
CAREER: ENABLING AND EXPLOITING EVIDENCE-BASED BUG TRIAGE

Evolving software is no simple task: somehow, amongst innumerable bug reports, feature requests, and 
project plans, software teams must decide which of these issues deserve the team’s limited time and 
resources. To make these decisions, most  teams engage in a process of bug triage, comparing estimates 
of the frequency and severity of each issue, among other factors.

While estimating frequency and severity is more disciplined than using sheer instinct, the lack of large-
scale data about  software issues means that most of these estimates  are based on  intuition. Worse yet, 
the data that teams do have is limited: technical support  feedback is difficult to analyze because of its 
unstructured nature; automatic crash and hang reports are only a subset  of the issues that users experience; 
and reports written by users directly usually come from power users, biasing reports to expert use. 
Because of these limitations, teams have no choice but  to rely on their subjective  impressions of 
software use and user needs.

The proposed work will replace these impressions with large-scale data about  software issues. To do this, 
the PI will invent  techniques that  detect software  issues through peoples’ use  of automatic help tools. 
These tools will allow users to get explanations about unexpected program behavior by choosing how and 
why questions about program output. The use of these tools will capture a wide range of software issues 
in a consistent, structured form. Unlike voluntary feedback, these tools will be part of users’ normal work, 
increasing the representativeness of frequency and severity estimates, while also capturing new kinds of 
underreported issues such as non-fatal errors and a wide range of usability and understanding problems.

To explore this approach, the PI will extend his prior work on automatic help tools to a collection of 
widely-adopted web-based courseware applications developed at the University of Washington. The use 
of these help tools will be captured in the field to detect software issues. The PI and his team will then 
prototype several ways of exploiting this data, including 1) aggregation tools that  group issues into 
generalized, executable test cases, 2) triage tools that analyze  issues across time, version, and customer 
data, and 3) maintenance tools that  automate  fault localization, report assignment, and impact analysis. 
To assess these prototypes, the PI will measure the representativeness of reported issues, the effectiveness 
of the triage and maintenance tools, and the objectivity of triage decisions relative to current practices.

These research plans are closely aligned with the PI’s educational goal, which is to redefine  software 
quality assurance  education. To achieve this, the PI plans 1) new projects for the PI’s User-Centered 
Design  course that directly involve students in the evaluation of the research, 2) a new course that  teaches 
theories and skills relevant to software engineering teamwork, and 3) a peer and professional mentoring 
event  that informs students about  the day-to-day lives of software quality experts. The PI will evaluate 
these initiatives by comparing the enrollment  and job placement outcomes of students who do and do not 
participate. All initiatives will involve participation by Seattle software companies, leading to technology 
transfer and a stronger bond between the University of Washington and the software industry.

The intellectual merits  of this work include: 1) moving bug triage from an art to a science, 2) techniques 
for implementing automatic help tools in web applications, 3) new forms of automatic help, 4) knowledge 
about privacy issues in reporting user feedback, 5) statistical approaches for separating reported issues 
into meaningfully distinct  groups, 6) new tools for supporting evidence-based bug triage and field data 
analysis, 7) software maintenance tools that exploit  user feedback to streamline bug fixing and support 
decision-making, and 8) evidence of the feasibility, effectiveness, and utility of the above contributions.

The broader impacts of this work include: 1) software that  better meets the needs of its users, increasing 
user productivity and reducing frustration, 2) help tools that  reduce users’ need for technical support  to 
resolve software issues, 3) empowering users to contribute to software evolution through their normal use 
of software, 4) students who are more informed about careers in software quality, 5) students who are 
more prepared for teamwork aspects of software development work, 6) usability improvements to 
courseware, 7) undergraduate participation in research, and 8) broadened participation in computing.
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1. PROJECT MOTIVATION AND APPROACH

Despite significant advances in software technology, most  people find software unreliable and difficult to 
use. For instance, a recent  survey showed that  48% of adults needed to ask  for help to use  or configure 
their software, and that of those, 38% had to contact technical support, 15% never fixed their problem, 
only 2% found help online, and half felt  “discouraged and confused by their efforts” [42]. Most  software 
companies are acutely aware of these issues, spending an average of 21% of corporate expenditures on 
technical support  and software maintenance [81]. The result  of these efforts is usually a vast collection of 
bug reports, feature requests, and other issues to address in the next software release [9, 48].

While software teams would ideally address all of these issues, this is rarely feasible: not only do teams 
work with limited time and resources, but in many cases, ways of resolving issues may be in direct 
conflict. Therefore, teams must  decide which  of these issues are most  deserving of the team’s attention. To 
make these decisions, most teams engage in frequent  bug triage  [48], prioritizing the team’s efforts by 
comparing estimates of the frequency, severity, cost, and risk of each issue.

While this process is more disciplined than using sheer instinct, the lack of large-scale data about 
software use means that most of these estimates are based on intuition. Worse yet, the data that  teams 
do have to support these estimates is limited:

■ Technical support feedback, while capturing a wide range of issues, is difficult to analyze and 
aggregate because of the unstructured nature of text and speech. This feedback also lacks adequate 
context to reproduce or understand an issue, making it difficult for teams to act upon.

■ Automatically reported crashes and hangs, while capturing stack traces and other data that  enables 
teams to isolate their causes automatically [33], only capture a subset  of the issues that users 
experience. Error reporting APIs, which enable custom error reports, require teams to anticipate 
the issues that users might experience.

■ Direct reports from users often come from vocal minorities such as power users. This potentially 
biases frequency and severity estimates towards expert  software use. Most users do not  report 
issues because they blame themselves when software misbehaves [65].

Because of these limitations, teams have no choice but  to form subjective  impressions of which issues 
are the most  frequent and severe to users, speculating about  how many users are experiencing issues and 
whether users find these issues problematic [33, 71].

In my research, I plan to replace these impressions with evidence. To do this, I will invent  new techniques 
that detect and report software issues through peoples’ use of automatic help tools. These tools, 
which are based on my prior work [62], allow users to choose questions about  unexpected program output 
and get explanations about  its causes. For example, consider Figure 1, in which a user clicks on the word 
‘Is’ and selects “Why was this word capitalized?” The tool responds by showing the checkbox that caused 
the auto-capitalizing to occur. This approach can be used to answer questions about unexpected errors, 
incorrect values, and a variety of other kinds of problematic program output.
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Figure 1. The Crystal automatic help tool, answering a question about an unexpected capitalization.
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My research will report the  use  of these  help tools as  indicators of software issues. Compared to other 
forms of user feedback, these help questions have several distinct benefits:

■ They are more representative than voluntary reports because users already seek help as part of 
their normal software use. The more users that provide feedback, the more faithfully a team’s 
collection of reported issues will represent users’ experience with software.

■ They indicate underreported but critical issues, including feedback about  both functional failures 
such as incorrect output, and usability issues, such as confusing error messages, workflow 
inefficiencies, and configuration problems (some of the most costly issues to support [81]).

■ They inherently indicate severity by allowing users to make an explicit, machine-observable 
decision to troubleshoot  an issue; simply counting the number of users who choose to troubleshoot 
issues can enable a team to compare issue severity.

■ They capture lightweight execution histories as part of answering users’ questions, facilitating the 
automatic aggregation of issues at  a large scale. These histories can also be used to create a new 
class of evidence-based bug triage and software maintenance tools.

Figure 2 illustrates my plans for enabling these help questions and exploiting the user feedback that  they 
capture. These plans include five major activities:
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        Figure 2. The proposed research.
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I will enable  help questions  in a set  of web-based 
courseware applications developed at  the University of 
Washington (in addition to in-house test applications). 
To do this, I will generalize the prototype in Figure 1 to 
interactive web applications, adding support for new 
kinds of “why” and “how” questions to extend the range 
of detectable issues.

I will gather users’ help questions at a large scale, 
exploring different ways of requesting users' permission 
to report information. I will also explore how privacy, 
consent, and training influence the representativeness 
of reported field data.

I will invent  techniques for incrementally grouping 
questions over time, aggregating large-scale feedback 
into meaningfully distinct  groups. These tools will 
analyze the input and output contexts of users’ questions, 
producing generalized, executable test cases.

I will invent analysis  tools for helping software teams 
explore field data over time, successive software 
versions, and customer data. These tools will integrate 
data from other forms of software testing, such as crash 
reports and user tests. I will assess these tools’ ability to 
help teams make more evidence-based judgements of 
issue frequency and severity.

I will invent tools that  exploit help questions to 
streamline other maintenance activities. For example, the 
execution contexts captured can be used to automatically 
locate faults and features that  contribute to issues, to 
recommend which developers should work on issues, 
and to perform automatic impact analysis.



This research plan is closely tied to my educational goal, which is to redefine software quality 
assurance  education. As part of achieving this goal, I propose three initiatives that integrate, enhance, 
and exploit, my proposed research:

■ Engaging User-Centered Design students in the proposed research, by having students measure 
the representativeness of the issues reported by the proposed help tools. More than 70 students 
will gather data about the software issues that  courseware users experience in practice, using the 
usability methods taught in class. They will then compare these to the issues reported with the 
automatic help tools, learning about the strengths and weaknesses of different evaluation methods.

■ Teaching software quality teamwork in a new studio-based project course. Topics in this new 
course include small group communication, coordination in software teams, and aspects of version 
control, issue trackers, and other tools that support these teamwork challenges. Students will learn 
about software quality from industry experts and help evaluate the efficacy of research prototypes.

■ Organizing a peer and professional mentoring event on software quality, in which student interns 
and industry professionals meet with pre-major college students to share experiences in software 
quality assurance. The event will give prospective Computer Science and Informatics students a 
more concrete understanding of careers in software quality, facilitate mentoring relationships 
between academic and industry, and build social networks of peers with similar career goals.

The broader impacts of my plans will  ultimately be  software that better meets users’ needs. My 
research and education plans achieve this in three ways: 1) by providing tools that  help users troubleshoot 
software issues, software will become easier to use and more helpful; 2) by enabling the capture of richer 
and more representative data about how software is used, software teams will be able to design more 
useful and helpful software; and 3) by improving education about software quality assurance, future 
generations of software teams will be better prepared to gather and utilize user feedback. Throughout this 
work, I will contribute scientific knowledge about software design and invent several new technologies.

This proposal is organized as follows. In the next section, I review prior work in detecting software 
issues. I then discuss my preliminary and proposed research in Section 3. I discuss my education plans 
and their ties to my research in Section 4. In the remaining sections, I detail my five-year plan, the 
intellectual merit and broader impacts of the proposed work, and my qualifications.

2. PRIOR WORK ON DETECTING AND TRIAGING SOFTWARE ISSUES

Researchers have explored several ways of detecting problems with software. Perhaps the most promising 
approach in the last  decade has been gathering large-scale  empirical data about software  failures. For 
example, automated crash and hang reports are a widely-deployed example of this approach, particularly 
Microsoft’s Windows Error Reporting (WER) system [33]. WER not only streamlines the reporting of 
crashes and hangs, but  it  allows application developers to generate custom reports for custom program 
events. Researchers have explored similar methods of crowdsourcing1  the capture and repair of field 
failures. For example, Liblit  et  al. recorded snapshots of execution history from programs running in the 
field and combined these histories to support  the diagnosis of crashes [55] and concurrency issues [83]. 
Others have focused on the reproduction of software issues, recording lightweight  execution histories in 
the field [19]. These can then be used with other techniques to index and aggregate multiple histories to 
find incorrect outputs [57]. Tucek et al. describes a similar system that  diagnoses failures in the field by 
performing checkpointing and root cause analysis while a program runs [84]. Because users need only to 
click a button to send feedback, these approaches give software teams large-scale, aggregated frequency 
data that is more representative than intuition.
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1 Crowdsourcing [23] is taking a task traditionally performed by a specific population and distributing it to 
a larger community (in this case, the task is detecting software issues).



The limitation of the above approaches is that  they only work for crashes, hangs, and custom-defined, 
pre-anticipated events. They do not  work for other critical issues such as incorrect  (but  non-fatal) 
computations, usability problems, configuration issues or other unanticipated errors. One approach to 
detecting these other issues is to gather large-scale  usage  data. For example, Microsoft Office users can 
send “Software Quality Metrics” (SQM) data to Microsoft. Such data usually involves usage statistics, 
which can inform Microsoft about  which features are being used regularly, which features are not, and by 
whom. Researchers have also investigated the instrumentation of open source software [82], gathering 
more detailed information about  users’ documents and their relationship to other data in a users’ work. 
More sophisticated techniques identify usability problems by statistically modeling undo and erase events 
in usage data, distinguishing between actual undos and help-seeking [1]; others have detected anomalies 
in console logs using statistical methods [88]. Google takes an experimental view of usage data, deploying 
different  versions of web sites to perform experiments about  low-level decisions, such as button 
placement and labeling [73]. Google Analytics supports similar analyses of web traffic.

While the above techniques can help software teams know what users are doing, interpreting why users 
are doing it can be highly subjective [41]. This interpretation requires one to distinguish between actions 
that move users towards a goal (such as undoing a mistake) and actions that help a user think (comparing 
two versions of sentence using undo) [45]. Moreover, teams have to imagine what patterns might exist in 
feature usage data before testing for them [43]. The primary way to avoid these interpretation challenges 
is to perform user tests of critical use cases. Usability testing [30, 35], which is a trade that  has grown by 
5000% in the past  15 years [86], involves devising representative tasks, recruiting representative users, 
having users work on these tasks, and identifying breakdowns that occur in users’ work. These 
breakdowns are then documented as software issues, alongside other bugs and feature requests. 

Unfortunately, user testing rarely scales because of the cost  of paying users to participate [64]. Moreover, 
it  is often difficult  to find enough representative users [79] and to test  a wide enough variety of tasks [56] 
to gain confidence in the quality of a design. Some researchers have tried to address these limitations by 
proposing remote usability testing tools that  have users evaluate software online [22]. Remote users can 
successfully report  critical incidents [14], but  they only find half as many problems as trained usability 
testers in the lab [13], and they need to be trained and incentivized to acquire useful data [80]. Because of 
these limitations, usability testing often faces skepticism: managers often view user tests as unnecessary 
overhead [35, 76] and developers view the results of usability tests with skepticism because of their small 
samples [36].

There are other sources of large-scale user feedback, such as the questions and often detailed usability 
critiques that users post  on technical  support web sites and user forums [38]. Unfortunately, most  of 
this data is unstructured, lacks execution context, and is of inconsistent quality, making it  difficult and 
costly to analyze and aggregate systematically. Even when teams have the time to process this feedback, it 
is cumbersome to aggregate and does not  result in reliable estimates of frequency and severity. 
Furthermore, this online feedback is volunteered by users, and thus often biased towards vocal minorities 
such as power users or other software developers. This potential bias makes it  difficult  to know how 
common the issues they report actually are [76].

Compared to the considerable research on detecting software issues, there is little technology to support 
the triage of software issues. Some researchers have explored ways of automatically assigning bug 
reports to developers [4], building machine learning classifiers on programmers’ implementation expertise 
[5]. Others have explored the possibility of automatically detecting duplicate reports [87] and improving 
bug report  readability [27]. Beyond these techniques, software teams have little support  for making-
evidence based estimates of the frequency and severity of software issues. Consequently, authority, 
stereotypes about user behavior, and technical issues tend to dominate design decisions [50], even when 
these decisions are inconsistent with teams’ project goals.
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3. ENABLING AND EXPLOITING EVIDENCE-BASED BUG TRIAGE

The proposed research will investigate a new approach to detecting software issues by analyzing 
people’s use of automatic help tools. This approach will produce more reliable estimates of frequency 
and severity, enabling teams to perform more evidence-based bug triage. As illustrated earlier in Figure 2, 
this research will involve several activities, including 1) the creation of new help tools to capture issues, 
2) research on how privacy aspects affect  the representativeness of the software issues reported, 3) 
techniques for aggregating issues into generalized executable test  cases, 4) several new bug triage 
analysis tools, and 5) an array of software maintenance tools that exploit  help question data. In this 
section, I discuss the preliminary work that supports these plans, and then discuss these plans in detail.

3.1. PRELIMINARY WORK ON AUTOMATED HELP

My prior work on automatic help tools [62] is the conceptual 
foundation for the proposed research. The prototype, called 
Crystal, allows users to click on elements of a user’s 

document, user interface 
c o n t r o l s , a n d e v e n 
whitespace, and select 
“why” questions about  the 
the se l ec ted p rogram 
output. For example, Figure 
3 shows a user who has 
clicked on a paragraph to 
ask questions about its 
properties. Figure 4 shows 

a user who has clicked on 
the whitespace to the left  of a paragraph. Figure 1, shown earlier, shows 
a user asking a question about text that was auto-corrected. In all of 
these cases, after a user has chosen a question, Crystal analyzes the 
history of user input, the program defaults, and the logic of the 
program’s event handlers to determine the causes of output in question. 
These causes are then shown by highlighting the user interface controls 
that were used to change the behavior of the application, immediately 
showing the user how they can rectify the problem. For example, 
Figure 5 shows the answer to the question in Figure 4, highlighting the 
“Left Indentation” control that determined the paragraph’s whitespace.

Conceptually, Crystal derives answers to users’ help questions by 
computing the user-modifiable subset of a precise dynamic slice  [8] on the selected output. For 
example, the whitespace in Figure 4 has a large number of internal dependencies that determined its size, 
but only a small number that the user has control over. These user-modifiable dependencies are the ones 
shown in the answer (and in the answer in Figure 5, there was only one such dependency).

To avoid having to record a complete execution history to perform dynamic slicing, Crystal exploits the 
editor’s undo history. Most  modern undo support store a list  of changes in an application as some form of 
command objects [63]. For example, if a user deleted an event in a calendar application, the undo history 
stores an object that  contains the deleted data and the context necessary to restore it  (such as the calendar 
to which it was attached). To answer questions, Crystal adds two kinds of data to undo history. The first  is 
the history of values for all user-modifiable  program state  and the input  event that  caused each. For 
example, when a user disables the “auto-correct” feature, the system stores the new value for the auto-
correction enabled  state and remembers that  the user performed this change by clicking on a particular 
checkbox. This data allows Crystal to highlight  the input or system event that caused the unexpected 
output in its answer. The second kind of data that  Crystal adds to undo history is the control and data 
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Figure 4. A question about a 
paragraph’s whitespace.

Figure 3. Questions about the 
properties of a paragraph.

Figure 5. An explanation of a 
paragraph’s whitespace, 
showing the field that caused it.



dependencies used to decide whether to make a change. For example, before auto-capitalizing a word, 
the system needed to check whether the auto-capitalizing feature was enabled. Crystal records this data 
dependency and uses it to determine the causes of the output a user has questioned.

These additions to undo history required little  developer effort beyond the effort  necessary to support 
undo. For example, the paragraph questions in Figure 3 are automatically generated from the current  state 
of the paragraph and user interface string constants; these answers are computed with no additional code. 
The questions and answers that did require custom code involved converting hard-coded data and 
behaviors into first  class data and events. For example, Figure 4 shows a question about  a paragraph’s 
margin whitespace; this required the layout algorithm to remember the location of white space and the 
user interface a way to inquire about  it. Similarly, answering questions about auto-corrected words (as in 
the question about  ‘teh’ in Figure 3) required the developer to convert  the hard-coded auto-correct 
behavior into a first-class undoable system action.

Of course, these help tools cannot  answer all questions, nor can it  answer all questions with complete 
precision. For example, users can ask about  visible program output, such as document  state, user interface 
controls, and values computed by the program, but users cannot  ask about output that  does not appear in a 
general way. Some answers may also involve some irreducible complexity that  is difficult  to explain. For 
example, while most  questions produce a single cause, such as “the word is capitalized because auto-
capitalize is on.” or a single chain of causes, such as “the paragraph is indented because it has the 
“Body” style, and the “Body” style inherits from the “Normal” style, which is indented.” some questions 
have multiple chains of causes. This might  occur for output that  results from complex computations, such 
as explanations for why an e-mail was marked as spam: such output  often depends a large set  of user tags, 
and a complex latent semantic analysis algorithm. (Explaining these is with precision is not the goal of 
this proposal, though as I discuss later, there may be benefit in providing simplified explanations).

Even with these limitations, Crystal proved quite successful in helping users with common problems. In 
one study of nine problematic use cases, Crystal users resolved 30% more  problems, 50% faster than 
those using documentation and online help [62]. After using the automated help only once, users relied on 
it exclusively for help, preferring it  over documentation and the Internet [62]. Users said this was because 
the help was particular to their document and use of the software.

3.2. EXTENDING AUTOMATIC HELP TO INTERACTIVE WEB APPLICATIONS

In the proposed research, I will first  generalize the Crystal concept to interactive web applications. This 
research will demonstrate the feasibility of the automatic help tools in client-server based applications, 
while also supporting a rapidly growing platform for software applications.

Much of the work necessary to adapt  Crystal to web applications is straightforward. Instrumenting client-
side applications to capture program events is feasible, well-supported by tools and web servers, and can 
be done without  modifying the client [44]. Furthermore, many of the challenges with implementing undo 
in web applications has been resolved by industry (though these undo techniques are not widely adopted). 
I will adapt this work to support  automatic help in web applications, building several test  applications to 
demonstrate the feasibility of the tools.

In addition to these in-house applications, I will collaborate with the  Catalyst Tools team at  the 
University of Washington to help deploy the ideas to an existing population of application users 
(documented in an attached letter). Catalyst develops several web-applications, including a grade book, a 
course web site design tool, survey and portfolio authoring tools, web-based e-mail, and several other 
applications. These are widely adopted by the over 40,000 students, staff, and faculty at  University of 
Washington campuses. All of these tools include undo support, which is the basic requirement  for 
implementing the automatic help tools. Incorporating these help tools into a diverse set  of deployed 
software will help assess how well these tools scale, what kinds of software issues can be feasibility 
reported, and what  kinds of help the tools can feasibly provide. Furthermore, because the Catalyst Tools 
have an existing user base, my team can focus on research, rather than deployment.
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Beyond these implementation issues, there are several research challenges in generalizing Crystal to web 
applications. In particular, there are challenges in tracking modifications to data that  are triggered in the 
client, processed by the web server and then changed in a database. Tracking this data flow and then using 
it to answer users’ questions will require new methods of capturing lightweight execution histories 
between multiple languages and machines. I will explore techniques that unify the capture of these 
execution history that  are low-overhead and efficient  to transmit between the client  and server. This will 
result in new frameworks for capturing lightweight execution histories in web applications. 

3.3. EXTENDING THE RANGE OF USER FEEDBACK WITH NEW HOW AND WHY QUESTIONS

In addition to adapting Crystal’s features to the web, I propose three  new kinds of help questions to 
extend the range of user feedback that  can be captured through help tools. These include new support  for 
how questions, why questions about performance, and why questions about complex behaviors.

“Why” questions allow users to ask about  existing features in a program; to compliment  these, I will 
explore support for “how” questions that capture large-scale, aggregated feature request data. These 
questions will allow users to ask about  features and options that they expect to find but cannot. For 
example, suppose a student is searching Amazon.com for the shortest book on a topic, but  the search 
results do not list  page length. Support for “how” questions would allow the user to click on the “Results” 
header at the top of the results and type “how do I search on page length?” The system’s response would 
either find a feature that  supports the desired behavior (building upon work on keyword programming 
[61]) or it  would tell the user, “We don’t yet  support  this feature, but thousands of others have asked for a 
similar feature. Stay tuned.” As part  of this work, I will explore ways of applying natural language 
processing techniques aggregate user feedback and to detect and filter spam. 

The “why” questions in the Crystal prototype focused on functional requirements, but  not other software 
qualities. Therefore, I will support new why questions about performance  issues. For example, users 
will be able to ask “why is this progress bar slow?” and get  answers such as “the system is waiting for 
data from the Internet” or “the system is halfway through a large data set.” In the absence of a specific 
progress display, users will be able to click on the area that  they expect to have a result and ask, “why 
isn’t this updating?” The goal of these questions would not be to offer precise diagnostics to users, but to 
provide more detailed, context-specific feedback on demand. While these answers will not make the 
algorithms faster, they will help users decide if they want  to cancel an operation or find some other way 
of completing their task. These questions will also enable teams to learn about user-critical performance 
issues at a large scale.

The third kind of question that  I will explore are “why” questions about complex behaviors, to provide 
explanations of output computed by algorithms and processes that  have some irreducible complexity. For 
example, a user may want  to know why an e-mail message was marked as spam or why a link was 
recommended from a recommendation system. To answer these questions, I will explore ways of 
simplifying the complex dependencies behind these calculations and providing general descriptions of 
how these features work. For example, rather than trying to explain the precise reason to a user, these 
questions will provide simplified explanations, as is done in recommendation systems (“this movie was 
recommended because of your interest  in...”). These answers will perform program analyses on these 
computations to generate context-specific examples from the user’s own data to explain system behavior.

To assess the effectiveness of these “why” and “how” questions in answering users’ questions, I will 
perform both lab and field studies that compare their utility to other forms of help such as Q&A sites 
[38], technical support  [42], and friends. I will perform these evaluations as part of a course assignment in 
my User-Centered Design course, having over 70 students apply a variety of usability evaluations on the 
research prototypes. For example, they will apply the heuristic evaluation technique [64] to identify 
potential design problems in advance and perform lab-based user studies of specific troubleshooting use-
cases. Specifically, students will measure how quickly users are able to rectify problems compared to 
traditional forms of help and to what extent users rely on the help tools to troubleshoot their problems.
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3.4. REPORTING REPRESENTATIVE, ANONYMOUS HELP-SEEKING FEEDBACK

With the help tools in the previous sections in place, a central research challenge will be reporting  uses 
of the help tools as indicators  of software  issues. This problem has similarities to desktop crash and 
hang reporting services, such as Windows Error Reporting [33]; these systems generally pose two major 
challenges: 1) deciding what  data needs to be sent and 2) getting users’ permission to send it. Because the 
proposed research will capture new kinds of user-defined issues, I will also explore to what  extent the 
issues captured are representative of the issues that users actually experience.

The data that needs to be sent will likely be the same  data necessary for answering users’ questions. 
This includes user interface state, the data dependencies and control flow decisions [8] involved in 
handling user input events, and the user’s undo history. For example, when a user asks why a spreadsheet 
cell background is red, to explain that  there was an error in the cell’s formula, the system would need to 
report the source code that  decided to highlight the cell red and the data that  was used to make this 
decision, such as the formula itself and error reporting settings in the system preferences. I will explore to 
what extent  this data, when aggregated at a large scale, is sufficient to reproduce an issue (compared to 
other forms of execution history, such as “whole” execution traces [89], and lightweight  field failure 
traces [19]). This same data will be used to aggregate issues  and to enable new kinds of bug triage and 
software maintenance tools (both discussed later). 

Another challenge with reporting issues from the field is obtaining users’ permission to send their data. In 
the case of crash reporting, users are asked to “opt-in” each time the system wants to send information. 
This consent process would be different  for web-based applications, because much of the data is already 
stored on the web server as part these applications’ normal data flow (this is because of the widespread 
use of AJAX, a collection of techniques for implementing interactive web applications that  do not  require 
a page reload). In this case, users have already consented to having some of their application use 
monitored by a web server. I will assess to what extent the additional data may require new forms of 
permission and informed consent.

I will use the above studies to design anonymization and redaction techniques that remove identifying 
information, while preserving the problematic aspects of reported issues. These techniques will 
particularly focus on redacting textual information, since it  is the most likely to contain personally 
identifying information. This research will focus on program analyses that identify when textual data 
plays a direct role in a reported problem and finding automatic ways of preserving the characteristics of 
the data that  caused the issue. For example, users of the Catalyst Tools grading application will have a 
wide variety of privacy-sensitive data including student names and grades; users may use the help tools to 
indicate problems with spreadsheet  formula calculations. The proposed research will detect that  such a 
dependency exists and report the dependencies, but remove the specific text from the data reported.

Even if the help questions are helpful, the data capture is low-overhead, and the privacy issues are 
overcome, it is highly unlikely that all users would report issues using the automatic help tools. 
Therefore, a critical part of the proposed research is evaluating the  representativeness  of the data 
reported from help tools, characterizing the biases imposed by the help technology. To measure 
representativeness, I will have the undergraduates in my annual course on User-Centered Design perform 
field observations of the target applications to evaluate 1) how many users are using the help tools and 2) 
what kinds of help users are able to get from the help tools, and 3) what kinds of issues users are 
resolving through other channels. Students will apply a variety of evaluation methodologies, including 
lab-based user studies, field observations, and experience sampling approaches [18], which ask users to 
document issues they experience periodically. These studies will establish a baseline for the issues that 
users experience in practice, allowing us to measure how many of these issues were reported by the 
automatic help tools. We will then use this feedback to extend and refine the kinds of help that the tools 
support. (I discuss the educational aspects of these plans in Section 4.4).
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3.5. GROUPING HELP QUESTIONS INTO GENERALIZED, EXECUTABLE TEST CASES

With these reporting mechanisms in place, a central part  of the proposed research is to automatically and 
incrementally producing meaningful  groupings of the data as it  arrives. For example, imagine that a 
team receives 10,000 questions about an error dialog that says some data cannot  be exported. Underlying 
these questions are one or more reasons why the dialog was shown, corresponding to different conditions 
that were checked before displaying the error. The challenge is to group these different cases by the 
different  error conditions from which they emerged, while generalizing away details such as the particular 
data that  users were trying to export. Prior work performed grouping on whole execution traces [69]; I will 
aggregate field data by exploiting properties of the lightweight traces, across the phases in Figure 6.

The first  phase will group issues by the subject of questions asked by users and 
the  dependencies involved in the answer. For example, imagine an application 
with 70 unique error dialogs: the system would split  the issues by these error 
dialogs, and then further subdivide those groups by the particular conditions that 
produced the error. This grouping could be performed incrementally as data arrives 
from the field, since the subjects of questions and the answers depend largely only 
on the application source code and not on each particular reported case. As part  of 
this grouping, issues would also be segregated by program versions.

Because the number of issues within each of the above groups may still be large, 
the second phase will generalize  the specific input values that caused the 
program to produce  the unexpected output. To detect which values contributed 
to the errors, I will apply unsupervised machine learning techniques to separate the 
input  that contributed to failure into distinct  groups. Because teams will likely 
depend on these groupings to be stable (for example, by writing bug reports against 
the groups), I will explore incremental adaptions of these learning techniques that 
handle the continual arrival of data from the field.

In the final phase, I will develop techniques that generate  a representative, 
executable  test case  from the classes of the previous phase. Because the field data 
reported will not be complete execution histories, they cannot be used to directly 
reproduce issues. Instead, I will exploit  the large scale of user data and extend the 
execution history captured on the web server to create a single complete execution 
trace for a representative example of an issue. These execution traces will enable 
the reproduction of failures, addressing a major challenge in software maintenance 
[9, 48].

In addition to this multi-level grouping, I will also explore techniques for filtering 
reports that may not represent real issues. For example, the reported data is 
likely to contain some learning activity, since the help tools can be used to 
understand how a program’s features work (as opposed to overcome an issue). I 
will explore statistical methods of tracking individual users’ reports to distinguish 
between novice and experienced use. Finally, some users may attempt to “game” 
the reporting mechanism, repeatedly sending feedback about a problem in order to 
try to influence its frequency. I will explore filtering approaches that detect 
statistical outliers or limit reports about specific issues to a certain number per day.

To evaluate the above work, I will measure the extent  to which the generalized test cases reveal 
meaningful and useful distinctions  between reported issues. For example, I will perform studies that 
assess whether the groupings of issues faithfully represent  the concerns expressed by users, whether 
software teams perceive the issues in the same way that users do, and whether software developers find 
technically meaningful distinctions in the groupings. I will use the results of these studies to iterate and 
refine the techniques described above.
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3.6. ANALYZING FIELD DATA WITH NEW BUG TRIAGE TOOLS

While the techniques proposed in the previous section will help group and reproduce issues, a list of 
issues is not in itself useful. Therefore, a significant part  of the proposed work will be to design evidence-
based bug triage tools that help teams analyze and prioritize issues more objectively. These tools will:

■ Visualize field data as “hot spots” in user interfaces. One way of supporting the exploration of 
the data is to let  teams view issues as users experienced them. For example, if a field in a form 
was particularly error-prone based on the field failure data, the proposed system would apply 
highlighting to the field using estimates of the issue’s frequency. This user interface would also 
allow teams to view and compare issues, issue frequency, and the kinds of input that caused them.

■ Track issues over time  and software versions. Because field data would arrive continuously, I 
will explore ways of applying unsupervised machine learning techniques to attributes of field data 
to highlight  new issues or new situations in which issues are occurring. This could be particularly 
helpful after deploying software updates or revisions to a web site, providing automated feedback 
about whether software changes successfully resolved an issue.

■ Enable discussion about how to respond to user feedback. Because bug triage is a team 
activity, and many teams are separated by distance, the proposed tools will provide online, 
asynchronous discussion tools to help teams evaluate and respond to user feedback.

■ Integrate other forms of user feedback. Because the field data captured by the proposed work 
would be complimentary to both large scale crash report  data and small-scale from software and 
usability testing, I will explore ways of integrating these various sources of user feedback. These 
features will link to data from other sources and provide a repository for storing it and will involve 
program analyses that automatically relate issues from different sources.

In addition to the above features, the triage tools will also support a scripting API that  enables teams to 
analyze, filter and compare data in custom ways to better support triage. This API will allow teams to:

■ Compute  custom frequency data. While showing the absolute frequency of a particular type of 
issue could be helpful, there are more subtle kinds of frequency that may be more helpful in 
making business decisions about the issue’s priority. For example, a team may want to know how 
many times an issue occurs in a day or how many times individual users experience the issue. 

■ Estimate  severity from context. While the primary goal of the proposed work is to obtain more 
representative frequency data, the data captured in the execution histories from the field could also 
be used to estimate the severity of issues from a user perspective. For example, by providing teams 
with ways to compute features of the field data, these histories could be used to estimate how 
much data was lost  as a result of non-fatal error messages or how often users abandoned the 
application after experiencing an issue. While these severity estimates would be crude, they would 
be an improvement over the speculation that developers currently rely upon [50].

■ Identify and compare user groups. Even when a majority of users are experiencing an issue, 
they may not be the the most important  user population to a team. For example, there may be a 
feature that a majority of users do not understand but that  a small group of lucrative corporate 
users need to work in an important but obscure way. I will investigate ways of comparing field 
data across different user groups by providing teams with support for defining user groups based 
on customer data. I will also invent  tools that  allow teams to identify user groups with 
unsupervised machine learning on attributes of the field data.

To evaluate the above contributions, I will assess the  above  tool features in a series  of controlled 
experiments, each comparing groups of users with the experimental feature to a control group without 
the tools. These assessments will provide evidence of the efficacy of the individual features.
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3.7. EXPLOITING FIELD DATA TO STREAMLINE SOFTWARE MAINTENANCE 

In addition to using the field data to support  more evidence-based bug triage, I also plan to exploit  the 
field data to streamline software maintenance and debugging in other ways. These tools include:

Automatic fault and feature localization. One part  of 
making bug triage decisions is estimating the amount  of 
work necessary for implementing a change by identifying 
the code responsible for a particular program behavior [48]. 
I will exploit  the large scale of the help question data to 
extend my prior work on the the Whyline [49] (shown in 
Figure 7) to support more precise and automatic fault and 
feature location. This will provide teams with a measure of 
how much of a program contributes to an issue across the 
range of reported cases, facilitating evidence-based 
estimates of the cost and risk of making the change.

Predicting the user consequences of design changes. 
Every time a code change is made, a critical challenge is 
predicting the consequences of a change to users’ 
experience with software. I will explore ways of comparing 
the execution patterns that led to issues in the field data to 
the execution patterns of designs that  teams have 
prototyped but not yet deployed. For example, imagine a 
developer has created a new web form with error validation 
that relies heavily on validation code that, in the past, led to 
a high predominance of questions. These new analyses 
could provide automatic warnings to developers, allowing 
them to learn from the feedback from prior deployments. 
Evaluations of this work will focus on assessing the rate of 

false positives reported by these techniques.

Automatically assigning issues to developers. A significant part of bug triage is deciding which 
developers to assign issues. Prior work has explored using text  classification to automatically assign bug 
reports to developers [4], but this approach does not take advantage of information about  the components 
involved in the failure. The execution histories captured by the proposed work could be used to make 
stronger associations between the components involved in a software issue in the field and the developers 
who have experience maintaining these components.

Detecting issues from feature  usage  data. Although the proposed research will attempt to increase the 
representativeness of field data by increasing the number of users who provide feedback, not  all users will  
use these mechanisms, nor will users rely on them universally. However, there are opportunities to still 
learn from these users and situations by combining usage data with the questions that other users have 
asked. I will explore ways of statistically modeling the input  contexts that  lead to questions and then 
using these models to try to detect  the prevalence of similar issues from feature usage data. These 
analyses increase the representativeness of frequency estimates.

Identifying usage patterns to support design decisions. Though most software teams already have 
some idea about who their users are, the field data captured by the proposed research can provide 
evidence about  how different users understand and use software features. For example, the help question 
data could reveal that users who have difficulties authoring mail filtering rules also have difficulty 
configuring spam filters. I will explore machine learning techniques that help teams identify these 
associations between feature usage, identifying opportunities to improve how software features are 
partitioned and presented in user interfaces. It  may also reveal opportunities to design new features that 
overcome the features that users struggle to use.
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4. REDEFINING SOFTWARE QUALITY ASSURANCE EDUCATION

My research on evidence-based bug triage is tied closely to my educational goal, which is to redefine 
software quality assurance education. This vision is directly aligned with my teaching duties, which are 
primarily to teach undergraduate Informatics and Computer Science students who pursue jobs as software 
testers, software developers, usability experts, and managers of software teams. In this section, I describe 
my teaching approach and philosophy and then detail three educational initiatives that contribute to this 
educational vision, while enhancing, exploiting, and integrating my proposed research.

4.1. ACCOMPLISHMENTS IN EDUCATING WITH DIRECT EXPERIENCE

My educational approach is to give  students direct experience with team-based software  design. For 
example, my courses mix lectures with engaging classroom activities and lab sections that  help students 
apply their knowledge to real design projects. All of my courses revolve around team projects that help 
students learn to work in interdisciplinary teams. For example, last fall I taught two courses in which 
students applied user-centered design methods to design and evaluate technologies to support the 2008 
U.S. elections. Students observed campaign center visitors and interviewed blind and elderly users and 
prototyped and evaluated technologies to support these user groups as interdisciplinary teams.

As a new teacher, I have quickly demonstrated my commitment to teaching. For instance, I have a 
4.85/5.0 average student evaluation score across two courses required courses. Several students wrote 
unsolicited feedback to my dean, saying, for example, “We were constantly shown real world examples 
and given real context to support the theories being presented. Andy didn’t simply stand on a pedestal and 
preach philosophies that we must take on faith.” I hope to sustain this teaching success partly by learning 
from experienced teachers. For example, I have weekly meetings with senior computer science 
lecturers to discuss teaching approaches. I also gather data about the experiences of my Computer 
Science and Informatics undergraduates, publishing this work to educational communities [51].

4.2. ENGAGING USER-CENTERED DESIGN STUDENTS IN THE PROPOSED RESEARCH

One way that I will integrate research and education is by involving undergraduates in  evaluations of 
the proposed research. For instance, one aspect  of my proposed research will involve comparing the set  of 
issues reported by help-seeking tools to the full set  of issues that users actually experience. To perform 
this comparison, I will enlist  the help of the 70 students I teach annually in my User-Centered Design 
course. During the course, students perform user studies, field observations, interviews, and surveys, all 
revealing a set of problems with a particular user interface. Once the automatic help tools are 
implemented, I will have students in this class explicitly compare the set of issues that  users experience in 
practice to the subset of issues identified by the help tools. In the process, students will learn about  the 
strengths and weaknesses of different usability testing methods, but they will also learn about the goals of 
the research project and be part of assessing the representativeness of the issues reported.

I expect  this integration to lead to several outcomes. For example, students may more express interest in 
participating in research or pursuing graduate school. Students may also be more engaged in the course 
material because it  involves a goal that extends beyond the classroom. I will assess these outcomes by 
comparing students in different offerings of the  course, tracking whether they pursue graduate school, 
what kinds of jobs they pursue after graduating, and whether they find the course useful in their careers. 

4.3. TEACHING TEAMWORK IN A STUDIO-BASED PROJECT COURSE

Another way that  I will integrate research and education is by offering a new course in which to 
disseminate the results of my research. This course, to be offered in 2011, will explicitly teach teamwork 
aspects of software  engineering to Computer Science and Informatics students. Knowing how to work in 
a team is particularly important for software testers and usability practitioners, since people in these roles 
collaborate closely with developers, managers, and customers to ensure software quality [50].
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The course will have two main components: (1) instruction about  the fundamentals of team coordination 
and small group communication, and (2) a team software development  project, in which students will 
apply this instruction to specific roles in their software team. While part  of the course will focus on issue 
tracking, revision control, and code review skills, I will explain the importance of these skills by 
describing more theoretical observations about human aspects of software teams. For example, I will 
demonstrate that  modularity and object-orientation, two of software engineering’s most successful ideas, 
are essentially ways to reduce coordination requirements in teams [12, 21, 15, 66]. I will also teach the 
consequences of coordination challenges, explaining that most  knowledge about bugs and software 
architecture is tacit, in that  it  rests in the minds of the team, but is not documented [6, 54]. This instruction 
will involve a great deal of industry participation, particularly from software quality professionals at 
Microsoft (see attached letter).

To assess the course, I will compare peer evaluations, grades, and job placement outcomes of students 
who take the course and students who do not. I will also maintain contact with students after they take 
jobs, gathering feedback about the impact of the course on their professional experiences. The results of 
these assessments and the course materials, will be made publicly available for other instructors.

4.4. ORGANIZING A PEER AND PROFESSIONAL MENTORING EVENT ON SOFTWARE QUALITY

A third way that  I will integrate research and education is to bring together students and professionals in 
an annual  peer and professional mentoring event on software quality. This event  will involve a day of 
small group discussions and presentations meant  to inform students about  the day-to-day life of software 
testers and usability experts. Participants will include pre-major college and high school students 
interested in careers in the software industry. Mentors will include other students who have completed 
internships and industry professionals from local companies, including Microsoft, Amazon, and Boeing.

This event will serve many purposes. It will address a common student misperception that software 
development  is anti-social and isolating; students will learn that, to the contrary, software and usability 
testing jobs involve a great deal of communication, persuasion, and discussion. As this may increase 
enrollment in Computer Science  and Informatics, I will compare enrollment outcomes of students who 
do and do not attend the event. I also will use the event as an opportunity to systematically interview 
industry participants, learning about  their team’s approach to bug triage and how my proposed research 
might  integrate into their processes. This will further ground my research in practice and foster new 
research ideas and opportunities for technology transfer. 

5. FIVE-YEAR PROJECT TIMELINE

Figure 8 shows the timeline for my research and education plans. The activities are grouped into three 
parallel activities: prototypes (in which my team implements systems that test  the feasibility of tools), 
deployments (in which we collaborate with Catalyst teams to deploy and gather user feedback), and 
education (in which I plan and execute my teaching and outreach efforts).

The education aspects of the work will be ongoing efforts across all five years. For example, the peer and 
professional mentoring event and the new course on teamwork will begin in 2010 and can be planned 
independently of the other proposed work. I teach User-Centered Design annually. The collaborations 
with the Catalyst Tools team will also occur in parallel, but offset from the main research activities by 
about one year. This will allow my research team to prototype help into web applications to help Catalyst 
assess the feasibility of making the changes in their applications.

The main research efforts will exhibit more of a sequence. In Year 1, we will design automatic help-
seeking tools for web applications. This work will focus largely on architectural and assessment  aspects 
enabling and answering “why” questions. In Year 2, we will focus on reporting, privacy and consent 
issues, testing approaches with small-scale deployments of simple test applications; collaborations with 
the Catalyst Tools will begin. In Year 3, we will work on aggregation and grouping techniques. Students 
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in User-Centered Design will compare field data to data from traditional usability methods. In Year 4, we 
will prototype new bug triage tools and evaluate their effectiveness. In Year 5, we will prototype new 
software maintenance tools and evaluate their effectiveness. The predominance of field data in these later 
years and the increased size of my research team will enable a variety of projects to occur in parallel.

The budget  for this proposal includes support for one graduate research assistant, but the project  team will 
also include Ph.D. students with other forms of support, undergraduates and masters students working on 
senior capstone projects, and students in my classes. All students will be from both the Information 
School and Computer Science, but all will have software development backgrounds. In general, the 
Information School recruits several students with computer science and software development 
backgrounds who want to apply their knowledge in a human-centered way.

6. INTELLECTUAL MERIT AND BROADER IMPACTS

The intellectual merits  of the proposed work include contributions to both scientific understanding of 
software development  teamwork and technical designs of software technologies. Contribution to 
knowledge  include new findings about current bug triage practices and their limitations, discoveries 
about the strengths and weaknesses of different  software quality assessment  methodologies, and 
assessments of the efficacy of a wide range of new technologies. Contributions to design  and technology 
include a new class of automatic help tools that  enable software to explain its behavior to users, methods 
of reporting and aggregating uses of these help tools as indicators of software issues, ways of filtering, 
processing, and analyzing help question data, and new forms of software maintenance tools that  exploit 
the help question data. This research will also lead to several new research opportunities in more 
advanced help technologies and other kinds of feedback mechanisms to support software evolution.

The broader impacts of the proposed work will affect several populations. For software  users, these 
impacts include enabling users to troubleshoot  software, empowering users to influence software design 
through direct feedback, and increasing overall software quality and usability. These impacts will 
ultimately increase users’ productivity and reduce frustration with technology. For software companies, 
impacts include several free and open source software maintenance tools, an ability to work objectively 
with data from the field, and thus improved success for their organizations. For students, impacts include 
a new course on teamwork in software design, increased relevance of education to students entering the 
software industry, increased student participation in research, usability improvements to courseware 
developed at the University of Washington, and opportunities to directly participate in research. Graduate 
students will be essential members of the project team, learning skills in field research, user interface 
design, usability evaluation, empirical studies, software engineering, and research prototyping.
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7. CAREER OBJECTIVES AND ACCOMPLISHMENTS

My overall career goal is to support human aspects of software  engineering; enabling 
and exploiting evidence-based bug triage is just  one part  of this larger goal. For example, 
my dissertation work sought  to understand and support the “why” questions that  software 
developers ask when they are debugging. Over the course of six years, I performed several 
studies about  program understanding and debugging, spanning observational studies in 
educational settings [46], lab studies with expert  developers [31, 47], and field studies of 
nearly twenty software development  teams at  Microsoft  [16, 50]. The major finding of 
these studies was that  debugging is difficult  because of the guesswork that it  involves: 
because developers cannot trace back directly from the visible symptoms of failures, they 
have to guess what is causing the failure. Their initial guesses are usually incorrect, 
costing considerable time.

To avoid this guesswork, I invented a tool called the Whyline [46, 49], which allows 
developers to click directly on  the visible symptoms of failures and choose “why” 
questions about the properties of these symptoms. The tool then uses a both static and 
dynamic program analyses to isolate the causes of the failure, helping developers quickly 
navigate control and data dependencies. My prototypes dramatically reduced debugging 
time compared to regular breakpoint debugging tools [49, 52]. This work has received 
international press, four best paper awards  at top conferences, and resulted in over 30 
peer-reviewed articles in 7 venues across Human-Computer Interaction and Software 
Engineering venues.

In addition to this work, I have extensive experience in developing other kinds of software 
development  tools. For example, Figure 9 contains snippets of my work on other 
debugging tools, novel code editors, new programming languages. I also have 
considerable background in designing performing empirical studies in the classroom, in 
the lab, and at software development  companies. I also have over ten years of experience 
in Computer Science, Psychology, and Design disciplines, giving me a unique 
interdisciplinary perspective on Software Engineering research. With my adjunct  status in 
Computer Science & Engineering, I also plan to advise several Computer Science 
Ph.D. students, in addition to more technically skilled Information School Ph.D. students.

The diversity of my expertise and my deep understanding of the nature of software 
development  practice has also led to several strong ties to industry. In just  one year in 
Seattle, I have established connections with over 30 local companies; I have worked 
closely with Visual Studio teams to support  future versions of debugging and code 
navigation tools; I also work with the Firefox and Bugzilla open source community to 
understand their bug triage and global communication challenges. I intend to act as a key 
mediator between academia and the software industry throughout my career.

8. RESULTS FROM PRIOR NSF SUPPORT

I have no prior research funding from NSF. I have received one service grant  to support 
student  travel for a 2009 graduate student consortium, bringing together 12 Ph.D. students from around 
the world to discuss their research on broadening participation in computing.

My Ph.D. work was supported by an NSF Graduate Research Fellowship and a National Defense Science 
and Engineering Graduate Fellowship. I was also supported by NSF grant  IIS-0329090 entitled Lowering 
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