

What Is a Programming Language, Really?

Amy J. Ko

The Information School
University of Washington, Seattle, WA, USA

ajko@uw.edu

Abstract

In computing, we usually take a technical view of program-
ming languages (PL), defining them as formal means of
specifying a computer behavior. This view shapes much of
the research that we do on PL, determining the questions we
ask about them, the improvements we make to them, and
how we teach people to use them. But to many people, PL
are not purely technical things, but socio-technical things.
This paper describes several alternative views of PL and how
these views can reshape how we design, evolve, and use pro-
gramming languages in research and practice.

Categories and Subject Descriptors D.3.3 [Program-
ming Languages]: Language Constructs and Features

General Terms Human Factors

Keywords Definitions, human-computer interaction

1. What Is a Programming Language?

Casually, the answer to this question is an obvious one: pro-
gramming languages (PL) are notations for telling comput-
ers what to do in the future. For the purposes of conversation,
this definition appears conceptually valid and it portrays the
experience of programming. It’s also kind of boring.

And yet, subtle aspects of definitions can play an outsized
role in shaping our views. For example, in the definition
above I used the verb “tell”. This word implies human activ-
ities in communication, such as listening, turn-taking and
miscommunication. It’s imperative tone even connotes a re-
lationship of dominance, with the programmer commanding
a computer, and the computer complying. It is these ideas
that make this definition feel right: we do control computers,
there are miscommunications, and it frequently feels like
computers are not listening, despite us being in charge.

However, it also these ideas that make the communication
metaphor useful. By thinking of PL through this lens, we can
re-envision PL. For example, if programming is about “tell-
ing,” perhaps IDEs are like human translators, facilitating di-
alog between two agents that do not speak the same lan-
guage. Human translators have to listen vigilantly, editorial-
izing for expediency. Perhaps IDEs need to do the same.

What other definitions of PL exist and what research do
they demand? Clearly, the dominant academic view of PL is
a formal one. I asked several PL researchers for their defini-
tions and most provided definitions like “formal expressions
of computation.” Others went further, making stronger state-
ments such as the Curry-Howard correspondence, which de-
scribes programs as proofs and proofs as programs. These
conceptions of PL engender mathematical questions, such
as: What is a correct program? How do we prove a program
correct? What notations exist to express computation?

These formal definitions are productive, contributing to
many advances in program correctness. That said, this defi-
nition is not necessarily the “correct” definition. For exam-
ple, another view of PL is as a kind of natural language.
This is, after all, the historical reason why we call PL “lan-
guages,” and why we use words such as “syntax”, “gram-
mar”, and “semantics” to specify their rules. Devanbu et al.
extended this metaphor through a statistical lens, finding, for
example, that defective code is often improbable based on
patterns in how a PL is used [6]. These perspectives are also
related to linguistic ideas such as the Sapir-Whorf hypothe-
sis, which suggests that language determines thought, or at
least influences it. This leads to questions such as: How do
PL abstractions shape the computation that programmers
write? What capacity do PL have for novel computational
expression? How does language design bias the type of com-
putation that programs do? By answering these questions,
we can begin to see programs as speech, with regularity, but
also capacity for syntactic and semantic surprise.

It is also possible to view PL as a kind of documentation.
After all, it is not source code that we usually execute, but a
compiled translation of source, suggesting that the true role
of a language is to help programmers reason about how a
program computes. If we take this view, a good PL should
streamline human comprehension, begging questions such
as: What affects language readability? How does notation
affect comprehension? What makes a notation defect prone?
Stefik et al. take this view [5], exploring the cognitive prop-
erties of PL and their effects on code comprehension.

A more cynical view of PL is as little more than the glue
between APIs, frameworks, libraries, platforms, and ser-
vices. This view is often the dominant view amongst modern
web developers and other engineers tasked with building
large systems inside of large software ecosystems via func-
tion calls [2]. It provokes questions such as: What makes
good computational glue? Do PL matter at all, when most
modern programs are just function calls? This view suggests
that languages are simply interchangeable connectors be-
tween functionality.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

PLATEAU’16, November 1, 2016, Amsterdam, Netherlands
c© 2016 ACM. 978-1-4503-4638-2/16/11...$15.00

http://dx.doi.org/10.1145/3001878.3001880

32 Most up-to-date version: 06/24/2021

Others have viewed PL as an interface between a person
and a computer. In fact, from a historical perspective, PL
were the first user interface to computers. From this view,
languages have properties that any user interface has, includ-
ing usability, learnability, feedback, error-proneness, user
efficiency, and so on, suggesting questions such as: How can
we measure PL usability? What makes a PL learnable?
What aspects of PL design affect its error-proneness? Stefik
[5] investigates these questions too, building upon HCI per-
spectives from Pane and Myers in their design of HANDS
[4], which sought to design a language based on the chil-
dren’s descriptions of the rules of digital games.

A related view frames PL as notations for describing the
future. For example, Blackwell defined programming as an
activity in which someone shapes multiple possible future
states in time and space with the aid of notation and abstrac-
tion [1]. From this view, we might ask: What kinds of future
states of the world can be described? What are the limits of
people’s ability to reason about future states? How do nota-
tions enable people to reason about classes of future states?
These questions are psychological, inquiring how humans
use notation to model the behaviour of not only computers,
but people and other entities that can take instruction.

Alternatively, there are many that view PL as expressive
media. Resnick, for example, views Scratch [7] as media for
self-expression, and Shapiro views Blocky Talky [3] as sup-
porting play. These perspectives frame PL as like any other
creative medium, but with opportunities for interactivity and
storytelling. This view suggests questions about the expres-
sive capacity of a PL, such as: How can we measure the
breadth of a language’s expressive capacity? How does a
notation’s black box abstractions limit expression? What
can a PL uniquely express that other PL cannot? Ideas such
as McLuhan’s “the medium is the message” extends these
questions further, suggesting that languages might shape
perceptions of what computation is and what it is for.

Some view programs as policy, expressing an agreement
between designers and users about what computation will
and will not be possible. In fact, in many software engineer-
ing contexts, programs are expressions of contractually ob-
ligated requirements. In this view, PL are the medium
through which a contract is satisfied. If we extend this to a
view of programs as social contracts (ala Rousseau [8]), we
might ask questions such as: What rights do users have in
shaping these contracts? Do PL have to be readable by all
in order to preserve human agency? What power do PL de-
signers have in shaping policy? By thinking of languages as
media in which laws, regulations, contracts, policies, and
rules are expressed, we can productively and provocatively
explore the relationship between programs and civil rights.

My colleagues in information science often led me to
wonder whether it is information or computation that is the
more dominant phenomenon in computing. After all, when
you have a pioneer like Bill Gates claiming “content is
king,” it suggests that computation, algorithms, and data
structures might just be conduits for the flow of infor-
mation through social systems. In this view, we wonder:
How do PL bias and privilege information? How do lan-
guages warp the meaning in information through their ab-
stractions? As conduits for information, what benefits and
trade-offs do PL offer relative to other types of information
containers such as writing and speech? These questions
view computing as (imperfectly) modelling information.

Because knowledge of PL is still limited to a small mi-
nority of humanity but are used to shape an increasing pro-
portion of humanity’s experiences in life, PL can also be de-
fined as a form of power. Knowing a language means con-
trol over a computer, but it also means control over others
computers, and by extension, designing and deciding how
people experience the extent of their lives. In the same way
that reading literacy is a form of power, PL provokes ques-
tions such as: With great programming power, should great
responsibility come as well? What kind of social power do
programming languages provide? Who has rights to the so-
cial power of programming languages?

To those who do not know a PL, PL might also be viewed
as a path to prosperity. Knowing a PL means having access
to the highest paying jobs in our global economy. In many
places in the world, they represent stability and wealth. This
view of programming languages asks: Who should have ac-
cess to programming language knowledge? Can everyone
learn a programming language? What are the economic
consequences of everyone knowing a little bit about PL? As
the world begins to shift education policy to bring computing
education to everyone with initiatives such as the White
House’s CS for All and other countries’ efforts to implement
K-12 CS education, it is up to researchers to carefully con-
sider the answers to these questions.

2. What’s Next?

Each of these views contains a research agenda. Some of
these agendas are already deeply explored—we understand
what PL are formally and we increasingly understand what
they are as tools. Other agendas, particular those that probe
the human, social, societal, and ethical dimensions of PL, are
hardly explored at all. As researchers, we should be con-
cerned with every view, and see each as an opportunity to
understand holistically how PL can shape our world.

References

[1] Blackwell, A.F. (2002). First steps in programming: A
rationale for Attention Investment models. IEEE
VL/HCC, 2-10.

[2] Brandt, J., Guo, P. J., Lewenstein, J., Dontcheva, M., &
Klemmer, S. R. (2009). Two studies of opportunistic
programming: interleaving web foraging, learning, and
writing code. ACM CHI, 1589-1598.

[3] Deitrick, E., Shapiro, R. B., Ahrens, M. P., Fiebrink, R.,
Lehrman, P. D., & Farooq, S. (2015). Using distributed
cognition theory to analyze collaborative computer sci-
ence learning. ACM ICER, 51-60.

[4] Pane, J.F., Myers, B.A., & Miller, L.B. (2002). Using
HCI techniques to design a more usable programming
system. IEEE VL/HCC, 198-206.

[5] Stefik, A. & Hanenberg, S. (2014). The programming
language wars: questions and responsibilities for the
programming language community. ACM Onward!,
283-299.

[6] Ray, B., Hellendoorn, V., Godhane, S., Tu, Z., Bac-
chelli, A., & Devanbu, P. (2016). On the naturalness of
buggy code. ICSE, 428-439.

[7] Resnick, M., & Silverman, B. (2005). Some reflections
on designing construction kits for kids. Interaction De-
sign and Children, 117-122.

[8] Rousseau, J.J. (1913). Social contract & discourses.
New York: E.P. Dutton & Co.

33

