
Development and Evaluation of a Model of Programming Errors

Abstract

Models of programming and debugging suggest many
causes of errors, and many classifications of error types
exist. Yet, there has been no attempt to link causes of
errors to these classifications, nor is there a common
vocabulary for reasoning about such causal links. This
makes it difficult to compare the abilities of programming
styles, languages, and environments to prevent errors. To
address this issue, this paper presents a model of
programming errors based on past studies of errors. The
model was evaluated with two observational of Alice, an
event-based programming system, revealing that most
errors were due to attentional and strategic problems in
implementing algorithms, language constructs, and uses
of libraries. In general, the model can support theoretical,
design, and educational programming research.

1. Introduction

In the past three decades, there has been little work in
classifying and describing programmers’ errors. Yet, the
work that has been done was largely successful in
motivating many novel and effective tools to help
programmers identify and fix errors. For example, in the
early ‘80’s, the Lisp Tutor drew heavily from analyses of
novices’ errors [1], and nearly approached the
effectiveness of a human tutor. The testing and debugging
features of the Forms/3 visual spreadsheet language [3]
were largely motivated by the type and prevalence of
spreadsheet errors [18].

Recently however, the event-based style has become
widely used, and no comparable description and
classification of errors common in event-based systems
exists. Not only do expert programmers widely use Java
and C# to create interactive and enterprise applications,
but many end users use Macromedia’s Director,
Microsoft’s Visual Basic, Carnegie Mellon’s Alice [4],
and other event-based languages to create domain-specific
interactive applications. To complicate matters, there is no

common vocabulary for discussing the distribution of
errors within the event-based style, or for describing and
comparing errors in other styles, languages, tasks,
domains, and environments. This makes it difficult to
analyze what aspects of event-based programming are
difficult, and to design programming environments that
help prevent errors.

To address this issue, we have developed a general
model of programming errors that ties the cognitive
causes of programming errors to specific errors,
integrating prior research on causes and classifications of
errors. In this paper, we describe the model, and evaluate
it using two observational studies of Alice [4], an event-
based programming system. The model was helpful in
describing and explaining errors, as well as in eliciting
design guidelines for new programming tools.

2. What is a Programming Error?

We must first decide on an appropriate definition of a
programming error. In this paper, we use definitions of
error, fault and failure from IEEE standard 610.12-1990.
A failure occurs when a program’s output does not match
documented output requirements, or the programmer’s
mental model of output requirements. Failures are
ultimately the result of a fault, which is a runtime state of
a program that either is or appears to be incorrect (as in
assuming a lack of output from a debugging print
statement to mean the code was not reached). Faults occur
as a result of errors, which are program fragments that do
not comply with documented program specifications or
the programmer’s mental model of specifications (such as
a missing increment or misspelled variable name).
Failures are usually the first indication to the programmer
that one or more errors exist in a program, although some
errors are found before they cause failures, since they may
be similar to errors already found or may be apparent
when inspecting code. While a failure guarantees one or
more faults exist and a fault guarantees one or more errors
exist, errors do not always cause faults, and faults do not
always cause failures.

Proceedings of the IEEE 2003 Symposia on Human Centric Computing Languages and
Environments (HCC’03), Auckland, New Zealand, October 28-31, pp. 1-8. © 2003 IEEE

Amy J. Ko and Brad A. Myers
Human-Computer Interaction Institute

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 USA

ajko@cmu.edu, bam+@cs.cmu.edu

3. Classifications and Causes of Errors

Past classifications of errors identify a variety of types
and causes of errors in many languages, environments,
and levels of expertise. Table 1 summarizes
classifications often cited in the literature chronologically.
The summary is meant to be a representative sample of
past classifications, rather than an exhaustive list.

There are many interesting patterns in the studies:
failures due to errors can occur at compile-time and run-
time; a given error has many possible causes, including
lack of knowledge and forgetting; errors are made during
specification, implementation, and debugging activities;
there are a variety of artifacts which are error prone.

Many of these patterns were found in empirical studies

of programming activity, and generalized into models that
are better able to suggest the causes of errors. For
example, recent models of programming activity suggest
that programmers form a mental model of a program’s
documented specifications [17]. This mental model may
be insufficient because of a lack of domain or task
knowledge [9], an inadequate comprehension of the
specifications [5], or a poor description of a programs
requirements. This lack of knowledge can cause
programmers to make a variety of errors. For example, a
programmer may intentionally sort a list in increasing
order, forgetting that the specifications called for
decreasing order. Of course, creating and modifying
documented specifications may cause unforeseen
problems, leading to errors as well.

Study Details Bug / Error / Cause Description Authors’ comments
Assignment bug Errors assigning variables values Requires understanding of language & behavior
Iteration bug Errors iterating

Gould [10],
novice, Fortran
1975 Array bug Errors accessing data in arrays

Requires only an understanding of the language

Visual bug Clustering semantically related parts of expression
Naive bug Using branching & iteration instead of parallel processing “…because of need to think step-by-step”
Logical bug Omitting or misusing logical connectives or relationals
Dummy bug Experience with other languages interfering “…seem to be syntax oversights”
Inventive bug Inventing syntax
Illiteracy bug Difficulties with order of operations

Eisenberg [7],
novice, APL
1983

Gestalt bug Not foreseeing side effects of commands "…failure to see the whole picture"
Missing Omitting required program element
Spurious Including unnecessary program element
Misplaced Putting necessary program element in wrong place

Johnson et al.
[14], novice,
Pascal
1983 Malformed Putting incorrect program element in right place

Errors have contexts: input/output, declaration,
initialization and update of variables, conditionals,
scope delimiters, or combinations of these contexts.

Data-type inconsistency problem Misunderstanding differences between data types
Natural language problem Appling natural language semantics to commands
Human-interpreter problem Assuming computer has similar interpretation of code
Negation & whole-part problem Difficulties with constructing logical Boolean statements
Duplicate tail-digit problem Incorrectly typing constant values
Knowledge interference problem Domain knowledge interfering w/ entering constants
Coincidental ordering problem Malformed statements produced correct output
Boundary problem Not anticipating problems with extreme values
Plan dependency problem Unforeseen dependencies in program statements

Sphorer and
Soloway [19];
novice, Basic
1986

Expectation & interpretation problem Misunderstandings of the problem specification

“All bugs are not created equal. Some occur over
and over again in many novice programs, while
others are more rare…Most bugs result because
novices misunderstand the semantics of some
particular programming language construct.”

Algorithm awry Improperly implemented algorithms “method proved to be incorrect or inadequate”
Blunder or botch Accidentally writing code not to specifications “not… enough brainpower left to get the…details”
Data structure debacle Errors using and changing data structures “I did not preserve the appropriate invariants”
Forgotten function Missing implementation “I did not remember to do everything I had intended”
Language liability Misusing or misunderstanding language/environment “I misused or misunderstood the…language”
Mismatch between modules Imperfectly knowing specs, interface; reversed arguments “I forgot the conventions I had built”
Reinforcement of robustness Not handling erroneous input “I tried to make the code bullet-proof”
Surprise scenario Unforeseen interactions in program elements “forced me to change my original ideas”

Knuth [15], in
writing TeX in
SAIL & Pascal
1989

Trivial typos Incorrect syntax, reference, etc. “although my original pencil draft was correct”
Clobbered memory bugs Overwriting memory, subscript out of bounds
Vendor problems Buggy compilers, faulty hardware
Design logic bugs Unanticipated case, wrong algorithm
Initialization bugs Erroneous type or initialization of variables
Variable bugs Wrong variable or operator used
Lexical bugs Lexical problem, bad parse, ambiguous syntax

Eisenstadt [8],
industry experts,
COBOL, Pascal,
Fortran, C
1993

Language Misunderstandings of language semantics

Also identified why errors were difficult to find:
cause/effect chasm; tools inapplicable; failure did not
actually happen; faulty knowledge of specs;
“spaghetti” code

Omission error “Facts to be put into the model…but are omitted,”
Logic error Incorrect algorithm or incorrectly implemented algorithm
Mechanical error “Typing the wrong number…or pointing to the wrong cell”

Quantitative errors: “errors that lead to an incorrect,
bottom line value”

Overload error Working memory unable to complete task without error
Strong but wrong error Functional fixedness (a fixed mindset)

Panko [18],
novice, Excel
1998

Translation error Misreading of specification

Qualitative errors: “design errors and other problems
that lead to quantitative errors in the future”

Table 1. Studies classifying errors, bugs and causes in various languages, expertise, and contexts, in chronological order.

Even if a programmer’s specification knowledge is
sufficient, a programmer may create errors while
implementing a program’s specification because of a
problem with implementation knowledge and strategies,
as in von Mayrhauser and Van’s model [17]. Factors
causing these errors may include working memory
overload, as in Green’s parsing-gnisrap model of
programming [12], unfamiliarity with a programming
language and environment [16], inadequate knowledge of
programming concepts, algorithms, and data structures, or
an inability to apply the appropriate knowledge or
strategies [6, 19]. Implementation errors include simple
syntax errors, malformed Boolean logic, and scoping
problems. The space of implementation errors overlaps
greatly with that of specification errors. For example, a
programmer may unintentionally sort a list in increasing
order, not because she misunderstood specifications, but
because of an inadequate understanding of the algorithm.

Vessey demonstrates that programmers can create
errors even in the process of testing and debugging [21].
Her model of debugging suggests that only after
programmers observe a failure do they realize that one or
more errors exist, and the range of possible errors causing
the failure is highly unconstrained. Further complicating
the situation is that a failure may be caused by
independent or interacting errors. Other models of
debugging [9, 17] suggest that as programmers try to
close the gap between failures and errors, they may
falsely determine faults and errors, possibly leading to
erroneous modifications. For example, in response to a
program displaying an unsorted list because the sort
procedure was not called, a programmer might instead
determine the error was an incorrect swap algorithm, and
erroneously modify the swap code.

These studies are very good at describing specific
situations in which errors can be created. However,
models of error in human factors research can
significantly enhance our ability to reason about
programming errors in general. Most notable is Reason’s
latent failure model of error [20]. In his model, he
introduces the concept of breakdowns , which are
problems using knowledge and strategies. Reason argues
that strengthened knowledge and strategies make
breakdowns less likely, but problems with knowledge,
attention, and strategies can cause cascading breakdowns,
each breakdown making error more likely. He discusses
three cognitive problems that lead to breakdowns:

� Knowledge problems: inadequate, inert, heuristic,
oversimplified, or interfering content or organization.

� Attentional problems: fixation, loss of situational
awareness, or working memory strain.

� Strategic problems: unforeseen interactions from
goal conflict resolution or bounded rationality.

4. A Model of Programming Errors

We use Reason’s model as a basis for our model of
programming errors. In our model, breakdowns occur in
specification, implementation, and debugging activities,
and consist of a cognitive problem, an action, and an
artifact. Cognitive problems are Reason’s knowledge,
strategic, and attentional problems discussed earlier.

Available actions depend on the type of artifacts being
acted upon. Documented and mental models of
specifications can be created, understood, and modified.
The meanings of these actions are different for each
artifact. For example, understanding a documented
specification is a software engineering skill, while
understanding a mental model of a specification involves
recall and reasoning. Implementation artifacts such as
algorithms, data structures, and style-specific artifacts
(such as events in Alice) can be perceived, understood,
implemented, modified, and reused . The meanings of
these actions depend on the environment and language.

Failures, faults, and errors can be de termined.
Determining failure involves perceiving and
understanding output; determining a fault involves
searching for what faults caused a failure; determining an
error involves searching for what error caused a fault.
Failures, faults, and errors have visual representations, so
they can also be perceived. For example, determining if a
program failed to sort a list may involve visually
perceiving the list on a display—whether this is easy or
not depends on the representation. These representations
also have an underlying meaning, thus failures, faults and
errors can also be u n d e r s t o o d. For example,
understanding an error may involve understanding
language semantics. Understanding a fault involves
understanding a runtime state.

Our model hypothesizes many causal links between
breakdowns. Breakdowns in an activity can cause more
breakdowns within the activity, because actions within an
activity often depend on each other. For example,
problems in creating specifications can cause problems
modifying them, and problems understanding algorithms
can cause problems in implementing them.

Breakdowns in an activity can also cause breakdowns
in another activity. Specification breakdowns can cause
implementation breakdowns (this is what software
engineers aim to prevent). Implementation breakdowns
can cause specification breakdowns, since perceiving and
understanding code can change mental models of
specifications. Errors can cause implementation
breakdowns before causing faults or failures (as in a
programmer making a variable of Boolean instead of
integer type and trying to increment it). Errors, faults, and
failures can cause debugging breakdowns, and debugging
breakdowns can cause implementation breakdowns (since
programmers can create errors while debugging).

While our model suggests many links between actions
in breakdowns, it makes no assumptions about their
ordering. High-level models of software development
such as the waterfall or extreme programming models
assume a particular sequence of specification,
implementation, and debugging activities, and low-level
models of programming, program comprehension, testing,
and debugging assume a particular sequence of
programming actions. Our model hopes to describe errors
created in any of these programming processes.

A diagram of our model appears in Figure 1. The grey
regions denote programming activities. The elements in
these regions represent possible breakdowns comprised of
cognitive problems (left column), actions (center), and
artifacts (right column). In the figure, ‘x’ means that any
problem can apply to any action, which can apply to any
artifact. The arrows denote a “can cause” relationship.
Note that the figure does not portray every detail. There
are many types of knowledge, attentional, and strategic
problems, as described earlier, and there are many ways to
perform actions depending on the environment and
language. The figure only intends to provide a small,
standard vocabulary for categories of cognitive problems,
actions, and artifacts.

In general, the model assumes that as programmers
work, cognitive problems cause them to traverse these
causal links, generating a chain of breakdowns that may
lead to errors. To illustrate these traversals, imagine this
scenario. A programmer has inadequate knowledge for
understanding documented specifications for a recursive
sorting algorithm. This instigating breakdown causes a
strategic problem in implementing the swap algorithm,
which causes an erroneous variable reference, and the sort
fails. When noticing the failure, the programmer has
attentional strain in determining the fault, which leads to
inadequate knowledge for modifying the swap algorithm.
The programmer reads the documented specification
again to mend this, but has attentional fixation in
understanding it and mistakenly modifies his mental
specification of the algorithm’s recursion. This leads to
unforeseen strategic problems when later modifying the
recursive call, eventually leading to infinite recursion.

5. Evaluation

To evaluate the utility of the model, we performed two
observational studies of programmers using the Alice 3D
event-based programming system [4]. Alice provides
objects (but does not support typical object-oriented
features such as inheritance and polymorphism), provides
explicit support for event-based constructs, and provides a
drag-and-drop, structured editing environment that
prevents syntax errors. A view of the Alice environment
can be seen in Figure 2. See www.alice.org for details.

Figure 1. A model of programming errors, showing causal
links between breakdowns in programming activities.
Breakdowns are defined by combinations of cognitive
problems, actions, and artifacts.

Figure 2. Alice v2.0: (1) objects in the world, (2) the 3D
worldview, (3) events, (4) details of the selected object,
and (5) the method being edited.

5.1 Experiment Descriptions

We were interested in describing programmers’
breakdowns and errors, and the time spent debugging due
to these errors. Though the studies involved a variety of
tasks and expertise, they were not designed to control for
these two factors. Both observational studies used the
method of Contextual Inquiry [13]. As programmers
worked, the experimenter tracked their goals, and asked
programmers about their strategies and intents when not
apparent. Programmers were also asked to think aloud
about their programming decisions and were videotaped
while they worked.

The first study involved 3 programmers enrolled in the
“Building Virtual Worlds” course offered at Carnegie
Mellon. In the course, students created complex Alice
programs, working on a variety of programming tasks.
Programmers had 6 weeks of prior experience with Alice.

The second study involved 4 programmers creating a
simplified Pac-Man game with one ghost, four small dots,
and one big dot, after a 15-minute tutorial on how to
create code, methods and events. Programmers were
given the objects and layout seen in Figure 2, and were
instructed to follow the specifications listed in Table 2.

Table 2 shows the programmers’ tasks and experience.

5.2 Experiment Results

Each of the videotapes was analyzed for programming
tasks, task goals, goal start and stop times, strategies for
achieving goals (as described by programmers), and
results of using each strategy. From these transcripts,
every breakdown involved in a failure was identified,
along with the resulting errors, faults, failures, and times
at which these occurred. From these breakdowns, the
causal chain leading to each failure was constructed, like
the one in Figure 3. In the figure, the instigating
attentional breakdown in creating the specifications for
the Boolean logic led to a strategic breakdown
implementing the logic, which led to two errors. These
errors led to a fault and failure, and further breakdowns.
The analysis of the transcripts did not find chains that did
not lead to failure, so we were unable to reason about
breakdowns not involved in failures. Furthermore, due to
a lack of data for comparing tasks and expertise, our
analyses combined the datasets from the two studies.

There are many variables that could split such data,
including activity, problem, action, artifact, task,
environment, language, and expertise. There are also
many useful measures: errors per minute, time spent
debugging, percent of errors causing errors, number of
instigating breakdowns, and chain length. For this paper,
we were interested in a subset of these analyses.

Over 895 minutes of observations, there were 69
instigating and 159 total breakdowns. These caused 102
errors, 33 of which led to one or more new errors. The
average chain had 2.3 breakdowns (standard deviation
2.3) and caused 1.5 errors (standard deviation 1.1).

Figure 3. One of P2’s longer breakdown chains, showing
6 breakdowns, 4 errors, 3 faults, and 3 failures.

Experiment ID Hours Prog. Language Expertise Programming Tasks
B1 20 Ave. C++, Visual

Basic, Java
Parameterize rabbit hop animation; make tractor beam catch rabbit; programmatically animate camera moving
down stairs; prevent goat from penetrating ground after falling; play sound in parallel with character swinging bat.

B2 10 High C++, Java, Perl Randomly resize & move 20 handlebars using Jython, the Alice scripting language.

Building
Virtual
Worlds
students B3 30 High C, Java Import, arrange, & programmatically animate objects involved in camera animation.

P1 5 High Java, C
P2 < 1 Low C++, Java
P3 10 High Java, C++

Pac-Man
participants

P4 < 1 High Visual Basic

(1) Make Pac-Man move perpetually & change direction when player presses arrow keys; (2) make ghost move
in random direction half the time & towards Pac-Man otherwise; (3) if chasing ghost eats Pac-Man, make Pac-
Man flatten & stop; (4) if Pac-Man eats big dot, make ghost run for 5 sec, then chase (5) if Pac-Man eats running
ghost, make ghost stop for 5 sec & flatten (6) if Pac-Man eats all dots, make ghost stop & Pac-Man bounce.

Table 2. Total hours programmers spent programming the week of observation, self-rated language expertise, and tasks.

 Frequencies of breakdowns by activity, problems, and
actions are shown in Table 4. Total proportions of
knowledge, attentional, and strategic breakdowns were
similar, but proportions of activities were not.
Implementation breakdowns were 77% of breakdowns,
and tended to be attentional and strategic breakdowns in
implementing and modifying artifacts, and knowledge
problems with understanding and implementing artifacts.
Debugging breakdowns were 18% of breakdowns, and
tended to be knowledge or attentional problems in
determining errors and faults. Table 4 also shows
frequencies of instigating breakdowns: most were
knowledge problems understanding, and attentional and
strategic problems implementing artifacts.

Table 5 shows that breakdown tended to be on
algorithms, language constructs, uses of Alice libraries,
and style-specific artifacts such as events. Note that about
19% of breakdowns were on faults and errors, and there
were no breakdowns perceiving, understanding, or
determining failures. Debugging times were highest for
uses of libraries, algorithms, and language constructs.

Table 6 shows the errors and time spent debugging by
problem and action. Most errors were caused by strategic
problems implementing, modifying, and reusing artifacts
(rather than understanding or perceiving artifacts). The
variance in debugging times was high, and the longest
debugging times were on strategic problems reusing and
knowledge problems understanding artifacts.

Table 7 shows that 46 percent of programmers’ time
was spent debugging. Programming time was correlated
with debugging time (r=.96, p<.001) and number of
breakdowns (r=.88, p<.01). Errors were correlated with
the number of breakdowns (r=.95, p<.001) and number of
breakdown chains (r=.90, p<.01), and programming
(r=.88, p<.01) and debugging time (r=.91, p<.01).
Number of breakdowns was correlated with programming
(r=.88, p<.01) and debugging time (r=.84, p<.05).

Breakdowns Errors Debugging TimeArtifact Type
% of break. # % of errors Mean (SD) in minutes

Algorithms 37 23.3% 34 33.3% 4.8 (6.2)
Language Constructs 35 22.0% 31 30.4% 4.6 (5.5)
Libraries 21 13.2% 19 18.6% 7.1 (6.9)
Faults 20 12.6% - - -
Style-specific 18 11.3% 10 9.8% 3.6 (4.2)
Errors 9 5.7% - - -
Data Structures 8 5.0% 7 6.9% 3.3 (4.1)
Run-Time Specification 5 3.1% - - -
Environment 4 2.5% 1 1.0% 1.0 (-)
Code Specification 2 1.3% - - -
Failures 0 0% - - -

Table 5. Frequency and percent of breakdowns and
errors by artifact, and debugging time for errors.

Actions – frequency (% of all 159 breakdowns)Activity
Problem Create Perceive Understand Implement Modify Reuse Determine Total
Knowledge 1 (.6) 1 (0.6) 1 (.6) 1 (0.6) 1 (.6) 1 (.6)
Attentional
Strategic 5 (3.1) 5 (3.1)

n/a n/a n/a n/a
5 (3.1) 5 (3.1)

Specification

Total 6 (3.8) 6 (3.8) 1 (.6) 1 (0.6) 7 (4.4) 7 (4.4)
Knowledge 16 (10.1) 17 (10.7) 9 (5.7) 17 (10.7) 0 (0) 6 (3.8) 1 (.6) 3 (1.9) 26 (16.3) 43 (27.0)
Attentional 1 (.6) 2 (1.3) 10 (6.3) 15 (9.4) 2 (1.3) 14 (8.8) 3 (1.9) 4 (2.5) 16 (10.1) 35 (22.0)
Strategic

n/a
14 (8.8) 23 (14.5) 4 (2.5) 18 (11.3) 1 (.6) 4 (2.5)

n/a
19 (11.9) 45 (28.3)

Implementation

Total 1 (.6) 2 (1.3) 16 (10.1) 17 (10.7) 33 (20.8) 55 (34.6) 6 (3.8) 38 (23.9) 5 (3.1) 11 (6.9) 61 (38.4) 123 (77.4)
Knowledge 0 (0) 16 (10.1) 0 (0) 16 (10.1)
Attentional 0 (0) 1 (0.6) 0 (0) 12 (7.5) 0 (0) 13 (8.2)
Strategic

n/a n/a n/a n/a
Debugging

Total 0 (0) 1 (0.6) 0 (0) 28 (17.6) 0 (0) 29 (18.2)
Knowledge 1(0.6) 1 (0.6) 17 (10.7) 18 (11.3) 9 (5.7) 17 (10.7) 0 (0) 6 (3.8) 1 (.6) 3 (1.9) 0 (0) 16 (10.0) 27 (17.0) 62 (38.4)
Attentional 2(1.2) 3 (1.9) 10 (6.3) 15 (9.4) 2 (1.3) 14 (8.8) 3 (1.9) 4 (2.5) 0 (0) 12 (7.5) 16 (10.1) 47 (30.2)
Strategic 5 (3.1) 5 (3.1) 14 (8.8) 23 (14.5) 4 (2.5) 18 (11.3) 1 (.6) 4 (2.5) 24 (15.1) 50 (31.4)

Total

Total 6 (3.8) 6 (3.8) 2(1.2) 3 (1.9) 17 (10.7) 18 (11.3) 33 (20.8) 55 (34.6) 6 (3.8) 38 (23.9) 5 (3.1) 11 (6.9) 0 (0) 28 (17.6) 67 (42.1) 159 (100)
Table 4. Frequency and percent of each combination of activity, problem, and action. Non-bold columns are instigating

breakdowns and bold columns are all breakdowns, instigating or not. All percents are out of all 159 breakdowns.

Errors Debugging TimeProblem Action
% of errors Mean (SD) in minutes

Implementing 3 2.9% 5.2 (4.3)
Modifing 4 3.9% 4.6 (7.1)

Attentional
Problem

Reusing 2 2.0% 1.2 (1.2)
Total 9 8.8% 4.0 (5.1)
Implementing 4 3.9% 4.2 (4.8)
Modifying 4 3.9% 5.4 (4.0)

Knowledge
Problem

Reusing 1 1.0% 5.0 (-)
Understand 3 2.9% 6.8 (5.7)
Total 12 11.8% 5.3 (4.2)
Implementing 11 10.8% 4.2 (3.4)
Modifying 13 12.7% 4.7 (5.1)

Strategic
Problem

Reusing 6 5.9% 6.6 (9.3)
Total 33 32.4% 5.1 (5.4)

Table 6. Errors and debugging time by cognitive problem
and action. Only actions causing errors are shown.

Prog. Time Debugging Time Errors Breakdowns Chains Chain LengthID
minutes minutes % of time # # # Mean (SD)

B1 245 142 58.0% 23 41 10 4.1 (3.5)
B2 110 35 32.8% 16 32 7 4.6 (3.3)
B3 50 11 22.0% 3 5 4 1.2 (0.5)
P1 95 23 36.8% 14 23 11 2.1 (1.7)
P2 90 30 33.3% 7 7 7 1.0 (0.0)
P3 215 165 76.7% 34 44 25 1.8 (1.2)
P4 90 27 30.0% 5 7 5 1.4 (0.5)

Total 895 554 46.4% 102 159 69 2.3 (2.2)

Table 7. Programming and debugging time, and errors,
breakdowns, chains, and chain length by programmer.

5.3 Experiment Discussion

The majority of errors in these studies were (1)
knowledge and attentional problems understanding
implementation artifacts and (2) attentional and strategic
problems implementing and modifying algorithms,
language constructs, and uses of libraries. These errors
forced programmers to spend nearly 50% of their time
debugging on average, and caused 29 knowledge and
attentional breakdowns determining faults and errors,
leading to further errors. This suggests that, at least in the
tasks observed in this study, even a small number of
debugging breakdowns lead to significant time costs. It
also suggests a likely reason for the cost: because Alice
provides few facilities for inspecting the execution state
of programs, programmers were unable to attain
knowledge about failures, which led to knowledge and
attentional breakdowns in determining faults and errors,
leading to further errors. This data suggests that Alice
needs better support for inspecting the state of execution
and run-time interactions between program elements.

Another interesting pattern was evident in comparing
P3 and P4, who both finished the task, but had vastly
different strategies. For example, in creating a “while
condition is true” event, P3 asked himself “How would I
do this in Java?” while P4 asked the experimenter, “Just
to be clear, the ‘begin’ part of the while event only
executes once, right?” In these examples, P4 was
obtaining knowledge about event concurrency, preventing
insufficient specification and implementation knowledge
breakdowns. Not only did P3 lack the knowledge to
prevent these breakdowns, but also his experience with
Java caused interfering knowledge problems, leading to
strategic breakdowns and errors. These observations show
that some strategies of acquiring knowledge about an
unfamiliar programming system are error-prone, while
others are protective.

Although the analyses in this paper limit the
conclusions we can draw, they demonstrate how our
model of programming errors is helpful in forming
hypotheses about errors programming systems and for
designing better environments. Furthermore, the data we
gathered in these observations is far from limited. Future
analyses inspecting programmers’ specific errors will
reveal more specific design guidelines for more helpful
programming and debugging tools. Such analyses will
also provide more insight into precisely what aspects of
event-based programming make it difficult.

6. Discussion

We believe our model of programming errors supports
theoretical, educational and design research by helping to
describe, predict, and explain programming errors.

6.1 Supporting Reasoning

The model supports theoretical reasoning in a number
of ways. First, it provides a vocabulary for reasoning
about programming errors and their causes, much like
Green’s Cognitive Dimensions of Notations [11] supports
reasoning about dimensions of programming languages.
Like Green’s contribution, our model makes aspects of
programming errors explicit. Future studies could identify
relationships between dimensions of notations and the
causes of programming errors. For example, 24% of
breakdowns in our study were modification breakdowns.
This suggests that programming systems with structured-
editing environments that have high resistance to local
changes (which Green would call “viscous”) may be
particularly prone to modification breakdowns and errors.

Our model also supports reasoning about programming
and debugging models. For example, von Mayrhauser and
Vans’ Integrated Comprehension Model [17] lacks any
mention of breakdowns in forming mental models of
specifications or code. Identifying areas where
specification breakdowns can occur may help future
studies of program comprehension explicitly link aspects
of the comprehension process to specific error types. Our
model could augment Blackwell’s Attention Investment
model of programming activity [2], describing how
breakdowns and errors influence programmers’
perception of cost, risk, and investment. Our model also
supports models of debugging, such as Davies’ [9]. He
argues that programmers compare mental representations
of the problem and program, but does not account for
breakdowns in knowledge formation or mismatch
correction, which may affect debugging.

Our model also supports logical reasoning about the
errors within and between environments, languages, tasks,
and expertise. The studies reported in this paper are a
small example of how the model is used to reason about
errors within an environment, helping identify the most
common breakdowns and error prone artifacts. Future
studies can compare different programming systems’
abilities to prevent breakdowns, which would allow
statements such as “language A is more prone to strategic
problems reusing data structures than language B.”

Finally, the model makes explicit what can prevent
breakdowns. Software engineering focuses on preventing
unforeseen strategic problems in understanding, creating
and modifying specifications. Programming systems
focus on preventing implementation and debugging
breakdowns with support such as online documentation,
and colored syntax highlighting. Education focuses on
avoiding knowledge breakdowns. In fact, teaching this
model of errors to programmers might even prevent some
breakdowns, by strengthening knowledge and providing
foresight about programming and debugging strategies.

6.2 Supporting Design

The model helps design programming systems by
helping to identify the breakdowns that cause specific
errors. For example, from the small number of
observations presented in this paper, the authors learned
two important lessons about Alice: (1) on average,
programmers spent 50% of their time debugging errors
that were caused by unforeseen strategic problems, and
(2) debugging was aggravated by knowledge and
attentional breakdowns in determining faults. This
suggests that a visualization of concurrent threads of
execution may prevent debugging breakdowns by
showing information that helps programmers better
perceive and understand failures.

Also, in reference to her difficulties in modifying a
complex Boolean logic statement (the breakdown chain in
Figure 3), P2 remarked, “I’m really having trouble
reading this…I think it’s right, but I can’t really tell…”
This suggests that a more readable and less viscous
interface for creating logical statements may prevent
perception and modification errors.

Using this model of programming errors to analyze
languages, environments and documentation standards
could also suggest better design guidelines for tools and
notations. For example, an analysis of errors in C++
would likely support the belief that operator overloading
can cause attentional problems understanding language
constructs. An analysis of textual specifications would
likely reveal they cause unforeseen strategic problems
later in development, supporting the value of runtime
views in UML notation. Studying the use of print
statements, breakpoints, and watches might reveal that
these techniques are helpful in determining faults, but are
prone to a variety of debugging breakdowns.

7. Conclusion

This paper presents a model of programming errors
derived from past classifications of error types and studies
of programming. We believe the model will be valuable
for future research on programming errors because it
provides a common vocabulary for reasoning about
programming errors, while supporting the description,
prediction, and explanation of programmers’ errors.

8. References

[1] J. R. Anderson and R. Jeffries, "Novice LISP Errors:
Undetected Losses of Information from Working Memory,"
Human-Computer Interaction, 1, pp. 107-131, 1985.
[2] A. Blackwell, "First Steps in Programming: A Rationale for
Attention Investment Models," at IEEE Symposia on Human-
Centric Computing Languages and Environments, Arlington,
VA, pp. 2-10, 2002.

[3] M. Burnett, et al., "Forms/3: A First-Order Visual Language
to Explore the Boundaries of the Spreadsheet Paradigm,"
Journal of Functional Programming, 11, 2, pp. 155-206, 2001.
[4] M. Conway, et al., "Alice: Lessons Learned from Building a
3D System For Novices," at Proceedings of CHI 2000, The
Hague, The Netherlands, pp. 486-493, 2000.
[5] C. L. Corritore and S. Wiedenbeck, "Mental Representations
of Expert Procedural and Object-Oriented Programmers in a
Software Maintenance Task," International Journal of Human-
Computer Studies, 50, pp. 61-83, 1999.
[6] S. P. Davies, "Knowledge Restructuring and the Acquisition
of Programming Expertise," International Journal of Human-
Computer Studies, 40, pp. 703-726, 1994.
[7] M. Eisenberg and H. A. Peelle, "APL Learning Bugs," at
APL Conference, pp., 1983.
[8] M. Eisenstadt, "Tales of Debugging from the Front Lines," at
Empirical Studies of Programmers, 5th Workshop, Palo Alto,
CA, pp. 86-112, 1993.
[9] D. J. Gilmore, "Models of Debugging," Acta Psychologica,
pp. 151-173, 1992.
[10] J. D. Gould, "Some Psychological Evidence on How People
Debug Computer Programs," International Journal of Man-
Machine Studies, 7, pp. 151-182, 1975.
[11] T. R. G. Green, "Cognitive Dimensions of Notations," in
People and Computers V, A. Sutcliffe and L. Macaulay, Eds.
Cambridge, UK: Cambridge University Press, 1989, 443-460.
[12] T. R. G. Green, et al., "Parsing-gnisrap: A Model of Device
Use," at Empirical Studies of Programmers: 2nd Workshop, pp.,
1987.
[13] K. Holtzblatt and H. Beyer, Contextual Design: Defining
Customer-Centered Systems. San Francisco, CA: Morgan
Kaufmann, 1998.
[14] W. L. Johnson, et al., "Bug Catalogue: I," Yale University,
Boston, MA, Technical Report 286, 1983.
[15] D. Knuth, "The Errors of TeX," Software: Practice and
Experience, 19, 7, pp. 607-685, 1989.
[16] A. J. Ko and B. Uttl, "Individual Differences in Program
Comprehension Strategies in an Unfamiliar Programming
System," at International Workshop on Program
Comprehension, Portland, OR, pp. (to appear), 2003.
[17] A. v. Mayrhauser and A. M. Vans, "Program Understanding
Behavior During Debugging of Large Scale Software," at
Empirical Studies of Programmers, 7th Workshop, Alexandria,
VA, pp. 157-179, 1997.
[18] R. Panko, "What We Know About Spreadsheet Errors,"
Journal of End User Computing, pp. 302-312, 1998.
[19] D. N. Perkins and F. Martin, "Fragile Knowledge and
Neglected Strategies in Novice Programmers," at Empirical
Studies of Programmers, 1st Workshop, Washington, DC, pp.
213-229, 1986.
[20] J. Reason, Human Error. Cambridge, England: Cambridge
University Press, 1990.
[21] I. Vessey, "Toward a Theory of Computer Program Bugs:
An Empirical Test," International Journal of Man-Machine
Studies, 30, pp. 23-46, 1989.

