
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

A Retrospective on How Developers Seek, Relate,
and Collect Information About Code

Amy J. Ko, University of Washington, Brad A. Myers, Carnegie Mellon University, Michael Coblenz, University
of California, San Diego, Htet Htet Aung, HHAeXchange

Abstract—In the early 2000’s, software development was shift-
ing from offline to online, and from command line to IDE. We
discuss our 2004 paper examining the impact of this shift on
developers’ program comprehension behaviors, our motivation
for the work, and it’s impact on the last twenty years of empirical
studies and developer tool innovations. We end with a discussion
of the possible unintended impacts LLMs have on program
comprehension in the coming decades.

Index Terms—Software evolution, programming environments

I. SOFTWARE ENGINEERING IN 2004

The early 2000s was a time of disruption for developer
tools. In some ways, it was a time of great consolidation.
After decades of loosely integrated standalone command line
tools, and research on highly integrated tools [10], integrated
development environments (IDEs) had begun to dominate,
with platforms like Eclipse and Visual Studio becoming central
tools for bringing editing, testing, and debugging into unified
environments. The cultural dominance of the “cowboy coder”
stereotype [14], relying only on a plain text editor, a command
line compiler, and minimal process, was beginning to fade,
replaced by a new legitimacy of harnessing every tool available
to make developers in teams more productive. The consumer
internet was only a decade old, ”web 2.0” of interactive, user-
generated content was still nascent, and so software develop-
ment was still, briefly, something that occurred mostly offline,
with a centralized repository, on a developer’s workstation.

It was around this time, in 2004, when the first author
was interested in how developers understand and debug code.
She had been reading more than two decades of research on
program comprehension and the psychology of programming
[2], captivated by the ways that people build mental models of
software architectures, data, and control flow. But she was also
reading about the more than decade of work to algorithmically
model dependency graphs, and use those to interrogate soft-
ware repositories to streamline debugging and understanding
[30]. In this context, IDEs seemed like the perfect context
in which to explore not only how developers reasoned about
dependencies, but also how IDEs might support that reasoning.

Of course, we knew a lot about developers’ reasoning about
code already. One paper in particular was fascinating to the
first author. Twenty two years earlier, Mark Weiser had written
a seminal article, Programmers use slices when debugging
[28], which spurred two decades of algorithm innovation in
dependency analysis. This empirical study examined whether

programmers, when debugging, construct mental models of
program slices by manually analyzing control and data de-
pendencies. In the study, participants were offered a few
debugging tasks on two programs consisting of 75-150 lines of
Algol-W code, consisting of a few subroutines. Crucially, these
programs fit on a few pieces of paper, all of the information
encoded in variable names was replaced with arbitrary single
symbol names, and there were no comments. After each
debugging session, participants were shown a set of relevant
and irrelevant slices of the program, and through some basic
statistical comparisons, found that participants were far more
likely to recognize relevant slices than irrelevant ones. This
suggested that they had focused their attention and mental
model construction on relevant slices.

It has of course been more than 40 years since this study
was done, and there are no end of critiques we might make
of it now, having evolved our empirical methods substantially.
Even in 2004, however, there were many things the first author
found suspect:

• In the classical traditions of 20th century cognitive psy-
chology, the study removed everything real that might
influence how developers reason about code: comments,
variable and function names, and other tools that support
comprehension. It might be the case that developers use
slices when they have nothing else, but what do they use
when they do have all of these other things?

• As a human-computer interaction researcher, the first au-
thor started from the premise that user interface matters.
Surely reading 1-2 pages of printed Algol code was
different than reading a large, multi-file program in a
modern IDE. New theories like the Hutchin’s work on
distributed cognition [12] showed that the mental models
we build are partly a product of how we externalize
cognition to the tools and structures around us. Surely
IDEs changed how developers build mental models, and
even what models they built.

• The way the study examined mental models, using a
recall metric, rather than directly observing what de-
velopers do, seemed highly suspect. Of course, such
direct observations were hard to do when someone is just
reading printouts; seeing what they do in an IDE in 2004
was far more feasible.

These limitations were motivation enough to look again
at how developers understand programs, but this time, more
closely, and in the context of IDEs. This felt especially
important, as two decades of algorithmic optimization around0000–0000/00$00.00 © 2021 IEEE

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

program slice computation had been catalyzed on a single
suspect empirical study, with almost no later validation of their
utility.

II. THE STUDY

The study we designed [16] was actually part of one of the
first author’s classes. We had a broad semester-long project,
and the first author had teamed up with classmate (and now
colleague) James Fogarty to run a study that jointly examined
two things: the first author’s question about the influence of
IDEs on program comprehension and Fogarty’s question on
how developers mediate interruptions. We designed a simple
study in which developers were given a small ∼500 line Java
program that implemented a stroke-based painting application
with the Swing user interface toolkit. They received five tasks,
fixing a scroll bar rendering bug, a defect in the color selector
tool, unreliable undo behavior, adding a line drawing feature,
and a stroke thickness feature. They used the Eclipse IDE,
with a full set of standard plugins for searching, dependency
analysis. They were also interrupted occasionally, to meet
Fogarty’s goals, though we viewed this as an authentic form
of interruption from colleagues.

To analyze developer behavior at a highly granular level,
we screen-recorded everything, allowing us to retrospectively
examine all of their actions. With the help of then undergrad-
uate Michael Coblenz and masters student Htet Htet Aung,
we translated these screen recordings into a detailed log
of observable developer actions, ranging from reading and
editing code to navigating static and dynamic dependencies,
searching for text, manual testing, reading documentation,
changing source files, and more. We then analyzed these action
sequences to examine how developers orchestrate program
understanding using IDEs.

While the results were a bit of a “fishing expedition” of
every possible empirical observation that seemed notable, there
were a few key findings that we believe had lasting value:

• In contrast to Weiser’s empirically-derived concept of
a slice, we found that developers were more likely to
build out a “working set” of potentially relevant code.
This sometimes included things that approximated slices,
but not complete slices, or even precise slices, but rather
possible subgraphs of program dependencies that might
be worth further investigation, or areas of implementation
that might be important to implementing a feature. This
more process-oriented, fuzzy view of code relevance
was in direct contrast to the more unambiguous, rigid
definition of a program slice, building upon other new
theories at the time, such as information foraging [22].

• Whereas Weiser’s study considered the final mental mod-
els that developers had built, our study examined the
role of navigation and exploration in constructing models.
Developers navigated direct dependencies, just as the
Weiser study posited, but they also navigated indirect (or
transitive) dependencies. And they did all of this through
a combination of searching, scrolling, definition jumping,
and reading, all to construct a working set of relevant
context in order to localize a defect or plan a feature. A

notable navigation that we found poorly supported by the
IDE was returning back to previously visited locations.

• Given the same problem, developers vary in what they
find relevant, the order in which they find it relevant,
and the amount of reading, re-reading, and re-navigation
they do, but this variation is mostly shaped by early
choices in a task about what to attend to. In the study, this
variation largely explained variation in productivity and
success. This suggested that developer productivity was
not necessarily an intrinsic quality, but more like the ant
in Herb Simon’s seminal thought experiment; just like the
route an ant on a beach takes through the sand is heavily
influenced by the hills, valleys, and rocks on the way,
developers’ program comprehension appeared shaped by
the code and tools in their environment [27].

We think the study was also notable methodologically:
rather than relying on careful experiment designs and macro-
scale observed outcomes, this was one of the few empirical
studies in software engineering to watch developers at the
micro-scale to understand how low-level navigation tasks end
up shaping their high-level success. Another notable paper that
did this, on the same topic, was Robillard et al.’s fantastic How
effective developers investigate source code [23], published
just before our work, and found quite similar trends, but
notably also found that methodical strategies for understanding
were more successful than opportunistic ones.

III. IMPACT

We are strong believers that no one paper is responsible for
progress or impact in research. Our study, as much as it has
been cited and built upon, itself built upon decades of research
in software engineering, HCI, and cognitive psychology. And
any impact our work had also part of broader trends, in both
research and practice at the time. What we list here, then, are
shifts and changes in the world of developer tools that have
some trace of our ideas, even though they far more shaped by
others.

One area of impact was on tools that built upon the notion of
a “working set.” Code Bubbles [3] and Jasper [8], for example,
were directly inspired by this paper, as were the subsequent
efforts at Microsoft Research on the Debugger Canvas1. Com-
ments like the ones below suggest suggest something about
the paper’s findings, and the tools built upon them, resonates
closely with some developers’ program understanding needs.

“Awesome Debugging Tool for VS 2010, speeds up
debugging time considerably.”
“I must say this is awesome feature. I wish this was
available to Premium users. It sucks that I cannot
use this at work.”
“Biggest innovation in debugging. Please port to
newer VS or make it open-source.”

Other navigation features in IDEs like “back” buttons, do
not have explicit provenance back to our work, but are at least
validation of the discovery that developers’ navigation of code
is a central activity that needs support.

1https://marketplace.visualstudio.com/items?itemName=
DebuggerCanvasTeam.DebuggerCanvas

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

Despite 20 years of improvements since 2004, programmers
still spend a large amount of time navigating. In a larger-
scale study with professionals, Xia et al. [29] found that
in an automated analysis of two-week-long recordings that
developers spent about 24% of their time navigating in code.
Other researchers have contributed complementary findings
that, combined with our results, have generated insights about
tool design. For example, Sillito et al. [26] studied questions
programmers ask while programming, which complements our
analysis of actions. It remains to be seen whether the advent
of large language models (LLMs) may reduce the fraction of
time spent navigating. Even traditional autocomplete systems
reduce the amount of time spent reading documentation, which
is one of the causes of navigation activities [15].

Our results showing how much time developers spend on
specific activities, including browsing, reading, and writing,
have been cited to motivate research on helping developers
with program comprehension tasks. Moreno et al. [20], for
example, proposed summarization tools for code, whereas
Zhang et al. proposed summarization tools for unit tests. Our
results showing how much time developers spend navigating
has been cited to argue that reducing the number of files may
improve efficacy [25].

Researchers have used our results to provide background
regarding debugging [1], [19] and feature location [7]. Zhang
et al. [33] leveraged our finding that developers use contextual
information to develop automated program repair techniques.
Myers and Stylos used our results to show the importance of
names in APIs [21], since we found that guessing possible
names of identifiers and searching for them was a key tech-
nique participants used to find relevant code.

Leveraging observations of human developers has provided
useful insights regarding how to make tools as effective as
possible. SequencR is a programming tool that is designed
to mimic human bug fixing methods [5]. RepairAgent is
an LLM-based program repair tool that, unlike other LLM-
based tools, considers how humans write code rather than
only considering the most effective algorithms [4]. Turning to
debuggers, Chiş et al. [6] developed a framework for moldable
debuggers, arguing on the basis of our paper that domain-
specific interfaces are needed for debugging particular kinds
of software, since programmers need different information in
different contexts. Robillard and Manggala [24] designed a
code recommendation tool, ConcernDetector, which suggests
code that might be relevant to a developer’s current task.

Later studies of code search, summarized by Di Grazia
and Pradel [9], further characterized the kinds of searches
developers do. For example, developers conduct both free-
form queries and structured queries (such as by providing code
with holes). According to Liu et al. [18], these studies led
to 318 publications regarding new code search tools between
2007 and 2020, the span of years that the paper analyzed.
Half of those tools pertained to text-based code search; other
categories included searching for code clones and API usage
examples.

Our paper’s observations about context have been extended
and corroborated in other works. Fritz et al. [11] analyzed
change contexts, finding (among other observations) that

different developers construct significantly different contexts
from each other even when conducting the same tasks.
However, 73% of the elements of contexts were structurally
connected with each other. Consistent with our findings,
developers often start constructing their contexts with textual
searches: 9 of 12 participants conducted a search within the
first eight steps.

IV. FUTURE WORK

As notable as all of this work is, it is clear that software
development, and programming more broadly, is in another
period of disruption. We appear to be at the end of 20 years of
the web transforming how developers get answers to questions
about languages, APIs, frameworks, and more. Now, all of that
user-generated content from the web has enabled the training
of LLMs that can often synthesize reasonably correct solutions
to many parts of programs, summaries of program behavior,
and even detect defects. While it is not yet the revolution
that many have claimed — results are far too inconsistent and
often grossly incorrect to fully automate anything — it does
change the interfaces through which developers are making
sense of code. Emerging studies (e.g., [32]) have already begun
to investigate these trends, often using the same process lens
as our 2004 work, examining how LLMs are changing how
developers go about writing and understanding code.

And yet, much remains the same. One of the key challenges
surfacing in these recent studies of LLMs are that no matter
how good they get, they are wrong often enough that they put
even greater pressure on program comprehension, to detect
and overcome all of its failures [13]. If LLMs become an in-
dispensable tool for development, and the need to comprehend
its output becomes central, it may be that the long history of
studies on program comprehension will become even more
important in shaping data-driven developer tools.

REFERENCES

[1] Alaboudi, A., LaToza, T.D. (2023) What constitutes debugging? An ex-
ploratory study of debugging episodes. Empirical Software Engingeering
28(117).

[2] Blackwell, A. F., Petre, M., & Church, L. (2019). Fifty years of the
psychology of programming. International Journal of Human-Computer
Studies, 131, 52-63.

[3] Bragdon, A., Zeleznik, R., Reiss, S. P., Karumuri, S., Cheung, W.,
Kaplan, J., Coleman, C., Adeputra, F., & LaViola Jr, J. J. (2010, April).
Code bubbles: a working set-based interface for code understanding
and maintenance. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (pp. 2503-2512).

[4] Islem Bouzenia, Premkumar Devanbu, Michael Pradel (2025). RepairA-
gent: An Autonomous, LLM-Based Agent for Program Repair. Interna-
tional Conference on Software Engineering 2025.

[5] Z. Chen, S. Kommrusch, M. Tufano, L. -N. Pouchet, D. Poshyvanyk and
M. Monperrus (2021). SequenceR: Sequence-to-Sequence Learning for
End-to-End Program Repair. IEEE Transactions on Software Engineering,
47(9), 1943-1959.

[6] Chiş, A., Gı̂rba, T., Nierstrasz, O. (2014). The Moldable Debugger:
A Framework for Developing Domain-Specific Debuggers. In Software
Language Engineering (SLE).

[7] Dit, B., Revelle, M., Gethers, M., & Poshyvanyk, D. (2013). Feature
location in source code: a taxonomy and survey. Journal of software:
Evolution and Process, 25(1), 53-95.

[8] Coblenz, M. J., Ko, A. J., & Myers, B. A. (2006, October). JASPER: an
Eclipse plug-in to facilitate software maintenance tasks. In Proceedings of
the 2006 OOPSLA workshop on eclipse technology eXchange (pp. 65-69).

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

[9] Luca Di Grazia and Michael Pradel (2023). Code Search: A Survey of
Techniques for Finding Code. ACM Computing Surveys. 55(11), Article
220.

[10] Engels, G., Lewerentz, C., Nagl, M., Schäfer, W., & Schürr, A. (1992).
Building integrated software development environments. Part I: tool spec-
ification. ACM Transactions on Software Engineering and Methodology
(TOSEM), 1(2), 135-167.

[11] Thomas Fritz, David C. Shepherd, Katja Kevic, Will Snipes, and
Christoph Bräunlich (2014). Developers’ code context models for change
tasks. Foundations of Software Engineering.

[12] Hutchins, E. (2000). Distributed cognition. International Encyclopedia
of the Social and Behavioral Sciences. Elsevier Science, 138, 1-10.

[13] Imai, S. (2022, May). Is github copilot a substitute for human pair-
programming? an empirical study. In Proceedings of the ACM/IEEE
44th International Conference on Software Engineering: Companion
Proceedings (pp. 319-321).

[14] Janes, A. A., & Succi, G. (2013). The dark side of agile software
development: First results. In Selected topics to the User Conference
on Software Quality, Test and Innovation 2013: ASQT 2013; September
19th-20th, 2013, Graz, Austria. Oesterreichische Computer Gesellschaft.

[15] Jiang, S., & Coblenz, M. (2024). An Analysis of the Costs and
Benefits of Autocomplete in IDEs. Proceedings of the ACM on Software
Engineering (FSE), 1284-1306

[16] Ko, A. J., Myers, B. A., Coblenz, M. J., & Aung, H. H. (2006). An
exploratory study of how developers seek, relate, and collect relevant
information during software maintenance tasks. IEEE Transactions on
software engineering, 32(12), 971-987.

[17] Jacob Krüger, Thorsten Berger, Thomas Leich (2018). Features and How
to Find Them: A Survey of Manual Feature Location. In Software Engi-
neering for Variability Intensive Systems: Foundations and Applications.

[18] Chao Liu, Xin Xia, David Lo, Cuiyun Gao, Xiaohu Yang, and John
Grundy (2021). Opportunities and Challenges in Code Search Tools.
ACM Computing Surveys 54(9), Article 196.

[19] Marco Manca, Fabio Paternò, Carmen Santoro, and Luca Corcella
(2019). Supporting end-user debugging of trigger-action rules for IoT
applications, International Journal of Human-Computer Studies, 123, 56–
69.

[20] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock and K. Vijay-
Shanker, Automatic generation of natural language summaries for Java
classes. ICPC 2013.

[21] Myers, Brad A., and Jeffrey Stylos. ”Improving API usability.” Com-
munications of the ACM 59(6) (2016), 62–69.

[22] Pirolli, P., & Card, S. (1999). Information foraging. Psychological
Review, 106(4), 643.

[23] Robillard, M. P., Coelho, W., & Murphy, G. C. (2004). How effective
developers investigate source code: An exploratory study. IEEE Transac-
tions on software engineering, 30(12), 889-903.

[24] M. P. Robillard and P. Manggala (2008). Reusing Program Investigation
Knowledge for Code Understanding. IEEE International Conference on
Program Comprehension.

[25] Giuseppe Scanniello, Michele Risi, Porfirio Tramontana, and Simone
Romano. 2017. Fixing Faults in C and Java Source Code: Abbreviated
vs. Full-Word Identifier Names (2017). TOSEM 26(2).

[26] J. Sillito, G. C. Murphy and K. De Volder. Asking and Answering
Questions during a Programming Change Task. IEEE Transactions on
Software Engineering 34(4), 434-451.

[27] Simon, H. A. (1988). The science of design: Creating the artificial.
[28] Weiser, M. (1982). Programmers use slices when debugging. Commu-

nications of the ACM, 25(7), 446-452.
[29] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan and S. Li. (2018)

Measuring Program Comprehension: A Large-Scale Field Study with
Professionals.” in IEEE Transactions on Software Engineering, 44(10)
951–976

[30] Xu, B., Qian, J., Zhang, X., Wu, Z., & Chen, L. (2005). A brief survey
of program slicing. ACM SIGSOFT Software Engineering Notes, 30(2),
1-36.

[31] Zhang, Benwen, Emily Hill, and James Clause. Towards automatically
generating descriptive names for unit tests. ASE 2016.

[32] Zhang, B., Liang, P., Zhou, X., Ahmad, A., & Waseem, M. (2023).
Practices and challenges of using github copilot: An empirical study.
arXiv preprint arXiv:2303.08733.

[33] Quanjun Zhang, Chunrong Fang, Yuxiang Ma, Weisong Sun, and
Zhenyu Chen (2024). A Survey of Learning-based Automated Program
Repair. ACM Trans. Softw. Eng. Methodol. 33(2).

