5, 21, 48, 49, 49, 61, 64, 67]. Others have explored more accessible
tangible and audio output [37, 58].

Prior work has also separately explored supporting English lan-
guage learners. Some EPLs, for example, have been designed with
distinct grammars for multiple natural languages [29]. Some sup-
port numerous localizations of their interfaces and keywords [62].
But, most work has focused on instruction and not EPL design.

https://orcid.org/0000-0001-7461-4783
https://orcid.org/0009-0008-0069-2939
https://orcid.org/0009-0006-7786-4124
https://doi.org/10.1145/3706598.3713196
https://creativecommons.org/licenses/by-nd/4.0
https://creativecommons.org/licenses/by-nd/4.0
https://creativecommons.org/licenses/by-nd/4.0
https://doi.org/10.1145/3706598.3713196
mailto:iamaya@uw.edu
mailto:carlos.aldana.lira@gmail.com
mailto:ajko@uw.edu

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Ko et al.

Figure 1: Wordplay: accessible, multilingual, interactive ty-
pography.

There is evidence that English primacy harms learning [3, 24], and
that while instruction in students’ first languages promotes learn-
ing, engagement, and belonging [2, 20, 22, 39, 46, 52, 66, 75], English
primacy in programming and learning materials limits their impact
[42].

Little prior work, however, has focused on accessibility and lan-
guage inclusion in tandem, likely due to the tensions between these
goals. For example, block-based platforms like Scratch [62] can
be rendered in multiple languages but require a pointing device,
excluding learners without sight or unable to use a pointing device.
Screen-readable EPLs like Quorum [69] carefully design syntax
around English to optimize for screen readability, but in doing so
require English fluency, or considerable labor and design complex-
ity in curating grammars for every natural language. Creating both
accessible and multilingual EPLs is partly a matter of engineering,
but there may also be design tensions that cannot obviously be
addressed through better building. For example, embracing mul-
tilingualism can create accessibility barriers, as text-to-speech in
screen readers is primarily monolingual and supporting multiple
languages in code may increase interface verboseness and complex-
ity.

This raises two questions:

• RQ1: How might EPLs be designed and implemented to be
both multilingual and accessible?

• RQ2: What design, engineering, and pedagogical challenges
arise in designing at this intersection?

To answer these questions, we designed and engineered Word-
play (Figure 1), an EPL for creating accessible, multilingual, in-
teractive typography. Our design process involved 30 months of
community engagement with teachers and youth, particularly those
fluent in non-English languages and/or with disabilities. Through-
out our community engagement, our joint goal of multilingual ac-
cessibility grew to include an interconnected set of justice-centered
goals for Wordplay to be accessible, liberatory, transparent, cultural,
obtainable, democratic, and enduring. Our case, therefore, led to
innovations, but also surfaced design tensions that arose in striving
for this broader set of community-informed goals.

In subsequent sections, we situate this effort in prior work, de-
scribe our design process and Wordplay’s design and implementa-
tion, and detail technical tradeoffs that surfaced. We then describe
youth and teacher critiques from five 2-hour focus groups led by
undergraduates, with a group of six teachers, middle school stu-
dents, and undergraduate students evaluating Wordplay against the
seven goals above. Our contributions are 1) a novel EPL design that
attempts to be both accessible and multilingual and 2) insights into
design, engineering, and pedagogical tradeoffs in designing at this
intersection.

2 Background
A complete history of EPLs is outside the scope of this paper. Here,
we focus on a cross-section of prior work on the design of EPLs,
particularly concerning accessibility and language inclusion.

Debates about EPL design have been ongoing for decades. In 1996,
for example, McIver and Conway debated introductory EPL design
principles [47], contending EPL designs tended to have “grammat-
ical traps,” excessive “cleverness,” inconsistencies with learners’
prior knowledge, and more. In 2005, Kelleher found a broad range
of innovations among hundreds of EPLs [38], including systems
that provided direct instruction, simplified code writing, alterna-
tives to text, new programming paradigms, and improved visibility
of program execution. Stefik and Hanenberg argued EPL discourse
focused too much on finding the “best” language rather than recog-
nizing that languages have different purposes and that claims about
fitness for a purpose ought to be grounded in evidence rather than
ideological stances [68]. Ko et al. complemented these debates, ob-
serving that most learning challenges in EPLs stem from algorithm
design, finding code to reuse, learning how to reuse it, combin-
ing code to reuse, comprehending program failures, and gathering
information to debug [40].

While dominant discourse about EPLs has largely neglected ac-
cessibility and language inclusion, there has been notable progress
on both. For accessibility, examinations into the learning experi-
ences of blind programmers have found numerous accessibility
issues with IDEs, including debuggers lacking screen reader sup-
port, syntax highlighting not being read, and access barriers only
becoming visible after overcoming steep learning curves [4]. Stud-
ies with teachers of blind and vision-impaired youth have found
that most students needed to use plain text editors because of poor
screen reader support, with the exception of Quorum [69][30]. Nu-
merous works have explored new designs of EPL to overcome these
limitations, with most focusing on improving the screen readability
of IDEs, programming languages, and code [25, 49]. For example,
Ehtesham-Ul-Haque et al. offered a screen-readable grid layout for
editing conventional code [21], Milne offered an interaction tech-
nique for screen reading block-based code [48], and others have
described systems for navigating and editing the code structure
via keyboard input [5, 64]. Some works have explored systems for
speech-based input to support learners with motor impairments
[7], audio game design environments [37], and live-coding support
for mixed ability groups [55]. Though these works explore support
for diverse human abilities, all are in English, and most rely on
English grammar and speech technologies to enhance accessibility,
ignoring language diversity.

Wordplay: Accessible, Multilingual, Interactive Typography CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Work on language inclusion has primarily examined pedagogical
remedies for EPL designs that are language exclusive [42]. Jacob
et al. found that tailoring learning materials to students’ language
fluency changed their perceptions of CS and their self-efficacy for
learning [34]. Vogel found that positioning computing education
critically through a translingual lens enabled language-minoritized
students to affirm their language practices and resources but also led
youth to question the importance of English in computational tools
[74]; she also examined how narrowly localizing EPLs overlooks
the broader ways that learners translanguage with code, using their
language assets to navigate gatekeeping in computing [75]. These
findings are supported by large-scale log studies, which show that
learning to code in learners’ first languages is strongly associated
with faster learning [20].

EPL innovations that account for diversity in language fluency
are nascent. Early inquiries into how learners use language to ex-
press computational ideas [54], for example, were strictly concerned
with English grammar. More recent works have focused on the lo-
calization of EPLs. Goswami and Pal, for example, explored the
translation of programming languages into Bengali [22], and Per-
era explored automated keyword translation [56]. Hermans has
made the most notable progress, designing Hedy, an EPL gram-
matically localized into more than a dozen languages, including
right-to-left scripts [29]. She has also examined the technical chal-
lenges of supporting a large diversity of grammars and identified
12 aspects of EPLs that can be localized: grammar, keywords, identi-
fiers, numerals, punctuation, reading order, and errors [70]. Finally,
Piech and Abu-El-Haija explored the limits of machine translation
of code for learning, finding that translation is feasible but with
errors and primarily only for generating one-time translations of
relatively static content rather than learners’ ever-evolving code
[57]. Though these explorations suggest how EPLs might support
learners’ multiple language fluencies through translation from one
language to another, none suggest how to support multiple lan-
guages at once, or what implications multilingual support might
have on screen readability, speech input, or other access supports.

Despite progress on EPL accessibility and language inclusion, to
our knowledge, no work examines their intersection: systems that
have explored accessibility in depth (e.g., Quorum [69]) have been
monolingual, and systems that have explored multilingual learner
support (e.g., Hedy) have not prioritized accessibility [29]. The
closest work at this interaction is pedagogical: work on Universal
Design for Learning (UDL) focuses on teachers’ broad needs to
support English-language learners and students with disabilities.
Israel et al. examine challenges at this intersection in computing
education [32] and teachers’ struggles to consistently and mean-
ingfully incorporate UDL principles in their teaching [33]. In these
works, Israel emphasizes the importance of jointly engaging stu-
dents’ cultures, languages, and abilities and highlights the lack of
programming tools and platforms that do, but she does not detail
designs that might make such support possible.

Design methods for EPLs often overlook accessibility and lan-
guage inclusion. Coblenz et al. offer PLIERS, a human-centered
process for programming language design focusing on task needs
but not ability or language fluency needs [15]. The Cognitive Di-
mensions of Notations framework [8], used to analytically evaluate

prototypes of languages like C# [14], LabVIEW, and Prograph [23],
makes no mention of language or ability.

Several justice-centered design frameworks offer high level guid-
ance on design. For example, Harrington et al. offer rich insights
into conducting community-engaged research at the intersection
of race, disability, and accessibility [28]. Costanza-Chock’s Design
Justice [16] builds upon and critiques participatory and human-
centered design paradigms, examining how design can center com-
munity needs, values, and agency. Work on youth participation in
co-design highlights youth engagement opportunities and the need
for ongoing critical reflection about their participation [9].

Given the lack of prior work on the intersection of ability and
language inclusion, there are two possibilities this paper explores.
One is that creating accessible, multilingual EPL is a small matter of
careful design and engineering. The other is that there are wicked
problems [17] lurking at this intersection that only become visible
when attempting this design and engineering.

3 Wordplay: Process, Design, and
Implementation

In this section, we describe Wordplay’s design and implementation
and the process we followed to arrive at its current state. Com-
prehensive specification is infeasible here1 , so we focus on key
design processes, design choices, and emergent tradeoffs to enable
readers to implement similar language designs and as context for
the community critiques from our five 2-hour focus groups in the
next section. We divide our discussion into 1) design process and
then design choices about 2) programming language, 3) tools, and
4) community governance.

3.1 Design Process
The project’s motivations were eclectic. The first author had per-
sonal goals to design, build, and deploy discoveries from her prior
research. We also had research goals of jointly exploring accessibil-
ity and language. The first author also had advocacy goals for equi-
table K-12 computing education reform in coalition with students,
teachers, and school leaders. Though mixed, the first author felt
these motivations were well-aligned with a vision of more equitable
programmable media for learning, even though they complicated
methodological purity.

There is no one way to design a programming language, and we
found many methods helpful. While there is no space to articulate in
detail all of the methods and data we used to support our formative
design process, summarizing them here will give context for the
approaches we used to design Wordplay, helping the reader assess
whose voices shaped the platform. From March 2022 to the time of
writing this paper (30 months), we have engaged in:

• Syntax and semantics prototyping [15] and evaluation with
direct stakeholders.

• Cognitive Dimensions analyses [8] of the closeness of map-
ping, consistency, error-proneness, hidden dependencies,
visibility, and more.

• Expert consultations with EPL designers, including a week-
long research retreat.

1The platform is available for review at wordplay.dev, and implementation and specifi-
cation at github.com/wordplaydev

https://github.com/wordplaydev

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Ko et al.

• Literature reviews on accessibility, translanguaging, PL de-
sign, and justice.

• Artifact analysis [72] of accessibility and localization features
of popular EPL.

• Following design justice principles [16], community building
with mixed-ability, multilingual communities of youth and
teachers, including classroom visits, co-teaching, researcher-
practitioner partnerships, and student-led open source con-
tribution workflows.

• Designerly ways of knowing [18], supported by aesthetics
of parsimony and whimsy.

• Domain expertise [59], primarily the first author’s 25+ years
of human-centered design, study, and evaluation of program-
ming languages and tools and 15+ years in studying comput-
ing education.

The first author was the primary designer and developer of Word-
play in its first year, engaging in these design methods and synthe-
sizing perspectives into design choices with community feedback.
Her positionality was complex: she is multiracial, gender marginal-
ized, and a community organizer of educators and youth, and these
roles shaped the design work throughout the first year, within and
beyond the methods above. While many of these encounters were
with a global community — primarily experts — most were local-
ized to a region of the United States with racial, ethnic, language,
and class diversity, stemming from the region’s commitments to
serving refugee and immigrant communities. This had tradeoffs:
our teacher partners were steeped in the challenges of multilin-
gual learning, and that shaped what we learned, but our insights
were also tied to the idiosyncrasies of locally controlled U.S. school
districts.

In the second year, this design effort shifted to systematically
engage teachers and students. We taught two courses, including a
summer high school course on computing and culture to roughly
20 multilingual students of color and a 1-hour unit to two 7th-grade
classrooms with multilingual youth. We also organized an ongoing
open-source community that has engaged more than 150 high
school and college students. Finally, we consulted with 2 middle
school teachers (of which, one later participated in the focus group)
to explore the complexities of using the platform in schools.

Across this period of design and interaction, these interactions
led to multiple redesigns, new language features, localization fea-
tures, and changes to community governance. They also led to
us broadening our goals out from only multilingual accessibility
to a set of justice-centered EPL design goals that interact with
accessibility and language inclusion:

• Accessible. Teachers were unsure how to meet IEP (“individ-
ualized education plan”) requirements in computer science
classrooms with inaccessible EPLs and found that accessible
EPLs were not sufficiently multilingual.

• Liberatory. Teachers and students reinforced that EPLs
should be as much about the “what” and “why” of compu-
tation as the “how,” enabling students to critically examine
what computing should be used for.

• Transparent. Teachers reinforced how poorly debug-
ging tools and documentation enabled students to under-
stand how programs evaluate, particularly limiting English-
language learners’ programming self-efficacy.

• Cultural. Teachers lamented how few curricula and tools
were focused on students’ lived experiences, languages, cul-
tures, and family values.

• Obtainable. Teachers worried that platforms were often
incompatible with the devices they or their students had
access to and that students lacked internet connectivity at
home.

• Democratic. Students and teachers wanted an ongoing
voice in shaping the platform’s design.

• Enduring. Teachers worried about platforms that were only
supported for a few years, leading them to lose any invest-
ments they made in instructional design.

Throughout the rest of this section and the later evaluation
section, we describe and summatively evaluate Wordplay against
these design goals through a focus group.

3.2 Programming Language
This section describes Wordplay’s core programming language de-
sign choices concerning multilingual accessibility.

3.2.1 Decision: Interactive, accessible, textual output. In our design
process, youth surfaced in many media as culturally relevant, in-
cluding images, music, and games. These media, of course, are well
supported by other EPLs but pose the ability and language inclusion
challenges we discussed earlier. One class of media surfaced, how-
ever, that did not: text. Youth and teachers described the cultural
significance of culturally rooted poetry, song lyrics, passages from
books of faith, memetic phrases, and emojis. This led us to explore
a programming language that would facilitate multilingual, acces-
sible textual expression in rich, interactive, and typographic ways
resonating with sighted youth’s interests in graphics and games
while remaining straightforwardly describable to BVI learners.

Given this focus, a Wordplay program’s output is a scene graph
of Unicode glyphs. The core output concept is a Stage , which is
a list of Phrases or Groups of Phrases . Each Phrase takes
a multilingual text or rich text value, and Phrases , Groups , and

Stages have optional styling inputs, like fonts, colors, shadows,
transformations, and animations. Each output can be rendered as
typographic or text-to-speech output in any language supported
by machine translation and speech synthesis. Speech output in-
cludes a rich description of styling. Interactive output is essentially
a sequence of Stage values rendered over time, optionally de-
scribed. Figure 2 exemplifies these concepts, rendering a sequence
of animated lyrics from the Radiohead song Airbag, generated by
machine translating an English program into Spanish. To date,
youth have used this media to create programs such as animated,
ethnically rooted lullabies, folk dancing Christmas tree emojis, chat-
bots that teach non-English languages, animated cacophonies of
Arabic onomatopoeia, and word puzzles that celebrate the beauty
of the grammatical diversity of youth’s first languages2 .

2We do not show these examples as Wordplay projects are private by default.

Wordplay: Accessible, Multilingual, Interactive Typography CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Figure 2: Phrases, Groups, and Stages are used to compose
optimally animated and interactive typographic scenes.

[“cat” “dog” “reptile” “fish” “rodent”].filter(ƒ(pet) pet.has(‘e’))

Figure 3: A Wordplay program that finds pet species with the
vowel ‘e’ in them.

While textual output serves ability and language inclusion goals,
there are tradeoffs. Youth who want to create images, pixel art, or
audio cannot. There are also accessibility limitations in Unicode,
such as the lack of non-English descriptions of its 260K+ glyphs
that constrain text-to-speech output of symbols to English. Youth
can also create visuals as typography, but such compositions also
need to be described so the text does not entirely escape the access
limitations of visual media.

3.2.2 Decision: Functional style. One foundational choice in pro-
gramming language design is how to handle state. Should programs
be allowed to create and modify variables (the “imperative” style),
or should programs only create values from declarative expres-
sions (“functional” style)? After exploring tradeoffs, we decided
that Wordplay would be purely functional. This choice stemmed
from two observations. First, declarative programs “localize” com-
putation, in that all code that affects what is computed is contained
within an expression rather than distributed as state modifications
across a program’s logic. This serves transparency, potentially sim-
plifying youths’ comprehension of program evaluation, particularly
youth with disabilities who may face more significant burdens of
code navigation. Second, there was a design intuition that declara-
tive code might better align with the need for description for screen
reading. It might simplify localization by reducing the volume of
language constructs needing translation.

Being functional, Wordplay has no mutable variables or data
structures. All values are immutable, and computation produces
only new values derived from prior values. For example, Fig-
ure 3 shows an expression that filters a list of text values to
find the pet species names that have “e” in them (evaluating to
[“reptile”, “rodent”]).
Though this choice potentially enables these and other benefits

described below, it has clear tradeoffs. Learners with prior knowl-
edge of imperative styles will have less knowledge to transfer and
even have interfering knowledge. Teacher professional learning

“clickety”.repeat(1 . . . 𝛿 Key() + 1)

Figure 4: A Wordplay program that renders a keyboard emoji
the number of times a key has been pressed.

opportunities, including computer science coursework, also tend
to use imperative styles, with few exceptions [65], necessitating
significant investments in curriculum and teacher learning.

3.2.3 Decision. Reactive expressions. Functional styles often con-
strain interactivity because programs respond to user input by
changing state. This contradicts many of the project goals of being
cultural and liberatory in that youth usually view computing as
interesting only when programs interact with the world [36]. Prior
work has addressed this with functional reactivity [19, 76], where
reactions to input are not event handlers that modify state (e.g., “on
click, modify state”) but expressions that define the current value
of a program based on new input and optional prior values. This
treats a program as a recurrence relation on a stream of inputs.

Wordplay implements this with input streams and derived streams.
For example, in the program shown in Figure 4, a program re-
acts to a Key stream of keyboard events and produces a derived
stream of the number of key presses that have happened previously.
The 𝛿 Key() expression checks whether that stream has a new
value, like an event handler in an event-driven language, and the
1 . . . 𝛿 Key() + 1 derived stream keeps a running
tally of keyboard events. In screen reading, Wordplay describes
this expression in English as “reaction, starts one, when key stream
changes, previous value plus one.” Each time the stream changes,
the program reevaluates based on the changed streams, producing
a new final text value and repeating the word “clickety.” This is
similar to how a spreadsheet reevaluates, but Wordplay programs
are a tree of expressions with value streams from sensors, networks,
and people instead of a grid of cells.

Wordplay has built-in support for many inputs, including pointer
positions and presses, keyboard events, camera sensor frames, mi-
crophone amplitude and frequency, Webpage s, text from a Chat

box, collisions between Phrase s and Group s, and a Choice
stream, which is a combination of keyboard, pointer, or speech
input for selectable graphical content. All of these can be combined
with reactions to create rich interactive programs. For example,
Figure 5 shows a student example of a video stream that translates
a Camera stream into ASCII symbols based on brightness, with a

dynamic description for screen readers.
Reactivity has tradeoffs. One benefit is that reactions are local

to what they influence, possibly enhancing transparency. This con-
trasts with imperative event handling, where changes to output are
distributed as state changes throughout a program. There is a risk,
however, that the concept of “handling” of events may be more
closely mapped to how people reason about events in the world as
conditions and actions [8].

3.2.4 Decision: Strong, inferred types. “Strongly typed” means
that the types of values must be known and compatible with one

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Ko et al.

Figure 5: An accessible Unicode video renderer, written by a
student.

Figure 6: Type inference is necessary in some instances, such
as recursion.

another; “inferred” means that Wordplay can deduce types with-
out a learner specifying them. For example, the previous section’s
examples do not specify types; they are implied through literals
and function declarations. However, sometimes types must be spec-
ified. In Figure 6, for instance, Wordplay’s type inference cannot
determine the types for the recursive function’s inputs, so we must
declare them.

Wordplay’s type system also supports units on number values
and unit arithmetic. For example, a Time stream provides a series
of new time values at a specified frequency with the unit ms .
This means that the expression Time() + 1 is invalid since 1

is missing the unit ms . Wordplay’s libraries use units like meters
to determine distances on Stage , degrees for hues in colors, and
kilograms for the mass of objects in physics simulations. There are
built-in conversions between the world’s unit systems, which can
be used with the conversion syntax (e.g., 1m → #ft).

From an ability and language perspective, this decision has two
benefits. First, making types explicit is critical to localization and
description of code, reducing ambiguity about meaning. Second, it
potentially shifts the work of debugging runtime failures to edit-
time type errors, improving transparency [27]. The tradeoff is that
creators must comprehend type errors instead of failures, which can
be challenging.

3.2.5 Decision: Symbolic keywords. One visible tension between
EPL design and multilingualism is keywords, which are predom-
inantly in English. EPLs offering multiple grammars, like Hedy
[29] and Scratch [62], avoid this tension, but such design precludes
the use of multiple languages at once. For Wordplay, this raised
a critical design question: should Wordplay use words to demar-
cate programming language constructs, and if so, how might they
support multilingualism? If not, what should be used instead of
words?

To answer this question, we drew upon work that ties translan-
guaging to decolonization [77]. Translanguaging is the idea that
multilingual youth use and combine resources from their many
language fluencies to communicate, even when they do not have
“complete” mastery of a named language. Wei and García argue
that such “weaving together” of language across formal language
boundaries is a decolonizing act because it de-centers the language
of colonizers and creates translanguaging spaces in which youth are
affirmed for their creative and constructive use of multiple language
assets.

In this spirit, we aspired for Wordplay to be a translanguaging
space that encourages such weaving. Using words from a specific
language would deter this. However, even using reserved words
from languages of learners’ choice, especially in multi-lingual com-
bination, risked increasing syntactic complexity, reducing legibil-
ity, and de-centering learner-defined names and text in their code.
Therefore, we instead chose 15 symbols and symbol pairs from a
diversity of natural languages. This created a multilingual symbolic
canvas on which to layer learners’ own choices of multilingual
names and text:

• The • to represent a data type declaration, for composite

data structures (e.g., •Cat(name•"" breed•"")).
• The symbols ø for a none literal, # for numbers, [] for
lists, {} for sets, {:} for key-value dictionaries, and ⊤

and ⊥ for Booleans.
• The : represents the binding of a value to a name for later
reference by name.

• The ? to represent conditional expressions, the shorthand

syntax ?? for coalescing values that are possibly “none” to

some default (e.g., choice ?? ‘default’ , and the ??? as
a match expression to allow for conditionals on non-binary
values (like a “switch” statement.

• The Dutch florin ƒ to declare functions and parentheses
() to denote the evaluation of a function with a list of
inputs. The () also represents a block of subexpressions
(e.g., (name: ’Ai’ hi: ’hola’ "\name\")).

Wordplay: Accessible, Multilingual, Interactive Typography CHI ’25, April 26–May 01, 2025, Yokohama, Japan

• The right arrow → to represent conversions from

one type to another (e.g., “hello” → [] evaluates to

[‘h’ ‘e’ ‘l’ ‘l’ ‘o’]).
• The Greek 𝛿 represents a change predicate on stream values
and . . . to denote derived streams.

• The forward slash / represents a language tag on a name, a
text literal, or documentation and commas to segment them
(e.g., house/en,casa/es).

• Backticks “ represent rich text documentation (with a sec-
ondary notation for markup omitted here for brevity).

We hoped these specific symbols would realize a translanguaging
space. First, they de-center English relative to other EPLs while
elevating youths’ languages of choice, as the symbols “blend in”
with learners’ own word choices in code. Second, our symbols come
from many colonizers rather than just one, as there are delimiters
from English, Latin, Greek, Dutch, Swedish, French, and more. We
hoped this diversity of language origins represented an opportunity
to translanguage for learners who recognize their meaning and a
blank canvas on which to project meaning for learners who do not.
This choice potentially imposes comprehension burdens, but it does
so for all learners, not just those lacking English fluency, creating a
more level field for learning.

3.2.6 Decision: Multilingual text and numerals. Wordplay also
attempts to globalize text and numbers by:

• Supporting text delimiters from all scripts: (e.g., “” , ‘’ ,
„„ , „ , ‹› , «» , ⌜⌟).

• Allowing text, names, and documentation to have language-
tagged alternatives, as in "hi!"/en“hola!„/es and

count/en,contar/es .
• Supporting numerals from all scripts, enabling mixed-
numeral arithmetic like 1 ÷ III .

These choices permit several language inclusion features:
• Wordplay’s libraries and any code that learners write can
have any number of names in any written language.

• Wordplay’s editor can “skin” code in any language, enabling
multilingual classrooms to switch between views of pro-
grams in any combination of languages.

• Wordplay programs can generate multilingual output, where
text literals are selected at runtime by preferred language(s)
without using a localization library.

• Language metadata on all code and output enables screen
readers to choose appropriate text-to-speech engines.

Multilingual support has clear tradeoffs: it complicates syntax
and pedagogy by introducing another concept to learn but also
helps monolingual youth be aware that the world is multilingual.

3.2.7 Decision: Conflicts, not errors. Prior work has shown that
error messages often do not contain the information learners need
to address them and frequently frame the learner as the cause of
the error [6]; moreover, errors are predominantly in English. To
address these gaps, Wordplay frames errors as “conflicts” between
language constructs and bug fixes as “resolutions” to the conflict.
This rhetorical shift aims to avoid implying blame and frames de-
fects as inconsistencies that only a learner can resolve. For example,

Figure 7: A conflict between a function definition and a func-
tion evaluation.

Figure 8: Editing programs via text editing, menus, and a
palette.

in Figure 7, the function square expects a value, but the evaluate

expression square() does not provide one. Instead of an error
like “TypeError: square expected 1 arguments, got 0” when running
square() , Wordplay says: “I can’t evaluate square without the
input named num ”. This provides the information needed while
positioning the conflict as a disagreement only the learner can
resolve, similar to prior work [41].

Wordplay has localized versions of all conflicts. Because each
message is connected to a particular language construct, they also
contain links to all relevant documentation and tutorials.

3.3 Tools and Platform
Wordplay is also a platform. Here, we discuss how our programming
language choices interact with the accessibility and localization of
its platform features.

3.3.1 Decision: A progressive web application. A critical decision
for accessibility and language inclusion is that Wordplay is a web-
only, zero-install platform. We chose this primarily for our design
goal of obtainability: web standards are stable, and browsers increas-
ingly comply with them. No installation means teachers can use it
without significant IT approvals or strict hardware requirements. It
is also “progressive”, meaning most functionality is available offline
after download.

3.3.2 Decision: Multimodal editing. In designing Wordplay’s ed-
itor, we started from the premise that all abilities must be viable
ways to read and write code. This meant supporting input devices
that rely on fine motor performance with fingers but also speech,
haptic, gaze, and switch inputs. To support these modes, Wordplay’s
editor represents programs as both a text buffer and an abstract
syntax tree, building upon prior work on hybrid and multi-modality
code editors [44, 78]. This enables several types of input:

• Text editing (see Figure 8), as if the program were a text
buffer. This includes insertions, deletions, copy and paste,
and autocomplete but with rich visual and auditory annota-
tions. This mode permits syntax errors.

• Block editing (see Figure 9), as in Scratch or Snap!, but with
full keyboard accessibility, a cursor, copy and paste, and OS-
level accessibility features, such as speech input and Braille

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Ko et al.

Figure 9: Editing programs via blocks, drag-and-drop, and
copy-and-paste prevents syntax errors but constrains editing.

output. Leaf nodes are text fields or drop-downs, and other
nodes are containers representing expressions. Syntax errors
are impossible. When switching from text with syntax errors
to blocks, errors are represented as a list of unparseable
tokens.

• Menu-based editing in both (see Figure 8), where a node in
the tree or a position between nodes can be selected, and a
set of transformations are shown. This mode is slower but
allows switch and gaze input more efficiently.

• Bidirectional editing of typographic output, allowing proper-
ties of Phrase , Group s, and Stage s to be edited via GUI.
Palette edits immediately update the program and its output;
output itself can also be dragged and edited, updating the
program bidirectionally.

Unlike most existing editors, all modes are WCAG 2.1 compliant,
keyboard accessible, and always available. When a node is selected
with a screen reader active, it and its type are described in the
selected natural language. When the editor cursor is between nodes,
adjacent nodes are defined. The escape key allows navigation to
parent nodes, enabling navigation of the program as a text buffer
or tree. Because all code is declarative, descriptions of computation
tend to more directly describe the purpose of computation than
they would in an imperative style.

We have not yet designed native speech input. Large language
models may be one resource for enabling this, but there remain
questions about what a speech interface would allow to be spoken:
tokens would be slow; language constructs would be faster but less
reliable, requiring fluid error correction; descriptions of high-level
program behavior would be most error-prone and would need to
work well across all natural languages.

3.3.3 Decision: Multilingual editing. Wordplay’s editor is locale-
aware, leveraging Wordplay’s ability to alias names, text, and docu-
mentation with language tags. The editor can be shown in “literal”
mode, showing all encoded translations in code; “localized” mode
(Figure 10), showing code in the selected locales; and “symbolic”
mode, preferring emojis and symbol names when available. These
modes enable a diversity of multilingual learner and teacher collab-
orations, a key feature teachers request.

Programs can also be localized on demand. Choosing a source
and target language, the editor extracts the program’s names, text,
and documentation, splits names by camel case and underscores,
and then sends the text to a machine translation engine, obtaining
“best guess” translations, then repairs any tokenization or syntax
errors introduced, and finally embeds the new translation in the
program. While the translations are rarely perfect, they allow quick
translations for teachers or peers, facilitating multilingual learning.

Figure 10: Programs can be rendered in one or more particu-
lar locales or with a preference for symbolic names. Here, a
program is shown in Spanish, except for the comment the
cursor is in.

Figure 11: Programs can be paused and stepped forward or
backward on demand. Here, the player controls the cat chas-
ing a ball and is inspecting the reevaluation where a collision
happened (the “pounce” Collision stream was not ø).

3.3.4 Decision: Immediate and reversible evaluation. Wordplay’s
runtime has three central accessibility and language inclusion fea-
tures.

The first is control over when programs are reevaluated. By de-
fault, evaluation is immediate, reevaluating after any editing pause
or input stream changes, updating the new value on stage. Reeval-
uations are animated in the editor, with input stream expressions
“popping” and audibly ticking and active animations highlighted.
Immediacy intends to improve accessibility and transparency. For
example, if someone uses a non-visual medium for output, there
is immediate feedback about the effect of a program edit as sound
or haptics. But, if a learner’s attentional needs demand focus or a
teacher wants to withhold output for pedagogical reasons, evalua-
tion can be paused.

Second, all steps of program evaluation are described in the
current locale. For example, in Figure 11, the assignment of a new
Rebound value to pounce is displayed and screen readable.
Finally, program evaluation is completely and instantaneously

reversible to any point of evaluation (see Figure 11). This is possible
only because Wordplay is purely functional: by remembering input
values, any state of a program’s evaluation can be quickly recreated.
This enables Wordplay to support arbitrary scrubbing of evaluation
history, including step forward, backward, to a previous input or
evaluation of an expression, and to run a program slowly forward
and back. This affords direct control over time, which allows learn-
ers, regardless of their abilities or language fluency, to control when

Wordplay: Accessible, Multilingual, Interactive Typography CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Figure 12: Wordplay supports learning via dramatized, per-
sonified tutorials, standalone documentation, and contextual
help. Here, the main protagonist, ƒ, asks true and false how
they think about things that are not exactly true or false.
They have no words.

and how program evaluation proceeds, including in reverse if they
missed a step or need something repeated, to juxtapose a before
and after state, or to switch to a different language mid-evaluation
to see a step’s explanation in another language.

3.3.5 Decision: Multilingual, multi-paradigm learning. Wordplay
offers three different forms of learning content, all localized and
WCAG 2.1 compliant.

The first is a tutorial (Figure 12), framed as a seven-act dramatic
play about co-dependency3 , where a troupe of language constructs,
each with a distinct personality, work together with a learner to
put on typographic plays on stage. The core translation challenge
here is finding different cultural metaphors, personalities, explana-
tions, and alternative puns to convey ideas. Teams of multilingual
undergraduates maintain these translations, attempting to write at
a middle-school reading level in culturally relevant ways, starting
from a machine translation.

A second form is a multilingual documentation platform pre-
senting only the facts of the language design. This was created in
partnership with autistic students who reported finding the dra-
matic content distracting, confusing, and unnecessary and wanted
the shortest path to the facts.

The third form is contextual help. The editor provides annota-
tions in the margin describing the current node selection or position,
linking to documentation or relevant portions of the tutorial to re-
veal more about the constructs selected or adjacent. This supports
learners who wish to tinker and learn in context [13], deferring
learning until necessary.

3.3.6 Decision: Sharing is multilingual and moderated. Youth ad-
vocated that Wordplay deviate from conventional EPL goals of vi-
rality. Learners and teachers can create private galleries of projects,
share those galleries with their friends or classes, and limit access
to trusted groups. This is done partly in compliance with the global
laws on youth privacy (e.g., FERPA, GDRP) but also because of

3Astute readers will note the pun.

Figure 13: A Wordplay meetup where students network, en-
gage in peer support, and collaboratively design and engineer
new features and bug fixes.

student views that their expressions are situated: youth create for
their friends, families, and peers, with knowledge of their inter-
ests, cultures, languages, and abilities, and so decontextualizing
their creation would subvert the socially-situated nature of their
creations.

Youth may share their projects publicly but with constraints.
The program may not contain anything that appears to be person-
ally identifiable information (PII). Content warnings are shown by
default until moderated by a community of trained undergraduate
moderators. Finally, there is nowhere to see all public projects on
the site: they can be shared by links on external sites only.

3.4 Governance
Wordplay is governed by teachers, students, and undergraduates,
facilitated by researchers. In practice, this means more than just
making the project open-source. It has meant:

• Forming and striving to sustain a student and teacher advi-
sory council with rotating membership.

• Organizing an undergraduate design and development
community with onboarding materials, online community,
weekly meetups, and student facilitators. (See Figure 13).

• Cultivating partnerships with secondary CS teachers with
multilingual students and students with disabilities.

• Consulting with K-12 teachers at teacher conferences like
the CS Teachers Association annual conference.

• Facilitating design discussions in GitHub issues about com-
plex design tensions between youth goals and programming
language design constraints.

These have all required defining and communicating project
leadership as an ongoing facilitation of co-design to reconcile de-
sign tensions, renegotiate power, and mutually teach and learn the
community’s many forms of expertise.

4 Evaluation
While community input was central throughout our design process,
as the platform reached a viable release candidate status, we sought
more structured, independent feedback to answer RQ2: what design,
engineering, and pedagogical challenges arise? To answer this ques-
tion, we conducted a structured focus group with six participants,
including middle-school youth, teachers, and undergraduates, span-
ning five 2-hour sessions. Aside from research method guidance,
the sessions were entirely designed and run by two undergraduate
researchers (the second and third author).

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Ko et al.

Table 1: Self-reported demographic data.

Participant ID Group Ethnicity Gender Languages
MST1 Middle-school teacher White Woman English, some Spanish
MST2 Middle-school teacher White Man English
MSS1 Middle-school teacher Indian Girl English, Hindi, Punjabi
MSS2 Middle-school student Indian Girl English, Malayalam
MSS3 Middle-school student (not provided) Boy English, Spanish, French, Mandarin
UG1 Undergraduate Asian Man English, some Mandarin

4.1 Participants
We recruited 2 middle-school teachers, 3 middle-school students,
and 1 undergraduate who taught or completed computing courses
in educational institutions in the metropolitan area of a large city
(see Table 1). To recruit, we worked with one middle-school CS
teacher participating in the first author’s lab as part of a program
for engaging teachers in research, and who we had previously con-
sulted on Wordplay’s design, but who had not analyzed it in detail.
The teacher sent a mass email to parents of students she had pre-
viously taught and to a mailing list for middle-school computing
teachers; we relied on her established relationships for rapport,
freeing youth to critique more openly. We also sent a message to
recruit undergraduates to the project’s Discord server. All commu-
nication reinforced the accessibility and language inclusion goals.
We asked all interested participants to complete an interest form,
including space for participants to volunteer demographics. Due
to the risk of stigma, we did not ask students to disclose disability
identities; none were disclosed. We provided snacks, adults were
compensated with cash, and youth received gift cards. Experience
with Wordplay varied, with some having used it briefly in a class
and others having contributed to its design and implementation.

4.2 Sessions
For each session, we devised questions to prompt participants’ dis-
cussion of EPL and Wordplay through the lens of one or two of the
justice-centered design goals described above. We additionally de-
vised probes to clarify or further draw out participants’ responses.
Thus, our prompts guided the session’s discussion while our probes
afforded exploration of participants’ critiques. This highly scaf-
folded approach helped us adapt to participants’ diverse experiences
with EPL, multilingualism, and accessibility and better understand
their feedback on Wordplay. For example, session #4 included the
following prompts about transparency:

• Remember when you were confused about what was happening
in your code? What made you feel confused?

• Think back to when you or a student had trouble debugging
code. Looking back on it, what helped you to debug that code?

• What would you add to our definition of the term transparent?
• Imagine you could create the ideal programming platform
to help students understand what is happening in their code.
What would that programming platform look like?

We then asked participants to brainstorm design choices for their
ideal EPL on sticky notes. After waiting 10 to 15 minutes, we asked
them to read and discuss their choices aloud. Then, we presented
Wordplay’s design choices and, for each choice, asked:

• What about this design choice would help you be confident that
you knew how your code worked? What are the shortcomings
of this design choice?

• What about this design choice would help you debug your
students’ code? What about it would make debugging more
difficult?

• What about this design choice helps you understand and eval-
uate the Wordplay language? What are the shortcomings of
this design choice?

• We are trying to make Wordplay more transparent. Based on
what we have talked about today, what have we missed? Is there
anything you wanted to say but did not get the opportunity to
speak?

Each session was structured similarly. Between prompts, we
presented instructional material about EPL designed to scaffold
participants’ thinking about accessibility and multilingualism while
amplifying their knowledge as insider experts. After each session,
we revised prompts according to participants’ feedback about the
session format. The sessions were audio-recorded and transcribed
with participants’ consent.

4.3 Analysis
Our unit of analysis was the group’s collective critiques rather than
individuals. Our primary data included audio transcripts and, sec-
ondarily, participants’ sticky note brainstorms. The third author’s
notes from each session supplemented these sources. Following
recommendations from Hammer and Berland [26], our goal was not
to measure agreement for quantitative analysis but rather generate
claims about the data for future investigation. To do this, the facili-
tators independently and inductively coded the data, identifying
potential claims about the group’s critiques, and iteratively com-
pared and resolved disagreements. The second author then wrote
summaries of the group’s design critiques, linking critiques to data.
The facilitators then iteratively refined this initial list of critiques
until they reached a consensus, resulting in the set of group design
critiques below.

4.4 Results
Here we present the group’s 13 design critiques, by session, with
supporting evidence. We summarize them in Table 2 for reference.

4.4.1 Session #1: Obtainable. This design goal aims to ensure that
learners of any financial means can access EPLs. This means an EPL
must work on slow, public, or shared devices and in contexts with
slow or unreliable Internet connections. While this session was
two hours long, we recorded only the first hour due to a hardware

Wordplay: Accessible, Multilingual, Interactive Typography CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Table 2: Focus group principles and critiques

Principle: An EPL should. . . Critique: Wordplay. . .
. . . be usable without internet access . . . is only partially usable without internet access
. . . be available on all devices . . . doesn’t function equally well on all screen sizes or devices
. . . be customizable for diverse access needs . . . is not customizable enough for all access needs
. . . be inclusive of neurodivergent learners . . . should present information at different levels of detail
. . . be governed by diverse teachers and students . . . needs more diverse youth governance
. . . minimize barriers to contributions . . . should not require GitHub use to contribute design ideas
. . . be enduring. . . . needs sustainable funding without compromising values
. . . help learners solve it on their own . . . errors should teach and empower
. . . let learners “see under the hood” . . . understanding how it is built shouldn’t require reading code
. . . describe “why” a program behaves as it does . . . code should be more explainable
. . . be multicultural . . . should have more multicultural examples
. . . be multilingual . . . should support collaboration in multiple languages
. . . center learners as decision-makers . . . should frame learners as shaping the future of computing

failure, so we did not have complete data on the group’s evaluation
of Wordplay.

Participants broadly agreed with the obtainable goal.

Critique: An EPL should be usable without Internet access. While
participants appreciated that Wordplay could be used partially
without internet access, they were concerned that Wordplay would
not be fully obtainable without having full offline support. For
example, when describing potential barriers to obtaining an EPL,
MST1 recalled her teaching experiences in an environment without
reliable Internet access, expressing that not all EPLs serve these
environments:

MST1: I worked at a school in Thailand where we had
Internet for an hour a day, and then it would be gone,
and so it was so nice to find options that you could
download for offline use where you didn’t have to be
connected . . .

Additionally, participants highlighted that Wordplay required
an Internet connection to start for local use and suggested that the
platform be fully downloadable for offline use.

Participants’ sticky notes reinforced this view, arguing that EPLs
should be “able to be accessed offline w/o taking a ton of device space,”
and provide a “downloadable version so teacher[s] can run [it] on a
local classroom web server”. Other critiques problematized Internet
access, such as the critiques that “project[s] [be] saved offline as a
file”.

These critiques reflect the many well known digital divide gaps
in education: rural communities globally tend to have no or poor ac-
cess to the internet [1]. But, they also interact with multilingualism;
for example, in the United States, rural communities are increas-
ingly multilingual [53], suggesting that supporting multilingual
learners requires accounting for their lack of internet access.

Critique: An EPL should be available on all devices. The group
believed that device support should be universal, recognizing that
most EPLs require access to a device, but not every learner or school
possesses an appropriate device. For example, when discussing
potential barriers to obtaining an EPL, MSS1 explained different
devices afforded access to different EPL platforms:

MSS1: My old school, we only [had] Apple iPads for
elementary and middle and, I think, even up to high-
school, I don’t really know. But then when I came to
[my current school], they had Microsoft ThinkPads,
so it was more obtainable to get better programming
apps.

Similarly, MST1 shared how schools often do not have access to
the newest hardware, restricting access to newer EPL:

MST1: Whenever I see anything on a phone, I’m like,
“How compatible is it with older versions of the oper-
ating system?” I think there seems to be an assump-
tion that everyone has the newest phone and can
upgrade to the newest thing, and in schools, I mean
even in well-resourced schools, we’re usually keeping
the same devices for 4 years, up to, say, 10 years.

In brainstorms, participants suggested strategies for compat-
ibility, affirming that an EPL should be “accessible to all devices
despite the model, age, or company the device is from” and “made for
laptops/PC but also can be used on all devices.” Other participants
suggested that an EPL be able to “run on browsers/computers with
less RAM or computing power” or “low power [and] old devices”, en-
sure features are “independent [of] OS”, distribute a “cross-platform
stand-alone version”, and be “accessible in browser (for community
spaces like libraries).”

Though these critique suggest EPL should strive for maximal
device support, this foregrounds existing digital divide tensions. For
example, rural communities tend to be lower income communities,
reducing access to modern hardware and software [1]. And yet,
many accessibility and language features rely on standards that are
supported only in more modern operating systems and hardware.

4.4.2 Session #2: Accessible. Accessible implies that EPL be usable
with any input and output media learners and teachers can perceive
and comprehend, including keyboards, pointers, screens, speech
input, tactile output, and more. Participants affirmed this goal, but
they also questioned how it might be realized pedagogically.

Critique: An EPL should be customizable to accommodate a di-
versity of access needs. The group viewed customizability as a form

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Ko et al.

of accessibility when it came to supporting teaching and learning.
For example, UG1 argued that an accessible EPL must be flexible in
its input-output modalities:

UG1: I think for it to be truly accessible, it has to be
able to have some flexibility to switch between these
like modes of input and modes of output so that it can
actually be customizable by everyone.

Participants elaborated on UG1’s critique for classroom manage-
ment. For example, MST1 viewed customizability as necessary for
pedagogy:

MST1: It’s great that [an EPL] supports lots of dif-
ferent kinds of input and output, but do they work
seamlessly? . . . We have mixed needs within a group
that might be sharing the same computer, so is there
a way to like — you know, I’m working with [MSS2],
and I want to do mouse input, and now we’re pair pro-
gramming, and it’s her turn, and she wants to switch
it over to audio input. Is there methods to do that, that
are reasonable in a short timeframe that students can
make those changes quickly and independently, and
they all kind of seamlessly work together?

Drawing from personal experience with accessibility features,
MST2 suggested that settings be embedded and configured in the
EPL:

MST2: One more thought that I had while you were
talking about [the] teacher shared device conundrum.
You could develop a scripting language that would be
able to set the accessibility settings from a program,
and then you can store that in a profile database. And
so, the student can come in and load their profile.
Boom, and it sets all their accessibilities.

Participants affirmed these points during brainstorming, writ-
ing that there should be “one EPL that can support many needs,”
that an EPL provide “different forms of input + output + sup-
ports/customizations [that] work seamlessly,” and that it ensures
that “changing settings adapt[ing] to each person’s needs can be
done easily” or that “settings can be changed to accommodate all
needs,” and that it features an “easily accessible menu for accessibility
changes.”

The group’s ideas are consistent with leading ideas in accessi-
ble computing about ability-based design [79], which argues that
interfaces should adapt to people’s abilities, rather than having
people adapt to interfaces. However, this surfaces hard engineering
challenges. For example, some of the customization they mention
can be done strictly in the platform, but others might need to be set
in the operating system, or in access technology software. Other
aspects might be constrained by web standards, which only provide
limited configurability, usually to ensure security. There is also the
challenge of identity: being able to adjust configurations based on
which learner is using a platform might work fine when learners
create alone. But, when they work in groups and with share devices,
tensions between mixed abilities and language fluencies may arise,
requiring new forms of fluid customization.

Critique: EPL should be inclusive of neurodivergent learners. For
example, MST1 highlighted that Wordplay’s focus on perceptual and

motor access appeared to neglect the sensory and communication
needs of neurodivergent learners:

MST1: I mean, I think, talking about accepting any
form of input or any form of output. When I read
that, I think it really applies to physical or perceptual
disabilities, but maybe doesn’t get at neurodivergence
as much. That’s less about input and output and more
about, you know, settings while you’re using the pro-
gram or supports.

MST2 appeared to affirm and elaborate on the suggested barrier,
noting that an EPL’s complexity may be overwhelming for learners:

MST2: So, some people just look at something, and
they take it all in at once, and other people process
it in a sequence, and for programming, if you take it
all in at once, you get overwhelmed, you know? And
so, not putting too much stuff out there all at once,
because it overwhelms you, it’s just, you know, it’s
like a piece of artwork. If you look at artwork, you
just take it all in. And I mean, when was the last time
you understood a piece of artwork?

During analysis, the facilitators disagreed on whether MST2 af-
firmed MST1’s suggestion or merely commented on how program-
ming may be cognitively challenging for neurotypical learners.

These critiques surface another tension: creating multiple ways
for learners to engage, including multiple forms of input and out-
put, multiple language supports, and multiple forms of learning
increases complexity, which can be detrimental for students de-
pending on their information processing needs and preferences.
For example, several studies on programming show wide varia-
tion in preferences for and against learning and problem solving
strategies, like tinkering or tutorial-based learning, and that pro-
gramming environments have embedded bias towards or against
these different strategies [11]. There is some evidence that program-
ming environments can be designed to be more universal [12], but
such designs have not also tried to be accessible and multilingual.

4.4.3 Session #3: Democratic + Enduring. This session focused on
two design goals. The first, democratic, was that the development
and maintenance of an EPL be governed by and accountable to
its stakeholders, such as learners and teachers, and especially to
marginalized communities. The second, enduring, was that an EPL
be available for as long as a community needs it but no longer,
recognizing the community and Earth’s capacity to sustain it. Par-
ticipants affirmed both requirements but questioned Wordplay’s
approach to each.

Critique: An EPL should be governed by a diverse community cen-
tering on teachers and students. Participants affirmed the centrality
of marginalized stakeholder input. For example, when discussing
prior experience of giving feedback to software developers, MSS2,
MST1, and MST2 highlighted and questioned individuals’ role in
filtering and amplifying feedback. MST1 began the dialogue by sug-
gesting open-source communities are demographically hegemonic,
suggesting this inhibits democracy. MSS2 then agreed:

MSS2: I think to be democratic you should be, you
know what [MST1] said, it should be a diverse amount
of people that are looking at email, because a lot of

Wordplay: Accessible, Multilingual, Interactive Typography CHI ’25, April 26–May 01, 2025, Yokohama, Japan

people may discount, let’s say, what a kid said, or
especially what a girl said or stuff like that... And I
think that to be democratic, you need to really look at
everything, because the company is not all-knowing.
MST1: And I think that — sometimes I see when there
is a place to make feature requests and stuff, and then
you can upvote the ones that you want, and then
sometimes they’re focused on building the things that
kind of rise to the top as the most popularly requested
things, but that doesn’t always mean that they’re the
most important things. So if there’s only one person,
say, I don’t know, one person with a very specific
perceptual disability. . . But that doesn’t make it less
important.
MST2: I’m wondering about the use of the word
“democratic” and really what that means. Because in a
democracy, it’s mass force rule by the majority, which
is exactly what you’re saying, [MST1]. And so by
definition, democracy would ignore that one person,
because there’s only one of them. So, is that what’s
intended to be used by the word “democratic” here?

MST1 and MST2 also highlighted how the infrastructure and
composition of Wordplay’s community supports fail to center teach-
ers and students from backgrounds other than computer science:

MST1: So, if [GitHub] is where the design decisions
and priorities are being debated and educators or
people trained to be educators aren’t intentionally
brought in, or the community isn’t set up in a way
that is inviting and welcoming, and makes people
want to come in, then I think that that is a problem. . .
So, that could be a way that Wordplay could maybe
become more democratic in the future.
MST2: I would go even farther than that and say that
the way this is designed, I think you have a very heavy
bias. . . Just look at this room, look at the personal
connections and whatnot of how this feedback session
was populated.

This critique was affirmed in participants’ brainstorming. Partici-
pants wrote that an EPL should “make sure that communities have a
diverse amount of opinions regarding feedback,” “listens and looks at
all feedback regardless of the popularity of who made the feedback”,
“takes into consideration underrepresented voices more,” and ensure
that “power is shared with/centered on teachers + students.” Others
suggested strategies, such as having “a diverse, well-represented
group of people to merge pull requests/master pushes” or “a process
in place so that diverse feedback & input can be heard and the con-
versation is not dominated by one or a small group of voices.”

Most of these choices, of course, were explicit goals of the project;
the gaps the group was noticing stemmed from the difficulty of
achieving it. For example, MTS1 encouraged the project to engage
more educators in the design process. But doing so is far from
trivial: in fact, one partner teacher who served a far more language
diverse public school wanted to participate and have his students
participate, but he did not have capacity, even with funding that
we offered to free his time in summer. This mirrors prior work

during the COVID-19 pandemic, which revealed how inequities in
school funding translate into reduced participation by teachers and
students in professional learning, student enrichment, and more
[35].

Critique: EPL should minimize barriers to contributions. Partici-
pants viewed Wordplay’s decision to host its community on GitHub
as inhibiting students’ and teachers’ participation. For example,
MST1 judged that GitHub may present accessibility and usability
barriers:

MST1: But, I do wonder if also, by all of this taking
place on GitHub, if there are perspectives that also get
lost there, whereas [MST2] mentioned, maybe there’s
a place to have more discussion or debate around de-
sign decisions and priorities that could be on a differ-
ent platform that could be less intimidating for teach-
ers, or, say, middle-school students or high-school
students or non-technical people.

Participants also identified GitHub’s design as a tool specialized
for developers as a barrier. UG1, for instance, noted GitHub may
not facilitate the kind of contributions stakeholders want to make:

UG1: . . . [F]or a lot of people, they don’t want to con-
tribute by writing code. They want to contribute by
just saying what they want it [the EPL] to do. I think
having a potential disconnect with GitHub, although
GitHub is an extremely useful tool, it’s a useful tool
for programmers and designers, not necessarily all
users.

Others suggested strategies for mitigating barriers to contri-
bution. For instance, MSS2 and UG1 suggested Wordplay provide
space for feedback on its website. Alternatively, MST2 suggested
that Wordplay host separate communities for learners and educators
and extract actionable input for developers:

MST2: I’m wondering if maybe setting up multiple
spaces that are focused for different user groups rather
than mixing an educator into GitHub, I mean, just
using GitHub is overwhelming. . . Then come up with
an information flow that would pull [feedback] out
so it’s obvious that the user community needs this set
of features, and then take that and move it over to the
tech space...
MST1: Exactly, yeah. You don’t need the technical
expertise to necessarily make all the design decisions
or decide what the priorities are.

These critiques surface key challenges to implementing demo-
cratic community and governance with existing infrastructure for
online open source communities. GitHub, of course, is somewhat in-
escapable from an implementation perspective; addressing it would
mean creating an entirely new infrastructure for collaborative soft-
ware development, centered on teacher and youth participation.
The only effort we know of is GitHub Education, which is pri-
marily designed for teachers using GitHub in higher education CS
classrooms, not for engaging communities of teachers and learn-
ers in open source contributions. Additionally, though Wordplay
does have a Discord server, teachers and students have not joined,

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Ko et al.

perhaps for two key reasons: federal laws that deter children’s par-
ticipation without parental approval and teachers’ limited capacity
to participate in communities, even in professional communities
focused on teaching [73].

Critique: An EPL should be enduring. Participants affirmed the
enduring goal by presenting strategies to fulfill it. For example,
MSS2 suggested that an EPL advertise itself and establish a central-
ized point of funding, similar to the Scratch Foundation:

MSS2: But then also to endure, you need human re-
sources and money. So when the company first starts,
if it was my company, it was my community, I would
try to get the word out that it exists, and the features
that are in it, and what it is... And then, what Scratch
did, probably create a foundation, not for-profit...

Similarly, MST1 insisted that an enduring EPL should refuse
funding requiring compromise on democratic values, drawing from
instances in which low-resource schools collaborate with technol-
ogy companies to secure financing:

MST1: [Educators] have to discount all their knowl-
edge of their students, their community, their school,
their training as an educator to some tech CEO with
no training in education in exchange to get the sup-
plies they need, and that model is so widespread and
so problematic in so many ways... I would love to see
robust, sustainable, enduring funding in place that
does not attach, does not compromise those demo-
cratic values, and does not take that power of decision-
making away from the students, and the teachers, and
the underrepresented communities where it should
be.

The facilitators presented how Wordplay has made technical and
engineering decisions to be robust against failing dependencies or
changing design requirements. However, when asked to evaluate
the decision, participants gave plain, short affirmations or began
commenting on subjects ancillary to the decision, such as bugs. This
may represent a general difficulty in communicating architectural
design choices to stakeholders, as evaluating this choice required
expertise most participants lacked.

4.4.4 Session #4: Transparent. This design goal aims for EPL to
enable learners to develop knowledge and self-efficacy about how
programs execute, possibly by providing clear documentation and
debugging tools. Participants affirmed this requirement but ex-
panded its scope and questioned Wordplay’s approach.

Critique: An EPL should help learners solve it on their own. Par-
ticipants judged that a transparent EPL should provide debugging
tools, clear error messages, or other material to enable learners
to develop self-efficacy and solve errors independently, allowing
instructors to help other students. For instance, when discussing
the features a transparent EPL should have, UG1 stressed that the
platform’s debugging tools should not resolve errors for learners:

UG1: The error messages should be descriptive instead
of obtusely technical, and they should also preferably
give you some kind of course of action or recommend

some kind of course of action for you to fix the er-
ror. I know IDEs like Visual Studio Code can do that
sometimes, but it’s a tiny, tiny button under the error
message that says “resolve automatically”, and it does
it for you.

For MSS2 and MST1, it was essential that descriptive errors or
debugging facilities enabled a learner to fix errors independently.
When discussing debugging tools early in the focus group, MSS2
described how they might free teachers to help other students:

MSS2: Usually I need a teacher sometimes, which is
why, personally, I think a tool would be really good
just to help you figure it out, because I think also a
lot of people I also know freak out when they don’t
understand something. And I think a tool would also
be maybe easier for teachers, because then they could
focus on problems that are a lot bigger. If it’s a big
classroom, like little things and the student just can’t
find it or something like that because there’s a lot of
code.

MST1 affirmed MSS2’s critique, elaborating that teachers are
additionally burdened with scaffolding students’ understanding of
errors:

MST1: And also it’s not like I’m just running around
the class being like, “Oh! This is your problem, do
this. This is your problem. Do this.” If I’m sitting
with [MSS3], even if I know what [MSS3]’s bug is,
there’s going to be a whole process that I’m going to
go through with [MSS3] to help him find it himself
and understand why.

Additionally, the group suggested Wordplay’s debugging tools
may be insufficient for fostering self-efficacy. For example, MST1
judged that EPLs should authentically embed debugging tools into
curricula to prepare students and instructors:

MST1: And I’m not talking about just, “Here’s a 1-page
PDF for the teacher on all the debugging tools,” and
I’m going to stand up there and be very boring, walk
through them all with the students... That is the kind
of thing that needs to just be authentically integrated
into the curriculum so that teachers don’t find out a
year later that there are debugging tools that they did
not know were there.

Participants agreed in their brainstorms, writing that EPL should
provide “curriculum support for teaching debugging processes and
available tools,” “debugging tools that give more than vague error
messages but less than automatically fixing it,” “descriptive error
messages that give a course of action to resolve the error,” and “a tool
that can help students find their problems and guide them to the path
to fixing and understanding [it].”

While the group viewed the many innovations in Wordplay’s
debugging support as important and necessary, they did not view
them as good enough for transparency goals. They viewed curric-
ular integrations with these innovations and an explicit focus on
debugging skills as central to achieving transparency. This mirrors
a longstanding gap in computing education, where debugging is
viewed as an essential skill, but rarely taught [43].

Wordplay: Accessible, Multilingual, Interactive Typography CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Critique: An EPL should let learners “see under the hood”. Par-
ticipants believed that a transparent EPL should enable learners
to discover program meaning at their own pace and understand
platform semantics by allowing learners to examine how platform-
provided tools or functions work internally. For example, when
asked to consider moments in which EPL confused them, MSS2
suggested how simple interfaces, though useful for initial learning,
may inhibit or complicate students’ learning:

MSS2: I wish, I mean, the way that the [EPL platform]
worked was fine, I guess, because I guess it was sim-
ple... But I wish that there was some way that we
could figure out why [EPL platform] worked, if we
wanted to. If we had that option, that would be amaz-
ing, because then I think a lot of problems wouldn’t
have happened — that it wouldn’t have happened that
way. If you’re going to make something simpler, at
least have a way for students to find out why and how
it actually works, how that is being simplified, and
stuff like that.

Later in the session, MST2 judged that “seeing under the hood”
requires that learners not have to examine the source code of the
EPL, appearing to suggest this information instead be provided in
the platform:

MST2: So, if [MSS2] is doing programming here, after
[her] artificial intelligence experience, she looks at
that time thing. Can she open the hood and look inside
and see how it works?

SF1 then explained that a user can access Wordplay’s documen-
tation within the platform but must examine its source code to
understand how the Time stream works. MST2 judged that this is
insufficient:

MST2: I guess the reason I brought that up is because
a lot of people were talking about being able to open
the hood and look underneath as a design choice, and
maybe that falls a little short of that.

Participants agreed, writing that an ELP should be designed such
that “students can look ‘under the hood’ as far as they want to,” can
“zoom into specific parts so students can see what is happening at
inner levels,” and have “the option if some parts of the program made
simple to see how those simple look.”

These critiques surfaced an interesting tension: the group under-
stood that Wordplay’s source was available and how it’s debugging
tools could be used to learn how a program worked, but they also
felt that Wordplay’s source, written at a lower level of abstraction
than the interface and level of complexity likely intractable for
learners, could not readily answer questions about the platform’s
behavior, reducing transparency. This suggests a need for interfaces
like those in prior work, that answer why and why not questions
in user interfaces but with explanations that are at the level of
abstraction of the interface, not lower [51].

Critique: An EPL should describe “why” a program behaves as it
does. MST2 expressed this critique and stated that object-oriented
PL helped describe the reasons for program statements. When SF1
asked MST2 to elaborate, MST2 explained object-oriented programs
provided context:

MST2: Because it gives contextual understanding to
what you’re doing. Because computers do things to
relate to the real world, to do things, you know? Even
if it’s an abstract thing like math, you can take and put
a graph object in there and understand the different
representations of, not even physical things, but just
conceptual areas of application for software.

By adopting a functional paradigm, MST2 later suggests, Word-
play neglects learners who may struggle to relate statements to
programs’ goals:

MST2: My comment last week about the functional
programming nature: I guess functional programming
to me is — I’m not a real “math” kind of person. So, I
don’t see the world through that viewpoint very well.
And, so, it’s hard for me to understand the context
of what this line is building up and how it fits into
everything else.

While other participants affirmed MST2’s critique, it was not re-
visited in the remaining discussion, and only 1 sticky note affirmed
it. Further, for UG1, an object-oriented paradigm would not always
provide contextual understanding, suggesting that the critique may
need to be accompanied by other paradigms or features:

UG1: [Object-orientation] makes sense from a concep-
tual level when you’re using it. But, I think from the
implementation, like the implementation details, you
still have the same problem where it’s like, “But how?
How is the object implemented?” Because, at some
point, you’re going to have to reach that bottom level
of abstraction and use. . . I don’t want to say math, but
kind of base features, base language features.

These critiques were fascinating in that functional styles are in-
tended to be more explainable than imperative and object-oriented
styles because everything that the program computes is contained
in one place. Some in the group viewed the functional paradigm as
lacking other forms of explainability, such as the conceptual align-
ment between objects in the world and objects in object-oriented
programming. This tension also recalls work from linguistic an-
thropology, which link language and identity [10], suggesting that
Wordplay’s reliance on symbolic keywords signaled a connection
to mathematics, which some in the group felt would necessarily be
less “explainable.”

4.4.5 Session #5: Cultural + Liberatory. The final session focused
on two design goals: cultural, ensuring EPLs respond to, sustain,
and center learners’ culture, values, and identities in how they are
designed, explained, and framed, and resist cultural and linguis-
tic hegemony; and liberatory, ensuring EPLs empower learners
to reshape themselves and the world. Participants affirmed both
requirements but judged that Wordplay’s decisions conflict with
cultural.

Critique: An EPL should be multicultural. Participants agreed
that EPL should be multicultural, insisting that EPLs embed mul-
ticultural or culturally responsive content in its tutorials, docu-
mentation, or curricular support. This was rooted in participants’

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Ko et al.

multicultural and instructional experiences. For MSS2, cultural in-
clusion signaled acceptance and helped broaden participation in
computing:

MSS2: With a lot of languages, some people may
even be more drawn towards the website just because
they’re trying to include that person, no matter how
small the minority is that speaks that language. Kind
of adding on, I know that the Khan Academy also,
when they have questions, they use names from dif-
ferent cultures all around the world, which seems
really amazing.

For MST1, however, multiculturalism needed to be accompanied
by curricular support for computing teachers, as many lack training
in cultural responsiveness or may struggle to take advantage of
cultural EPLs:

MST1: My background is more strong in education
than it is in computer science, and I still felt like,
“Okay, I think Wordplay is really cool. I want to use
it with my students, but I don’t really know how to
start.” ... You just need something as a teacher to go
on. So my platform would include that kind of stuff
for teachers to have a starting place.

Participants agreed in brainstorms, writing that EPLs should
“provide multi-cultural [sic] examples using diverse speakers, environ-
ments, and application[s]”, include “curriculum + training resources
for teachers (in both culturally responsive teaching + using the CS
tool)”, “center program on cultural ideas and languages based on
scenarios”, and be “representing different cultures.”

These critiques mirrored critiques of Wordplay’s debugging sup-
port: it was taken as a given that support for multiple languages at
once, in code and output, was inherently good, but such support
was also viewed as insufficient without curricular efforts to reap
the benefits of these innovations. As with debugging, the group
pointed to the need for robust curriculum and pedagogy support
to make use of those multilingual features, reinforcing prior work
on multilingual translanguaging in computing classrooms [75].

Critique: An EPL should be multilingual. Participants agreed that
EPL should be multilingual, enabling learners to write and translate
programs in many languages while preserving culture- or language-
specific ideas. For example, when discussing the importance of
language inclusion in classrooms, MSS1 judged that a multilingual
EPL would enable non-English learners to focus on writing rather
than translating code:

MSS1: ... [T]hey already have a passion for technology,
and then we mainly use text-based coding, but they
can’t understand exactly what they’re coding. So, if
their language was included, it would be, yes, very
convenient, so they wouldn’t have to struggle so much
when it came to just translating instead of just writing
the code.

While participants supported Wordplay’s overall commitment
to multilingual code, they also identified how Wordplay’s design
choices conflicted with this critique. When discussing Wordplay’s
choice not to use natural language keywords, for example, MSS2

highlighted Wordplay’s use of another language’s symbols in its
syntax and how it may confuse learners:

MSS2: It’s a crazy old language, but “T” and the up-
side down “T” are actually letters, like vowels, so that
might be slightly confusing.

Similarly, when discussing Wordplay’s choice to not use key-
words and enable translation, MST2, and MST1 suggested Word-
play’s symbol selection and dependence on multilingualism con-
tinue to privilege English:

MST2: Are those [symbols] universal in all languages?
Probably not. Do those translate as well? The function
[ƒ] and the theta [𝜃], and whatever the other ones are?
... I was thinking this is used for your function symbol,
and that’s a well-known Western symbol. So, doesn’t
that provide a little bit of privilege? The choice of
that?

Shortly after, MST1 reaffirmed that Wordplay may continue to
privilege English:

MST1: I think there are ways that it still privileges stu-
dents who know English as well, because to be able to
share the full expression of their project with a teacher
or peers who do not speak their native language, they
have to be able to provide the translations.

Participants concurred in brainstorms, writing that an EPL
should “allow the student to work in their own language/cultural
perspective [and] not just translation of words”, include “supports
for teachers with classes of students of many linguistic backgrounds”,
provide “features for collaboration in multiple languages [and] not
coding in isolation”, “use as many languages as needed”, “be able to
explain Western ideas”, include “multiple languages[,] even ones that
aren’t spoken by very many people”, and include “language-specific
documentation (as in translatable documentation).”

The group’s debates about English colonization mirror the ac-
knowledged complexities of translanguaging as decolonization [77]:
embracing and affirming multiple languages is necessary but not
sufficient for any project of decolonization; English is still privi-
leged in the world, and Wordplay cannot escape that. Additionally,
trying to overcome that privilege comes with costs: just as multilin-
gual classrooms can involve more effort, confusion, and tensions
between language learning and subject learning [71], multilingual
EPLs may impose similar costs.

Critique: An EPL should center learners as decision-makers. Par-
ticipants agreed that a liberatory EPL should center students as
current and future decision-makers in design, social, and political
contexts. For example, when asked to consider the significance of
computing, MST1 highlighted the role learners may play as citizens:

MST1: So, even the students who, let’s say, I can see
into the future, and I know that these students are spe-
cific students are never going to do computer science
after my class, that’s fine. ... But, they’re still going to
be citizens, they’re still going to be voting. They’re
still going to be participating in society. They’re still
going to be impacted by technology and so I think
part of it, too, is exploring why these things are, why
this change is happening, why these things are being

Wordplay: Accessible, Multilingual, Interactive Typography CHI ’25, April 26–May 01, 2025, Yokohama, Japan

created, questioning “Should these things be created
at all?”

In the same discussion, MSS2 highlighted computing’s ubiquity
and the necessity for learners to be informed decision-makers:

MSS2: I think that computer programming is going
into everything that we do. I think, actually, it’s al-
ready in a lot of what we do, a lot of the jobs that
are already there, like doctors, lawyers. It’s gonna
be implemented almost everywhere... So I feel like
everyone needs to know what it is and know, like
[MST2] said and like [MST1] said, so that they can
make informed decisions, and also that they know
how it works.

When discussing what features a liberatory EPL should have,
MST1 insisted that the accompanying platform or curriculum center
learners’ role as decision-makers in program design:

MST1: I think for me, that’s a lot of platforms or cur-
riculums are like, “Everyone is going to make this
exact same program, and whoever can replicate it the
most exactly as the computer gets the A,” versus cen-
tering the student. I’m like, the way it’s set up often
communicates to the student that the computer is in
charge, the computer already knows the right way to
do it, and you’ve got to prove that you can do it as well
as the computer, and that’s what computer science
means, versus tools that really communicate that, “All
of this whole language, is totally useless without you,
the human who is making the decisions.”

In brainstorms, participants wrote that EPL should help learners
in “selecting the tools, approaches, [and] project based on purpose
(the ‘why’ comes before the doing),” center “the students as the driver
+ decision maker[,] not the tool”, “teach all implications of coding
in many jobs,” and acknowledge “the social impact part of code
and making sure it exists and is explained to kids in the program.”
Others wrote that Wordplay should help learners imagine novel
programs, such as by “includ[ing] a way for learners to incorporate
their imagination into the process of envisioning and creating their
product” or including “imaginable example projects that illustrate
the power of programming.”

The group’s final critiques were more a global critique of EPLs as
they are used in teaching: they envisioned a future in which learn-
ers have agency over their learning, agency over what computer
science means, and agency over what they express and how they
are assessed on it. These were less critiques of Wordplay itself, but
more imagined futures in which it and other EPLs might be used
in liberatory ways.

5 Discussion
We return to our two questions:

RQ1 How might EPLs be both multilingual and accessible? Our
attempt to design such an EPL revealed that designing an accessible,
multilingual EPL requires not just tool support, but coordinated
choices across syntax, semantics, and output that designing for
either in isolation does not. Wordplay offers one novel approach,

using symbolic keywords; multilingual names, text, output, doc-
umentation; multimodal and localized editors and tools; precise,
reversible control over program evaluation; and a functional, reac-
tive style that not only enables these features, but also potentially
enables better descriptions of code and output. In our design pro-
cess, we also found many alternatives, especially around syntax,
language paradigm, and user interface design, each with tradeoffs.

RQ2 What challenges arise in designing at this intersection? The
choices above have numerous tradeoffs. Youth and teachers affirmed
many of them — particularly being web-based, screen-readable,
partly usable offline, and uniquely multilingual — but also noted
several gaps as they imagined ideal futures. Summarized earlier
in Table 2, their critiques ranged widely, including gaps in offline
access, device support, neurodiversity needs for information or-
ganization and presentation, funding, content, collaboration and
teaching supports, and most importantly, youth’s ability to con-
tribute to the project in ways that accounted for their positionality
and prior knowledge. All of the critiques surfaced — sometimes
explicitly in the focus group, sometimes implicitly as the authors
examined the group’s critiques — were less about tensions between
accessibility and language and more about tensions about complex-
ity, infrastructure, governance, and funding that achieving both
might require. For example:

• Youth and teachers wondered if an EPL be sufficiently cus-
tomizable for language and access needs without being over-
whelming teachers and students with settings, modes, and
other interface complexities that differentiate its use.

• They wondered if an EPL could be governed by diverse youth
and teacher voices, but in a way that could reconcile the
many unknown conflicts between languages, access needs,
and their intersections.

• They wondered about the tradeoffs of imperative and func-
tional styles, and their comprehensibility, both from a lan-
guage and accessibility perspective.

• They wondered whether aspiring for a universal design
might make space for everyone, but in the process, might
make Wordplay harder for everyone to use.

These many tensions emerging from our design and evaluation
challenge the feasibility of universal design [32]. Future work might
find through further inquiry that they are reconcilable — but our
findings show that even perceived tradeoffs can be a barrier to
adoption, especially relative to the status quo.

Our findings also reinforce the importance of accessibility and
language inclusion through EPL ecosystems. A teacher might, for
example, have some youth use Wordplay, and others use Quorum or
Scratch, depending on their particular goals and language and access
needs. This already happens within the limits of teachers’ capacity
to support multiple platforms, but future work might explore how
to support teachers in teaching across EPLs to meet diverse student
needs, or even how to make EPL more malleable, and therefore
responsive to youth and teacher needs.

The significant cost of creating Wordplay suggests the impor-
tance of focusing the limited capacity of the research community
on what parts of the accessible, multilingual EPL design space to
explore. Our case study suggests some points worth prioritizing,
including imperative EPLs that embrace natural language grammar

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Ko et al.

variations, like Hedy [29], but are also rigorously accessible, and im-
perative EPLs that are accessible, like Quorum [69], but rigorously
multilingual. Such explorations might clarify the tradeoffs of im-
perative styles accessibility, language inclusion, and transparency.

These findings suggest that not only is jointly designing accessi-
ble, multilingual EPL rife with design tensions but also that these
tensions are inseparable from other considerations. Designing EPL
for these qualities means accounting for the digital divide, for cul-
ture, for the ways that teaching and curricula must be integrated
with tools, and for youth desire for agency in their learning. EPLs
are not necessarily central to all of these concerns, but they are
part of them, and ignoring them in EPL design only contributes
to the friction found in ability diverse [4] and language diverse
classrooms [75].

While much work is ahead, our findings also suggest that
progress is possible, even if incremental. And our results suggest
many ways forward to disentangle these tensions between design,
resources, and diversity. Having many EPLs striving for different
dimensions may help. Imagining open source communities, infras-
tructure, and governance models designed explicitly for teachers
and learners may help reduce barriers to representation in gover-
nance. Identifying public resources to sustain EPLs that are overseen
by representative communities of youth and teachers may relieve
tensions around platform needs and endurance. And further ex-
ploring the design space of EPLs that strive for different notions of
justice may reveal interaction paradigms that are more universal.

Whatever these future works teach us, this present work shows
that teachers and youth broadly concur with a justice-centered
visions of EPLs and can play a vital role in shaping innovations that
help realize them. We hope this case study and its findings are one
step in helping imagine those more equitable platforms, playing
just one part in addressing the inequities in efforts to broaden
participation in computing globally.

Acknowledgments
This material is based upon work supported by the National Science
Foundation under Grant No. 2318257, 2137834, 2137312, 2100296,
2122950, and 2031265, as well as unrestricted gifts from Microsoft,
Google, Adobe, and the citizens of Washington state in the United
States of America. We thank all of the focus group participants
for their time and thoughtfulness, the hundreds of contributors to
the Wordplay design, implementation, and localizations, and the
University of Washington for it’s support of the first author’s paid
sabbatical leave, which supported this work.

References
[1] Arfa Afzal, Saima Khan, Sana Daud, Zahoor Ahmad, and Ayesha Butt. 2023.

Addressing the digital divide: Access and use of technology in education. Journal
of Social Sciences Review 3, 2 (2023), 883–895.

[2] Suad Alaofi and Seán Russell. 2022. A validated computer terminology test for
predicting non-native english-speaking CS1 students’ academic performance. In
Proceedings of the 24th Australasian Computing Education Conference. 133–142.

[3] Hend Alrasheed, Amjad Alnashwan, and Ruwayda Alshowiman. 2021. Impact of
English proficiency on academic performance of software engineering students.
In Proceedings of the 2021 4th International Conference on Data Storage and Data
Engineering. 107–111.

[4] Catherine M Baker, Cynthia L Bennett, and Richard E Ladner. 2019. Educational
experiences of blind programmers. In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education. 759–765.

[5] Catherine M Baker, Lauren R Milne, and Richard E Ladner. 2015. Structjumper: A
tool to help blind programmers navigate and understand the structure of code. In
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems. 3043–3052.

[6] Brett A Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J Bouvier,
Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-Michael
Osera, et al. 2019. Compiler error messages considered unhelpful: The landscape
of text-based programming error message research. Proceedings of the working
group reports on innovation and technology in computer science education (2019),
177–210.

[7] Andrew Begel and Susan L Graham. 2006. An assessment of a speech-based
programming environment. In Visual Languages and Human-Centric Computing
(VL/HCC’06). IEEE, 116–120.

[8] Alan Blackwell and Thomas Green. 2003. Notational systems–the cognitive
dimensions of notations framework. HCI models, theories, and frameworks: toward
an interdisciplinary science. Morgan Kaufmann 234 (2003).

[9] Leanne Bowler, Karen Wang, Irene Lopatovska, and Mark Rosin. 2021. The
meaning of “Participation” in co-design with children and youth: relationships,
roles, and interactions. Proceedings of the Association for Information Science and
Technology 58, 1 (2021), 13–24.

[10] Mary Bucholtz and Kira Hall. 2004. Language and identity. A companion to
linguistic anthropology 1 (2004), 369–394.

[11] Margaret Burnett, Scott D Fleming, Shamsi Iqbal, Gina Venolia, Vidya Rajaram,
Umer Farooq, Valentina Grigoreanu, and Mary Czerwinski. 2010. Gender dif-
ferences and programming environments: across programming populations. In
Proceedings of the 2010 ACM-IEEE international symposium on empirical software
engineering and measurement. 1–10.

[12] Margaret M Burnett, Laura Beckwith, Susan Wiedenbeck, Scott D Fleming, Jill
Cao, Thomas H Park, Valentina Grigoreanu, and Kyle Rector. 2011. Gender
pluralism in problem-solving software. Interacting with computers 23, 5 (2011),
450–460.

[13] John M Carroll and Mary Beth Rosson. 1987. Paradox of the active user. In
Interfacing thought: Cognitive aspects of human-computer interaction. 80–111.

[14] Steven Clarke. 2001. Evaluating a new programming language.. In PPIG, Vol. 13.
275–289.

[15] Michael Coblenz, Gauri Kambhatla, Paulette Koronkevich, Jenna L Wise, Celeste
Barnaby, Joshua Sunshine, Jonathan Aldrich, and Brad A Myers. 2021. PLIERS:
a process that integrates user-centered methods into programming language
design. ACM Transactions on Computer-Human Interaction (TOCHI) 28, 4 (2021),
1–53.

[16] Sasha Costanza-Chock. 2020. Design justice: Community-led practices to build the
worlds we need. The MIT Press.

[17] Richard Coyne. 2005. Wicked problems revisited. Design studies 26, 1 (2005),
5–17.

[18] Nigel Cross. 1982. Designerly ways of knowinhammer. Design studies 3, 4 (1982),
221–227.

[19] Evan Czaplicki and Stephen Chong. 2013. Asynchronous functional reactive
programming for GUIs. ACM SIGPLAN Notices 48, 6 (2013), 411–422.

[20] Sayamindu Dasgupta and Benjamin Mako Hill. 2017. Learning to code in localized
programming languages. In ACM Learning@Scale. 33–39.

[21] Md Ehtesham-Ul-Haque, Syed Mostofa Monsur, and Syed Masum Billah. 2022.
Grid-coding: An accessible, efficient, and structured coding paradigm for blind
and low-vision programmers. In Proceedings of the 35th Annual ACM Symposium
on User Interface Software and Technology. 1–21.

[22] Bishnu Goswami and Sarmila Pal. 2022. Introduction of two new programming
tools in Bengali and measurement of their reception among high-school students
in Purba Bardhaman, India with the prototypic inclusion of a vector-biology
module. Education and Information Technologies (2022), 1–23.

[23] Thomas R. G. Green and Marian Petre. 1996. Usability analysis of visual pro-
gramming environments: a ‘cognitive dimensions’ framework. Journal of Visual
Languages & Computing 7, 2 (1996), 131–174.

[24] Carmen Nayeli Guzman, Anne Xu, and Adalbert Gerald Soosai Raj. 2021. Ex-
periences of Non-Native English Speakers Learning Computer Science in a US
University. In Proceedings of the 52nd ACM Technical Symposium on Computer
Science Education. 633–639.

[25] Alex Hadwen-Bennett, Sue Sentance, and Cecily Morrison. 2018. Making pro-
gramming accessible to learners with visual impairments: a literature review.
International Journal of Computer Science Education in Schools 2, 2 (2018), 3–13.

[26] David Hammer and Leema K Berland. 2014. Confusing claims for data: A critique
of common practices for presenting qualitative research on learning. Journal of
the Learning Sciences 23, 1 (2014), 37–46.

[27] Stefan Hanenberg, Sebastian Kleinschmager, Romain Robbes, Éric Tanter, and
Andreas Stefik. 2014. An empirical study on the impact of static typing on
software maintainability. Empirical Software Engineering 19, 5 (2014), 1335–1382.

[28] Christina N Harrington, Aashaka Desai, Aaleyah Lewis, Sanika Moharana,
Anne Spencer Ross, and Jennifer Mankoff. 2023. Working at the intersection
of race, disability and accessibility. In proceedings of the 25th International ACM

Wordplay: Accessible, Multilingual, Interactive Typography CHI ’25, April 26–May 01, 2025, Yokohama, Japan

SIGACCESS Conference on Computers and Accessibility. 1–18.
[29] Felienne Hermans. 2020. Hedy: a gradual language for programming education.

In Proceedings of the 2020 ACM conference on international computing education
research. 259–270.

[30] Earl W Huff Jr, Kwajo Boateng, Makayla Moster, Paige Rodeghero, and Julian
Brinkley. 2021. Exploring the perspectives of teachers of the visually impaired
regarding accessible K-12 computing education. In Proceedings of the 52nd acm
technical symposium on computer science education. 156–162.

[31] Véronique Irwin, Ke Wang, Julie Jung, Tabitha Tezil, Sara Alhassani, Alison
Filbey, Rita Dilig, and Farrah Bullock Mann. 2024. Report on the Condition of
Education 2024. NCES 2024-144. National Center for Education Statistics (2024).

[32] Maya Israel, Latoya Chandler, Alexis Cobo, and Lauren Weisberg. 2023. Increasing
access, participation and inclusion within k–12 cs education through universal
design for learning and high leverage practices. Computer Science Education:
Perspectives on Teaching and Learning in School 115 (2023).

[33] Maya Israel, Brittany Kester, Jessica J Williams, and Meg J Ray. 2022. Equity
and inclusion through UDL in K-6 computer science education: Perspectives of
teachers and instructional coaches. ACM Transactions on Computing Education
22, 3 (2022), 1–22.

[34] Sharin Rawhiya Jacob, Jonathan Montoya, Ha Nguyen, Debra Richardson, and
Mark Warschauer. 2022. Examining the what, why, and how of multilingual stu-
dent identity development in computer science. ACM Transactions on Computing
Education (TOCE) 22, 3 (2022), 1–33.

[35] Ute Kaden. 2020. COVID-19 school closure-related changes to the professional
life of a K–12 teacher. Education sciences 10, 6 (2020), 165.

[36] Yasmin B Kafai and Quinn Burke. 2014. Connected code: Why children need to
learn programming. MIT press.

[37] Shaun K Kane, Varsha Koushik, and Annika Muehlbradt. 2018. Bonk: accessi-
ble programming for accessible audio games. In Proceedings of the 17th ACM
conference on interaction design and children. 132–142.

[38] Caitlin Kelleher and Randy Pausch. 2005. Lowering the barriers to program-
ming: A taxonomy of programming environments and languages for novice
programmers. ACM computing surveys (CSUR) 37, 2 (2005), 83–137.

[39] Taj Muhammad Khan and Syed Waqar Nabi. 2021. English versus native language
for higher education in computer science: A pilot study. In Proceedings of the 21st
Koli Calling International Conference on Computing Education Research. 1–5.

[40] Amy J Ko, Brad A Myers, and Htet Htet Aung. 2004. Six learning barriers in end-
user programming systems. In 2004 IEEE Symposium on Visual Languages-Human
Centric Computing. IEEE, 199–206.

[41] Michael J Lee and Amy J Ko. 2011. Personifying programming tool feedback im-
proves novice programmers’ learning. In Proceedings of the seventh international
workshop on Computing education research. 109–116.

[42] Yinchen Lei and Meghan Allen. 2022. English language learners in computer
science education: A scoping review. In Proceedings of the 53rd ACM Technical
Symposium on Computer Science Education-Volume 1. 57–63.

[43] Chen Li, Emily Chan, Paul Denny, Andrew Luxton-Reilly, and Ewan Tempero.
2019. Towards a framework for teaching debugging. In Proceedings of the Twenty-
First Australasian Computing Education Conference. 79–86.

[44] Yuhan Lin and David Weintrop. 2021. The landscape of Block-based programming:
Characteristics of block-based environments and how they support the transition
to text-based programming. Journal of Computer Languages 67 (2021), 101075.

[45] Kelly Mack, Emma McDonnell, Dhruv Jain, Lucy Lu Wang, Jon E. Froehlich,
and Leah Findlater. 2021. What do we mean by “accessibility research”? A
literature survey of accessibility papers in CHI and ASSETS from 1994 to 2019. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1–18.

[46] Raina Mason and Carolyn Seton. 2021. Leveling the playing field for interna-
tional students in IT courses. In Proceedings of the 23rd Australasian Computing
Education Conference. 138–146.

[47] Linda McIver and Damian Conway. 1996. Seven deadly sins of introductory pro-
gramming language design. In Proceedings 1996 International Conference Software
Engineering: Education and Practice. IEEE, 309–316.

[48] Lauren R Milne. 2017. Blocks4All: making block programming languages acces-
sible for blind children. ACM SIGACCESS Accessibility and Computing 117 (2017),
26–29.

[49] Aboubakar Mountapmbeme, Obianuju Okafor, and Stephanie Ludi. 2022. Address-
ing accessibility barriers in programming for people with visual impairments: A
literature review. ACM Transactions on Accessible Computing (TACCESS) 15, 1
(2022), 1–26.

[50] Salikoko S Mufwene. 2010. Globalization, global English, and world English (es):
Myths and facts. The handbook of language and globalization (2010), 29–55.

[51] Brad A Myers, David A Weitzman, Amy J Ko, and Duen H Chau. 2006. Answering
why and why not questions in user interfaces. In Proceedings of the SIGCHI
conference on Human Factors in computing systems. 397–406.

[52] Oluwakemi Ola. 2023. Using Near-Peer Interviews to Support English Language
Learners. In Proceedings of the 54th ACM Technical Symposium on Computer
Science Education V. 1. 952–958.

[53] Carla Paciotto and Gloria A Delany-Barmann. 2024. Multilingual Educators in
Superdiverse Rural Schools: Placing Administrators and Teachers’ Cultural and
Linguistic Wealth at the Center of Rural Education. The Rural Educator 45, 4
(2024), 62–76.

[54] John F Pane, Brad A Myers, et al. 2001. Studying the language and structure in
non-programmers’ solutions to programming problems. International Journal of
Human-Computer Studies 54, 2 (2001), 237–264.

[55] William Christopher Payne, Eric Xu, Izabella Rodrigues, Matthew Kaney, Made-
line Mau, and Amy Hurst. 2024. " Different and Boundary-Pushing:" How Blind
and Low Vision Youth Live Code Together. In Proceedings of the 16th Conference
on Creativity & Cognition. 627–637.

[56] Piumi Perera and Supunmali Ahangama. 2021. SimplyTrans: A Simplified Ap-
proach to Sinhala-Based Coding and Introductory Programming Language Local-
ization. In 2021 IEEE 16th International Conference on Industrial and Information
Systems (ICIIS). IEEE, 318–323.

[57] Chris Piech and Sami Abu-El-Haija. 2020. Human languages in source code:
Auto-translation for localized instruction. In Proceedings of the Seventh ACM
Conference on Learning@ Scale. 167–174.

[58] Ana Cristina Pires, Filipa Rocha, Antonio José de Barros Neto, Hugo Simão, Hugo
Nicolau, and Tiago Guerreiro. 2020. Exploring accessible programming with
educators and visually impaired children. In Proceedings of the Interaction Design
and Children Conference. 148–160.

[59] Vesna Popovic. 2004. Expertise development in product design—strategic and
domain-specific knowledge connections. Design Studies 25, 5 (2004), 527–545.

[60] Venkatesh Potluri, John Thompson, James Devine, Bongshin Lee, Nora Morsi,
Peli De Halleux, Steve Hodges, and Jennifer Mankoff. 2022. Psst: Enabling blind
or visually impaired developers to author sonifications of streaming sensor data.
In Proceedings of the 35th Annual ACM Symposium on User Interface Software and
Technology. 1–13.

[61] Venkatesh Potluri, Priyan Vaithilingam, Suresh Iyengar, Y Vidya, Manohar Swami-
nathan, and Gopal Srinivasa. 2018. Codetalk: Improving programming environ-
ment accessibility for visually impaired developers. In Proceedings of the 2018 chi
conference on human factors in computing systems. 1–11.

[62] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, et al. 2009. Scratch: programming for all. Commun. ACM 52, 11 (2009),
60–67.

[63] Rafi Santo, Leigh Ann DeLyser, June Ahn, Anthony Pellicone, Julia Aguiar, and
Stephanie Wortel-London. 2019. Equity in the who, how and what of computer
science education: K12 school district conceptualizations of equity in "cs for all"
initiatives. In 2019 research on equity and sustained participation in engineering,
computing, and technology (RESPECT). IEEE, 1–8.

[64] Emmanuel Schanzer, Sina Bahram, and Shriram Krishnamurthi. 2019. Accessible
AST-based programming for visually-impaired programmers. In Proceedings of
the 50th ACM Technical Symposium on Computer Science Education. 773–779.

[65] Emmanuel Schanzer, Kathi Fisler, Shriram Krishnamurthi, and Matthias Felleisen.
2015. Transferring skills at solving word problems from computing to alge-
bra through Bootstrap. In Proceedings of the 46th ACM Technical symposium on
computer science education. 616–621.

[66] Geovana Silva, Giovanni Santos, Edna Dias Canedo, Vandor Rissoli, Bruno Pra-
ciano, and Guilherme Andrade. 2020. Impact of calango language in an in-
troductory computer programming course. In 2020 IEEE Frontiers in Education
Conference (FIE). IEEE, 1–9.

[67] Andreas Stefik, Willliam Allee, Gabriel Contreras, Timothy Kluthe, Alex Hoff-
man, Brianna Blaser, and Richard Ladner. 2024. Accessible to whom? Bringing
accessibility to blocks. In Proceedings of the 55th ACM Technical Symposium on
Computer Science Education V. 1. 1286–1292.

[68] Andreas Stefik and Stefan Hanenberg. 2014. The programming language wars:
Questions and responsibilities for the programming language community. In Pro-
ceedings of the 2014 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming & Software. 283–299.

[69] Andreas Stefik and Richard Ladner. 2017. The quorum programming language.
In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education. 641–641.

[70] Alaaeddin Swidan and Felienne Hermans. 2023. A Framework for the Local-
ization of Programming Languages. In Proceedings of the 2023 ACM SIGPLAN
International Symposium on SPLASH-E. 13–25.

[71] Anouk Ticheloven, Elma Blom, Paul Leseman, and Sarah McMonagle. 2021.
Translanguaging challenges in multilingual classrooms: scholar, teacher and
student perspectives. International Journal of Multilingualism 18, 3 (2021), 491–
514.

[72] Stefan Trausan-Matu and James D Slotta. 2021. Artifact analysis. International
Handbook of Computer-Supported Collaborative Learning (2021), 551–567.

[73] Katrien Vangrieken, Chloé Meredith, Tlalit Packer, and Eva Kyndt. 2017. Teacher
communities as a context for professional development: A systematic review.
Teaching and teacher education 61 (2017), 47–59.

[74] Sara Vogel. 2021. “Los Programadores Debieron Pensarse Como Dos Veces”: Ex-
ploring the intersections of language, power, and technology with bi/multilingual

CHI ’25, April 26–May 01, 2025, Yokohama, Japan Ko et al.

students. ACM Transactions on Computing Education (TOCE) 21, 4 (2021), 1–25.
[75] Sara Vogel, Christopher Hoadley, Ana Rebeca Castillo, and Laura Ascenzi-Moreno.

2020. Languages, literacies and literate programming: can we use the latest
theories on how bilingual people learn to help us teach computational literacies?
Computer Science Education 30, 4 (2020), 420–443.

[76] Zhanyong Wan and Paul Hudak. 2000. Functional reactive programming from
first principles. In Proceedings of the ACM SIGPLAN 2000 conference on Program-
ming language design and implementation. 242–252.

[77] Li Wei and Ofelia García. 2022. Not a first language but one repertoire: Translan-
guaging as a decolonizing project. RELC journal 53, 2 (2022), 313–324.

[78] David Weintrop and Uri Wilensky. 2017. Between a block and a typeface: De-
signing and evaluating hybrid programming environments. In Proceedings of the
2017 conference on interaction design and children. 183–192.

[79] Jacob O Wobbrock, Shaun K Kane, Krzysztof Z Gajos, Susumu Harada, and Jon
Froehlich. 2011. Ability-based design: Concept, principles and examples. ACM
Transactions on Accessible Computing (TACCESS) 3, 3 (2011), 1–27.

	Abstract
	1 Introduction
	2 Background
	3 Wordplay: Process, Design, and Implementation
	3.1 Design Process
	3.2 Programming Language
	3.3 Tools and Platform
	3.4 Governance

	4 Evaluation
	4.1 Participants
	4.2 Sessions
	4.3 Analysis
	4.4 Results

	5 Discussion
	Acknowledgments
	References

