
Source-Level Debugging with the Whyline
Amy Ko and Brad Myers

Human-Computer Interaction Institute
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213
{ajko, bam}@cs.cmu.edu

ABSTRACT
The visualizations of the Whyline are presented, which focus on
supporting the exploration a source code and how it executes. The
visualization is concise, simple to navigate, and mimics syntactic
features of its target programming language for consistency. Two
studies showed that users with the visualization completed a
debugging task twice as fast as users without the visualization,
partly due to features of the visualization. Applications of the
visualizations to tasks other than debugging are discussed.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: User-centered design, interaction styles

General Terms
Human Factors

1. INTRODUCTION
Despite decades of research, debugging remains one of the most
challenging and time consuming aspects of software development
[9]. One promising solution to this problem is the idea of
recording a program’s execution and providing a user interface for
exploring it. For example, some previous tools allow a developer
to step through the recording event by event [6]; others visualize
changes to data structures that are used in the program, to help the
developer understand the relationship between the source code
and its behavior [2]. Many show statistics about aspects of a
program’s execution, to help a developer isolate performance
issues and other global aspects of a program’s execution [6].

Although each of these tools is designed for a different task, they
all move the developer’s attention away from code and instead to
representations of code. Yet, in practice, code is what developers
fix, it what they understand, what they annotate, what they
discuss: evidence shows that code is the artifact of interest and
representations of code play supporting roles [1].

To address this need, we present a code-centric visualization
intended as a means of viewing code, rather than as a replacement
for it (Figure 1). Our visualization is compact, supports random-
access, combines control and data flow data, and is even aware of
its user’s familiarity with specific code. We also present evidence
of the visualization’s effective support of debugging tasks.

Figure 1. Question (top) and answer (bottom). The numbered
areas are described in the text.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHASE '08, May 13, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-039-5/08/05...$5.00.

3

4

12

6

5

7

69 Most up-to-date version: 06/22/2021

2. EXAMPLE
Our visualization is situated in the context of our work on the
Whyline, a debugging tool for asking why and why not questions
about program behavior. Our original work [3] supported a simple
language, but our current work supports Java programs [4].

Interaction with the tool is simple. The user performs the behavior
they want to ask about while the Whyline records a trace. After
the program stops, the Whyline loads the recording and presents
an I/O history; the user finds the time they want to ask about by
dragging a cursor through this I/O history (Figure 1.1), optionally
filtering events (such as drag events, as in 1.2) to simplify the
selection of certain types. As they do so, the output are reproduced
to show what the output looked like at the selected time.

Once the user finds the time they are looking for, they can click on
something related to the behavior that they want to ask about
(1.3). This shows questions about the selection (1.4); in this
example, the user clicks on the line and asks “why did this line’s
color = ■?” (in this example, the color should have been blue, but
was not). The Whyline then finds the cause of the color and shows
a visualization explaining the execution events that caused the
stroke to have its color (1.5). When the user selects an event, the
Whyline shows the corresponding source file (1.6). In this case,
the Whyline selects the most recent event in the answer, which
was the color used to paint the stroke. (Technical details about
how the Whyline generates and answers questions are available in
[4]).

To find out where the color came from, the user selects the label
“➊ color” (1.7). This causes the view to select the instantiation
(2.1) and its corresponding code (not shown). When the the code
for the instantiation appears, the user would likely notice that the
green slider was used for the blue part of the color.

3. DESIGN
The design choices behind our visualization focus on simplifying
tasks such as the example above: a user needs to find some
information, and the visualization helps by showing information
in multiple forms and in relation to other information. These goals
are reflected in both the design of our notation and in its
interactivity.

3.1. Notation
We designed our notation to mimic Java syntax. For example, an
invocation (such as stateChanged in 2.2), occurs just before
the ()’s, which contain method arguments. Everything between
the {}’s occurred within the method (2.3). The visualization is
two-dimensional: the x-axis contains the sequence of execution
events and the y-axis indicates the thread in which an event
occurred. For example, the two rows at 2.4 show separate threads.

Each event is placed in a container that represents a control
dependency. For example, the event at 2.1 is contained in the call
to stateChanged (2.2), which is surrounded by the rectangle in
Figure 2. These containers contain all of the event caused by a
particular control decision (such as invoking a method or

Figure 2. The Whyline’s answer to “why did this line’s color = ■?”, showing (1) the current selection, (2) the use of Java syntax to segment
events, (3) two separate threads of execution, and(4) a call container.

4

2 13

70

evaluating a condition). Similarly, an if might lead to a series of
method calls; the if-container would contain all of these calls. It
is important to note that we only show a border if an event in a
container is selected; if we always showed the border, the
visualization in Figure 2 would have dozens of rectangles
surrounding each container, making it difficult to read.

Generally, the visualization only shows events that could not be
determined by reading code. For example, we show invocations
and instantiations, but we do not show intermediate values
computed in expressions (instead, we just show the results). Our
visualization also attempts to omit unfamiliar details. For
example, it minimizes events that occurred in unfamiliar code
(Figure 2.1)—code for which the user has no source code. It
collapses containers of events that occurred in unfamiliar code.
These are shown filled, unlike other events, indicating it is a
“black box,” whose contents are not shown. Finally, if familiar
code executed as a result of unfamiliar code (for example, in the
case of a call back procedure called by an API), the visualization
hides the calling context, but shows the familiar events that
occurred as a result. The dashes indicate “hidden.”

We explored the possibility of a vertical layout for the event
visualization, as most of the visualization contains horizontal text.
This worked well in our prototypes, except for programs with
multiple threads of execution, which required the second
dimension. Collapsing all threads together (which our prototype
supports) is also practical.

3.2. Interaction
A major design goal for the design of our visualization is to
minimize the amount of interaction necessary to jump from event
to event and to provide several ways of navigating between
events. To support this, the UI maintains single selection (as in
Figure 2.1), which determines what else is shown on screen.

The user can navigate from the selection using a variety of
commands. They can click on an event in the history; they can
also use the left and right arrow keys to jump between adjacent
events in the history. This is useful for seeing the order in which
things occurred. The up arrow key jumps back to the most recent
control dependency before the selection (for example, at Figure
2 .1 , press ing up would jump back to the ca l l to
stateChanged). The down arrow key jumps ahead to the most
recent control dependency after the selection (for example, at
Figure 2.1, pressing down would jump to the next method
invocation, the call to setColor). The user can also step to the
previous or next event in the method or thread. These interactions
are similar to the regular debugger commands.

In addition to navigating temporally, the user can also navigate
events based on data dependencies. In our example, the
visualization started in Figure 1.5 by showing the Color value
used; this particular use depended on a two prior events: the
instantiation of the Color, and the object that happened to store
the color in its field (obtained by a call to next()). Choosing the
first dependency (by clicking or typing the number in the circle)
allows the user to quickly jump to the instantiation of the color
(Figure 2.1), which then shows its data dependencies, namely the
three getValue() calls on the color sliders. The source file
shows the same data dependencies as in the visualization, with the
same numbers (compare Figure 1.6 and 1.7).

No matter what navigation is performed, the user may always
press backspace in order to go back to the previous selection. This
allows users to peek ahead at a related event without fear of losing
their place.

3.3. Revealing Dependencies
The other views in our environment are closely connected with
the visualization. For example, the event highlighted at Figure 1.5
shows the source code for both the event’s line of code (1.6), and
the code for that line’s data and control dependencies. Rather than
having the user navigate to these dependencies, the Whyline
automatically shows the relevant files, scrolls to the relevant lines
of code, and highlights each of them by showing the surrounding
context (de-emphasizing the rest with a gradient), and underlining
the lines of code involved.

We also use animation throughout these changes to help reify
relationships between code and events. For example, as the
selection changes and source files rearrange, those files that are
common to the new and previous selection stay in place, while
unneeded windows shrink away and new windows appear. This
helps the user know which files are still relevant, without causing
them to lose their focus. Figure 3 shows an example of this
animation, in which the file in the window in the upper left
animates to take up the whole screen. At the same time, the
window also animates scrolling to the new line of code.

On new selections, the Whyline also updates the call stack to
show the current state of the thread and the current values of the
current method’s local variables (Figure 4). Clicking on any of the
call stack entries jumps to the particular call in the event
visualization; clicking on any of the local variables jumps to the
place in the history where the local variable was assigned. To keep
the user oriented with the program’s execution, the Whyline also
updates the state of the output history (Figure 1.3) for every new
selection. Therefore, if the user was debugging code about shapes
being drawn on screen, they would be able to see the shapes
appear while navigating through events.

4. USABILITY EVALUATION
As a preliminary evaluation of our visualization, we performed a
usability test with nine users of varying backgrounds (with the
least experienced user having never seen a line of code and the
most having programmed for more than a decade). We gave each
participant a two minute tutorial about how to use the Whyline,
including information on how to ask questions and follow data
dependencies, and then showed the paint program from the
example and the program’s blue slider’s incorrect behavior. We
then asked participants to find the cause of the behavior and tell us
when they thought they had found it. As they worked, participants
were allowed to ask questions about the user interface, but not
about the task or code.

Many participants asked, “what do these numbers mean again?”
referring to the data dependencies in Figure 1.4. Users also
inquired about the meaning of the various types of notation in the
visualization, and in each case, the experimenter asked them to
guess. For example, several asked, “what do these curly braces
mean?”; their guesses were of the form, “I guess they’re like the
values passed to the methods,” which was correct.

Some participants had trouble understanding why the
visualization was showing a particular source file for a given
selection (as in Figure 1.6), saying, “wait, what are all these for?”
Some spent the time to find out, and usually found the
visualizations arrows and labels helpful in establishing the
connection between the files. Others would navigate between the
events in order to see how the arrangement of source files
changed, until they understood the meaning of the changes.

We compared the performance of these participants to that of
users from a prior study working on the same task using Eclipse
[5]. Whyline users completed the task in a median of 4 minutes,

71

ranging from 1 to 12, twice as fast as the control group, which
required a median of 10 minutes, ranging from 3 to 38 (p < .05,
Wilcoxon rank sums). Based on participants’ comments, part of
this was due to the Whyline’s answers and part was due to the
ability to explore the history at the granularity of the code.

5. EXPERIMENTAL EVALUATION
In a second evaluation, we designed an experiment to compare the
performance of Whyline users against conventional debugger
users (in order to make stronger claims, the conventional
debugger was simulated using a Whyline trace, ensuring all other
tool features were equivalent). Our sample consisted of 10
participants in each group for a total of 20. Participants were all
students in a masters program in software engineering, but had a
median of 1.5 years of industry software development experience.

Participants worked on two tasks adapted from bug reports of
ArgoUML a 150,000 open source Java application for designing
Java applications themselves. The first bug involved removing a
particular checkbox from the user interface. (The typical strategy
of search for the label of the checkbox in the source code did not
work well in this task because the application used localized
strings, but the checkbox label did appear in the command line
help). The second bug involved investigating a drop down list of
Java types that was supposed to contain all legal types for a field,
but was for some reason excluding classes in different packages
but with equivalent names. Participants were given 30 minutes to
work on each task and told to write a change recommendation to
the code’s owner for each bug rather than actual modify the code.

All 10 Whyline participants completed task one, compared to only
3 control participants (χ2 =10.6, p<.05). Whyline participants also
completed task one twice as fast (t=4.5, p<0.05). The control
participants who did finish the task got lucky in their searches and
explored hundreds of files, whereas the Whyline participants only
explored a median of three. On task two, 4 Whyline participants
were successful, compared to none in the control group (χ2 =5, p<.
05). This task was considerably more difficult; the successful
Whyline participants spent all thirty minutes on the task, but much
of it was in order to understand some of the Java APIs used in
constructing the list for the drop down menu.

Given the difficulty of the two tasks and the sheer size of the
application, that anyone was able to solve the tasks, even with the
Whyline, is a testament to the effectiveness of the Whyline
approach and of the Whyline’s user interface. The participants
concurred. Some unprompted quotes include "My god, this is so
cool." and "When can I get this for C?"

6. DISCUSSION
Our visualization was designed specifically to support debugging
and program understanding, but we believe our design ideas can
be applied to tools with other goals as well. For example,
algorithm animation tools with educational goals [2], which
typically only support very small, single file programs, could use
our techniques to help learners grasp the execution of programs
that span multiple files and tens of thousands of lines.
Performance analysis tools, which currently force users to analyze
coarse ranges of program execution, could use our techniques to
help users specify more precise ranges of times to analyze
performance (i.e., after this input event, what took the most time).
Our visualization would also improve tools that visualize
concurrency events by providing a more concrete level of detail
for users to explore. For example, users could check the behaviors
of specific threads in specific methods relative to the code and
freely navigate between these threads, without having to reason
about such threads as abstract entities. Even traditional breakpoint

debugging tools could use our visualizations in order to help users
monitor and explore what a program has done (even if in a more
limited way if they lack a full trace).

Of course, any design makes tradeoffs; ours’ emphasizes certain
kinds of information over others. For example, because our
execution event visualization focuses on low-level code events,
and not high level behaviors of a program, it makes it difficult to
see such high level interactions, which are visualized by other
tools [6]. Such views might be a good starting point for
investigating these interactions, and then our visualizations could
be used to “drill down” and explore the details.

Another limitation is that our event visualization cannot stand
alone: is was designed to be used in conjunction with the other
views of source and call stack state. This is largely because the
representations of our events do not indicate to what code they
refer. This is not the case for other types of visualizations, where
the goal is often to aid the user in perceiving visual patterns in
pixels, and do not require the user to see the related code until
identifying a pattern.

In conclusion, we believe that our visualization not only provides
an effective way to help with debugging tasks, but it also provides
a flexible visual design that may help users understand other types
of data from development tools. In the future, we hope to explore
these possibilities in depth.

7. ACKNOWLEDGEMENTS
This work was supported by the National Science Foundation
under NSF grant IIS-0329090 and the EUSES consortium under
NSF grant ITR CCR-0324770. The first author was supported by
NDSEG and NSF Fellowships.

8. REFERENCES
1. Cherubini, M., Venolia, G., DeLine, R. and Ko. A. J. (2007).

Let's Go to the Whiteboard: How and Why Software
Developers Draw Code. ACM Conference on Human Factors
in Computing Systems (CHI), April 28-May 3, 557-566.

2. Hundhausen, C.D., & Brown, J.L. (2007). What You See Is
What You Code: A 'Live' Algorithm Development and
Visualization Environment for Novice Learners. Journal of
Visual Languages and Computing 18(1), pp. 22-47.

3. Ko, A.J. & Myers, B.A. (2004). Designing the Whyline: A
Debugging Interface for Asking Questions About Program
Failures. ACM Conference on Human Factors in Computing
Systems, Vienna, Austria, April 24-29, 151-158.

4. Ko, A.J. & Myers, B.A. (2008). Debugging Reinvented:
Asking and Answering Why and Why Not Questions about
Program Behavior. Submitted for publication.

5. Ko. A. J., Myers, B.A., Coblenz, M. & Aung, H. H. (2006).
An Exploratory Study of How Developers Seek, Relate, and
Collect Relevant Information during Software Maintenance
Tasks. IEEE Transactions on Software Engineering, 32(12),
971-987.

6. Lewis B. (2003). Debugging backwards in time, International
Workshop on Automated Debugging, 225-235.

7. Reiss, S.P. (2007). Visual Representations of Executing
Programs. Journal of Visual Languages & Computing, 18(2),
126-148.

8. Tassey, G. (2002). The economic impacts of inadequate
infrastructure for software testing. National Institute of
Standards and Technology, RTI Project Number 7007.011,
2002.

72

