
A Pedagogical Analysis of Online Coding Tutorials
Ada S. Kim

The Information School
Mary Gates Hall 015

University of Washington
+1 206-498-1216
kimsk@uw.edu

Amy J. Ko
The Information School
Mary Gates Hall 015E

University of Washington
+1 206-221-0352
ajko@uw.edu

ABSTRACT
Online coding tutorials are increasingly popular among learners,
but we still have little knowledge of their quality. To address this
gap, we derived several dimensions of pedagogical effectiveness
from the learning sciences and education literature and analyzed a
large sample of tutorials against these dimensions. We sampled 30
popular and diverse online coding tutorials, and analyzed what
and how they taught learners. We found that tutorials largely
taught similar content, organized content bottom-up, and provided
goal-directed practices with immediate feedback. However, few
were tailored to learners’ prior coding knowledge and only a few
informed learners how to transfer and apply learned knowledge.
Based on these results, we discuss strengths and weaknesses of
online coding tutorials, opportunities for improvement, and
recommend that educators point their students to educational
games and interactive tutorials over other tutorial genres.

Keywords
Online learning; coding tutorials; curriculum; pedagogy

1. INTRODUCTION
In recent decades, desire to learn programming has increased
dramatically, while major government and non-policy efforts such
as the Hour of Code, CS Education Week and CS For All have
begun to create infrastructure for broad scale learning of
computing and coding. To meet this high demand, a variety of
online resources for learning how to code have emerged. Some of
these tutorials are open-ended, creative platforms such as Scratch
[24] and Alice [8]. Others are lecture-style courses provided by
massively open online courses (MOOCs) like Coursera
(coursera.org) and edX (edx.org). Some are tutorial-style curricula
such as Khan Academy (khanacademy.org) and Codecademy
(codecademy.com), which offer a range of content to teach
popular programming languages and platforms. There are also
many evidence-based educational programming games like
Gidget [19], Lightbot [15], and Code Hunt [2], which aim to teach
coding by gamifying some form of programming activity. There
are of course also many reference guides with substantial example
code, including W3 Schools (w3schools.com), Tutorials Point
(tutorialspoint.com), and more social forums such as Stack
Overflow (stackoverflow.com) that provide significant reference
resources for learners. Popular tools such as the online Python
Tutor even allow learners to visualize program execution [16].

Millions of people are using these resources every day to learn
independently, but we have only just begun to understand their
effectiveness. Recent work, for example, has explored the
learning outcomes of open-ended creative environments and
MOOCs, finding that while many learners use sophisticated
programming language constructs [9, 11], there is still little
evidence that they produce robust programming knowledge [18,
20, 34]. There is some evidence that explicit instruction and
guidance through tutorials can improve learning [17], and more
recent evidence-based that while e-books for CS teacher training
can engage, learning is a continued challenge [33].

This evidence has several limitations. First, the evidence is sparse,
only investigating a few types of tutorials; most of them are
research prototypes [2, 15, 16, 19]. This means that we still know
little about the current content of the popular tutorials that learners
are using. Second, most of the evidence is narrow, in that it
focuses on specific measurements of learning and engagement,
overlooking many important factors in learning that are more
difficult to measure and control for. The result is that teachers
have little holistic guidance about how to choose effective
tutorials and researchers have little insight into the broader set of
online materials and how they differ.

To address these problems, we took an analytical approach to
evaluating online coding tutorials, investigating what online
tutorials currently teach and how they teach it by analyzing
tutorials against a set of curriculum design dimensions. The
benefit of an analytical approach is that we could assess a large set
of tutorials and we could assess aspects of tutorials that are
difficult to measure quantitatively. This approach is inspired by a
long history of curriculum evaluation frameworks, which offer
principles and rubrics grounded in theories of learning [10, 28,
29]. To improve the actionability of our results, we generated
pedagogical principles specific to coding tutorials, deriving them
from more general pedagogical design principles.

In the rest of this paper, we discuss our sampling and assessment
approach in detail, describing how we derived our assessment
model. We then discuss our results and their implications in detail.

2. METHOD
2.1 Selecting Tutorials
To begin, we generated a list of tutorials to evaluate (Table 1).
One of our criteria for selecting tutorials was popularity. Using
the Google search engine with two query terms “online coding
tutorial” and “coding tutorial,” we sampled and reviewed active
coding tutorial websites appeared in the first 10 pages. We
ensured Google’s personalized search was turned off to prevent
any effects from the search history in the browser. We excluded
the websites that simply aggregated content from other sites.

In addition to search result popularity, we also estimated the
amount of web traffic of each tutorial by using Alexa (alexa.com)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SIGCSE’17, March 8–11, 2017, Seattle, WA, USA.
© 2017 ACM. ISBN 978-1-4503-4698-6/17/03…$15.00.
DOI: http://dx.doi.org/10.1145/3017680.3017728

321 Most up-to-date version: 06/25/2021

on July 29th 2016. We used Alexa’s global rank, an estimate of a
site's popularity relative to all other sites over the past 3 months,
updated daily. The rank was based on a combined measure of
unique visitors, the number of unique Alexa users who visited a
site on a given day, and page views, the total number of Alexa
user URL requests for a site. The site with the highest
combination of unique visitors and page views was ranked the
first. Based on the global rank provided by Alexa system, we
included tutorial websites that ranked below 100,000.

We also considered popularity in educational settings. For
example, Scratch [24] and Alice [8] are broadly used in
classrooms but had relatively high Alexa rankings of 4,397,390
and 212,300, respectively. Educational games such as Lightbot,
powered by Hour of Code, ranked 214,897. As this paper aimed to
compare pedagogical approach across genres of online coding
tutorials, we also included these tutorials.

Next, because many tutorial sites taught multiple programming
languages, we also focused our assessments on the tutorials for
popular languages. To do this, we referred to four online sources
of programming language popularity: GitHub, tag rankings in
Stack Overflow, TIOBE programming community index
(www.tiobe.com/tiobe-index), and PopularitY of Programming
Language index (pypl.github.io/PYPL.html). We chose courses
and curricula that taught one of the six most popular languages
(Java, Python, PHP, JavaScript, C#, C) overlapping across all four
sources.

Our resulting sample included 30 tutorials, shown in Table 1. To
help compare the tutorials, we also categorized them under one of
five genres of resources:

• Interactive tutorials required learners to interact with
command window, text editor, or equivalent in order to pass
successive stages. This genre included sites such as
Codecademy, Khan Academy programming, and
Codeschool.com. Some of these tutorials focused on specific
functionality such as Regex Golf (regex.alf.nu) and Regex
101.com.

• Web references played the role of a “dictionary.” Tutorials
under this genre, such as Tutorials Point, help learners
properly code against a library, API, or platform. Some web
references such as W3Schools or Learnpython.org provided
code editors or command windows for learners who might
want extra practice for reference code.

• MOOCs had a hierarchical structure with step-by-step stages,
incorporating text-based quizzes and exams after a sequence
of instruction. This genre included popular lectures in
Lynda.com, edX, and Coursera.

• Educational games provided goals, story, and immediate
feedback and often provided a more visually rich graphical
environment. They often provided scores based on
achievement or game items which can be consumed within a
system. This genre included games such as Gidget [19],
Code Combat, and Code Hunt.

• Creative platforms provided learners with an editor and
content, but little instruction other than a reference guide and
no explicit goals. This included Scratch [24] and Alice [8].

2.2 Dimensions for analysis
Here we describe our process for obtaining dimensions for
analyzing the tutorials. First, we needed a framework against
learning science principles. We based our evaluation on findings
from learning sciences, focusing on the nine groups of 24
dimensions, shown in Table 1. These groups spanned four core

pedagogical principles: 1) connecting to learners’ prior
knowledge [22, 23], 2) organizing declarative knowledge [3], 3)
practice and feedback [1, 13], and 4) encouraging meta-cognitive
learning [14, 21]. We adapted these four principles from the
major effort over a decade ago to synthesize the seminal
theoretical and empirical discoveries in learning sciences and
education research into actionable principles for teaching and
learning [3]. We decided to exclude principles related to
collaborative learning, as most of the coding tutorials in our
sample are not explicitly social experiences.

To assess the degree to which the tutorials in our sample followed
the four principles, we generated 24 pedagogical dimensions
specific to individual learning in coding tutorials. Each of the 24
dimensions we derived had significant nuance, but to simplify
analysis and reporting, we reduced all but one dimension to a
binary yes or no, where “yes” constituted satisfying a particular
pedagogical design dimension, as defined by a written criterion.
For example, the criterion for the utilization dimension (Table
1.2) was “The instruction of the new stage explicitly requires to
use at least one command or one function taught in the previous
stage.” If a tutorial met this criterion, we marked a “yes”, and a
“no” otherwise.

After analyzing the first few tutorials with a prototype of several
dimensions we initially created, we evaluated them through
discussions. We refined the detail of each dimension to see its
necessity for tutorial analysis and removed unhelpful or
uninformative dimensions. We iterated until all dimension criteria
were sufficiently described and assessable.
With the final dimensions and criteria, we accessed each tutorial
online and went through the course to checked the criteria for
each dimension. In case that the category of answers was more
than binary (Table 1.4), we recorded all answers. Also we marked
“NA” in case that a tutorial was not applicable for a particular
dimension (Table 1.3). We analyzed at least one module of each
tutorial and in some cases analyzed an entire tutorial. It took
approximately 2 hours per tutorial to check all criteria for
dimensions and 60 hours overall.

3. RESULTS
Our final data set appears in Table 1, showing that tutorials varied
widely in their compliance with our pedagogical principles,
though some genres were more principled than others. In this
section, we discuss each of the dimensions we evaluated in detail,
organizing our discussion by our four core principles.

3.1 Connecting to learners’ prior knowledge
Our first set of dimensions concerned tutorials’ approach to
learners’ prior knowledge. It is now widely accepted in learning
sciences that people construct new knowledge based on what they
already know and believe [6, 7, 22, 23, 31, 32]. Regardless of age
[23], learners bring prior knowledge in the form of facts,
perceptions, beliefs, values, and attitudes to the new learning
context [6, 7, 22]. While accurate and complete prior knowledge
facilitates learning new knowledge, inaccurate and incomplete
preconceptions hinders it. Therefore, in any learning context, it is
important to understand learners’ prior knowledge and deeply
connect instruction to this prior knowledge.
To evaluate how the coding tutorials in our sample connected to
learners’ prior knowledge, we analyzed two groups of
dimensions: personalization (Table 1.1) and utilization (Table
1.2) of knowledge. First, personalization of knowledge
represented whether the tutorials customized teaching materials to
meet prior knowledge along three dimensions: whether tutorials

322

helped learners select an appropriate learning material based on
their age range (Table 1.1.a), educational status (Table 1.1.b), or
prior coding knowledge (Table 1.1.c). Among many ways to
personalize learning materials, we chose these three because they
are common factors that curricula use to differentiate instruction
in formal educational systems. Many coding tutorials did not
personalize what they teach for their learners when we evaluated
the level of personalization of three dimensions above. Only
Code.org, Lightbot, and Scratch explicitly indicated appropriate
learners’ age range for tutorial selection. Fourteen out of 30
tutorials considered learners’ education status, but it was rather
superficial such as vaguely separating beginner, intermediate, and
advanced levels to indicate difficulty. None of the tutorials
recommended specific stages or modules, based on learners’ prior
coding experience.

For the “utilization” dimension, we analyzed how the tutorials
helped learners leverage the knowledge they accumulated
throughout the tutorial (Table 1.2). For example, some tutorials
summarized the knowledge from prior lessons and showed
learners how to apply it to new concepts; others taught material
once, and never mentioned it again. All educational games
required learners to apply knowledge from stage to subsequent
stages, which helped learners’ better connection of knowledge
than other genres of tutorials. A few interactive tutorials like Code
School and Codingbat Python (codingbat.com/python), and

MOOCs like Coursera and edX, also had structural stages that
utilized the information taught in a stage to the new ones. Only
one web reference tutorial, FunProgramming.org, had the similar
form of structure. Only Codecademy, Khan Academy, and Code
Avengers (codeavengers.com) required knowledge from previous
stages to pass the overview stage at the end of the module.

3.2 Organizing declarative knowledge
Transforming factual information into robust declarative
knowledge is another key principle for effective learning [3]. For
successful transformation, binding a large set of disconnected
facts is important as well as connecting prior knowledge to new
knowledge [1,23,31,32]. Providing a conceptual framework for
organizing information into meaningful knowledge helps learners
to gain a deeper understanding of learning material [4,5].
To apply these principles to our evaluation, we analyzed the
content of what tutorials taught (Table 1.3), focusing on the eight
learning objectives in the FCS1 assessment [28], which included
basic programming language concepts such as variables, arrays,
loops, and functions. All five genres of tutorials taught all eight
learning objectives except a few tutorials that focused on specific
abstractions (namely Regex 101 and Regex Golf). Most of the
educational games did not teach, or at least not explicitly, the
concept of objects or object-orientation.

Table 1. Thirty tutorials analyzed across 24 dimensions. Each check mark represents satisfaction of a pedagogical principle.

323

How information is organized can influence application of
declarative knowledge [1]. Experts often organize information
hierarchically, indicating their deeper understanding of how
various pieces of information fit within a complex structure. In
that sense, we analyzed the organization of information (Table
1.4), noting whether the tutorials structured information “bottom-
up” (starting with basic concepts and building up to complex
ones) or “top-down” (successively breaking down complex
concepts into smaller ones) (Table 1.4.a), and whether the
structured information was in a hierarchical form or not (Table
1.4.b).

Tutorials organized the information differently across the genres.
For example, web references and interactive tutorials organized
content bottom-up, starting with the most elementary concepts,
using one or two commands or functions at a time to solve a
problem. The most common case was teaching how to print
“Hello World” using a certain programming language; in order to
do this, they explained what kinds of command (e.g. print() in
python3) should be typed in the text editor or interpreter, and
displayed how it worked.

In contrast, educational games, MOOCs, and creative platforms
combined both bottom-up and top-down approach or mainly used
top-down approach more than web references and interactive
tutorials. For example, Scratch suggested a goal (“Make the cat in
the screen dance”) that learners can model and provided step-by-
step instruction to reach the goal, but also allowed high level of
freedom for users to apply the instruction to design one’s own
code.

Organizing information hierarchically can help learners connect
scattered facts [1,5]. All games structured information
hierarchically, which included many simple stages teaching one
command or function at a time under particular programming
topics. MOOCs and interactive tutorials with high Alexa ranking
like Codecademy and Khan Academy did the same. For example,
a module teaching conditional statements often included many
sub-stages about how to correctly write if and while structures.

Finally, we analyzed the context of how the information was
organized (Table 1.5), judging the story, background, and other
concrete details in which content was presented [1, 3, 4]. We
considered three dimensions of context. The first was the use of
lectures, presenting content authoritatively (Table 1.5.a). MOOCs
and the popular interactive tutorials used lecture-based contexts
heavily (Table 1.5.a). We also considered the use of goal-driven
project contexts, in which learners were given a high level goal to
achieve by learning lower-level content (Table 1.5.b). Such goals
can help learners’ active engagement in goal-based practice [13].
Only a few tutorials, primarily educational games and creative
platforms, offered project-based contexts that provided an explicit
goal of a stage or a module. For example, one of the goals in
Gidget’s stage was to operate a small robot, named Gidget, to
carry a kitten to the basket. To achieve the goal, learners should
think about not only what functions to be written, but also how to
arrange them. Finally, we considered the use of story-based
contexts (Table 1.5.c), which were used to connect learning goals.
For example, Code Hunt supposed learners as “hunters” who
perform a secret project by fixing fragments in codes.

Most of the web references did not establish a specific learning
context for what they taught, whether an authoritative lecture
based context, a goal-driven context, or a story-based context.

3.3 Practice and feedback
Evidence is clear that deliberate practice helps learners achieve
mastery in a particular domain [12, 25]. Clearly structured and
articulated goals are critical to enhancing the effectiveness of
deliberate practice [13]. Deliberate practice, however, must be
coupled with appropriately targeted feedback, including
information about learners’ progress to guide them toward goals
[1]. To evaluate whether the tutorials supported deliberate
practice, we analyzed two groups of three dimensions: learner
actionability (Table 1.6) and feedback (Table 1.7).

Deliberate practice becomes effective when learners actively
engage in it; the best way to practice coding is to write code.
Therefore, our learner actionability (Table 1.6) dimension
measured whether the tutorial required learners to actually write
programs of some kind to learn. We found that all genres of
tutorials offered some kind of interactive editor requiring learners
to provide input, with the exception of a few web references that
provided read-only information. We also found interesting
diversity in the type of editors across the interactive tutorials and
education games. For example, Gidget equipped a sophisticated
editor panel so that learners even could see the error messages and
syntax errors in the editor, which was more instructive than just
providing a text guideline for practices. Khan Academy provided
visualized walkthrough with the editor panel so that learners could
modify and run the code to see how their editing changed contents
in the walkthrough.

Prior work has shown that immediate, targeted feedback is critical
for meta-cognitive monitoring [1,3,5]. Therefore, to analyze
feedback, we judged two dimensions: whether tutorials provided
feedback at all (Table 1.7.a) and whether that feedback was
immediate (Table 1.7.b). All interactive tutorials and educational
games with a code editor provided some form of immediate
feedback, but much of these was shallow. For example, almost
half of the tutorials did not provide feedback when learners made
errors. These tutorials fell into two cases: 1) some tutorials like
Scratch provided open-ended practice, but did not provide
feedback about right or wrong code relative to a goal or 2) a
tutorial’s code editor did not produce feedback about error
messages. These latter tutorials were usually web references that
allowed learners to test functionality, but did not explain failures.

Some tutorials provided feedback through instructor or peer
communication. For example, MOOCs provided some
opportunities to communicate with instructors or peers, and some
resources had online communities in which learners could ask
questions. While this feedback was available, none of it was
immediate and learners had no guarantee of receiving answers to
their questions.

3.4 Encouraging meta-cognitive learning
Two key ideas of meta-cognitive learning are learners’ ability to
predict the outcomes of their learning tasks and monitoring their
understanding [4, 5]. Focusing self-reflection on what worked and
what needs improving helps learners transfer what they learned to
the new settings and events [14, 21, 26, 27].

To evaluate whether tutorials encouraged metacognitive learning,
we analyzed whether they taught how, when, and why learners
should use a particular command or a function to help learners
transfer or apply knowledge learned from the tutorials (Table 1.8).
Few tutorials guided learners in transferring and applying
knowledge to further learning contexts outside of the curricular
provided by tutorials. Most of the tutorials strongly emphasized
how to use particular functions and commands in coding. Only

324

five tutorials across three genres, web references, educational
games, and MOOCs attempted to explain when and why learners
should use a particular command or a function.

We also analyzed whether the tutorials provided support by
providing additional materials outside the curriculum so that
learners monitoring their understanding could seek answers to
their own questions beyond the tutorial content (Table 1.9).
Almost all genres of tutorials provided some form of additional
support, whether it was a discussion form or additional references
or resources. Four tutorials attempted to indicate where a learner’s
performance was ranked and how high it was, which might
encourage learners to self-monitor their level of progress in
learning. For example, Code Hunt provided information related
how fast and accurate the learner performance was after passing
every stage, which enhance learners’ engagement in playing and
level completion speed [20]. Five tutorials proactively helped
learners recognize errors in their actions. Gidget was a good
example: The tutorial notified its learners when they omitted a
required expression at the end of the function (i.e. “When I try to
access an object in the world, I need to terminate its name with a
“/” character.”)

3.5 Tutorial Recommendations
Despite their limitations, interactive tutorials and educational
games satisfied the majority of the pedagogical principles
reflected in our dimension’s criteria. All tutorials in both genres
required learners’ active engagement in writing code, and most of
them provided a structured hierarchy including several stages of
goal-directed practice with subsequent applying of learned
knowledge. The educational games in particular offered many
forms of context, which may help learners actively engage in
deliberate practice. The educational games also provided the most
immediate and personalized feedback, likely improving the gains
from deliberate practice. Therefore, from a pedagogical
perspective, we recommend games such as Gidget, Lightbot,
Code Hunt, and tutorials provided by Code.org as the tutorials
most likely to be effective at producing learning.

4. DISCUSSION
Our results reveal several trends in coding tutorial pedagogy:

• They largely teach the same content.
• Most teach content bottom-up, starting with low-level

programming concepts, and building up to high-level goals.
• Most require learners to write programs.
• Most provide some form of immediate feedback in response

to learner actions, but this feedback is shallow.
• Few explain when and why a particular concept is useful in

programming.
• Few provide guidance for common errors.
• None provide personalization based on prior coding

experience or learner goals, other than rudimentary age-
based differentiation.

Despite the diversity of languages and content, most of the coding
tutorials shared a similar paradigm. They dissected coding into the
most detailed, elemental level. This bottom-up approach in
organizing information enabled the tutorials provide goal-based
practices with one simple task for each stage. For example, most
of the tutorials gave instruction about how to write a few simple
lines of code (e.g., var1 = 1, var2 = 2, then what would
be var1 + var2?) and test it by typing the answer to the
command window. At this low level, the goal was clear (use this
function to clear the stage) and feedback was also clear (clear the

stage or not). In that sense, the tutorials might fulfill one
important criterion of effective learning: providing clearly
structured, and articulated goals for practice, in the beginning
stages.

This paradigm has several limitations. First, coding tutorials gave
more attention to emphasizing how to practice particular
commands and functions rather than to provide contextual
information like when and why to use them. More generally, none
of the tutorials provided a detailed and systemized problem
solving instruction other than one- or two-sentence hints when
learners made errors in each stage. These pedagogical choices
might limit tutorials’ ability to teach learners’ to apply skills to
broader learning contexts outside of the curriculum.

Lacking a personalized instruction might also limit effectiveness.
As our first learning principle emphasizes, it is important to
connect existing knowledge to the new knowledge, and to
consider learners’ incomplete understandings and the false beliefs
in that connecting process. However, most of the tutorials did not
provide access to any sort of agent or instructor to give
personalized feedback to guide deliberate practice. Second, we
found that while tutorial feedback was immediate, it was rarely
precise enough to improve learners’ conceptions of the material,
and it was not customized at all to learners’ prior knowledge. This
is a major area for future work that has yet to be deeply explored.

5. LIMITATIONS
There are many limitations in our study to address in future work.
Although our sample was diverse, it is not necessarily
representative of all of the tutorials used around the world,
particularly those in languages other than English. Although we
tried to measure popularity by using Google search engine and
Alexa, these methods could provide only general information
about how many learners visited the website per day, not about
their actual progress. Moreover, online coding tutorials are
constantly evolving as companies seek ways to improve learning
and engagement.

Our analysis also has limitations. Most of our criteria were binary
judgments, even though many of the dimensions have
substantially more nuance. The first author was also the only one
who assessed all of the tutorials, and so there may have been
systematic bias in her evaluations that was not eliminated through
redundant coding.

Another major limitation of our study is that we analytically
assessed tutorials, rather than measuring learning outcomes
directly. It may be possible that many of the tutorials are effective
despite failing to satisfy many of the learning principles we
identified in prior work, as those principles might have been met
in subtle ways not observed in this study.

6. CONCLUSION
Our results suggest that most online coding tutorials are still
immature and do not yet achieve many key principles in learning
sciences. Future research and commercial development needs to
better emphasize personalized support and precise, contextualized
feedback and explore ways of explaining to learners why and
when to use particular coding concepts. Based on our sampled
tutorials, we recommend that teachers be very selective in their
use of materials, focusing on the more evidence-based tutorials,
particularly the educational games. All educational games in the
list provide hierarchical structure, immediate feedback, and
opportunities that learners actively write code and use subsequent
knowledge for coding throughout the tutorial. With future

325

research, these tutorials and potentially future commercial
tutorials will become much better teaching supplements, as well
as resources for independent learning.

7. ACKNOWLEDGEMENTS
This material is based upon work supported by the National
Science Foundation under Grants 1314399, 1240786, and
0952733 and by Microsoft.

8. REFERENCES
[1] Ambrose, S.A., Bridges, M.W., DiPietro, M., Lovett, M.C.

and Norman, M.K. 2010. How learning works. John Wiley &
Sons.

[2] Bishop, J., Horspool, R.N., Xie, T., Tillmann, N. and de
Halleux, J. 2015. Code Hunt: Experience with coding
contests at scale. 398–407.

[3] Bransford, J., Brown, A.L., Cocking, R.R. National Research
Council (U.S.) Committee on Developments in the Science
of Learning 2000. How people learn: Brain, mind,
experience, and school.

[4] Brown, A.L. 1975. The development of memory: Knowing,
knowing about knowing, and knowing how to know.
Advances in Child Development and Behavior. Elsevier.
103–152.

[5] Chase, W.G. and Simon, H.A. 1973. Perception in chess.
Cognitive psychology. 4, 1, 55–81.

[6] Cobb, P. 1994. Theories of mathematical learning and
constructivism: A personal view. Symposium on Trends and
Perspectives in Mathematics Education.

[7] Cobb, P., Yackel, E. and Wood, T. 1992. A Constructivist
alternative to the representational view of mind in
mathematics education. Journal for Research in Mathematics
education. 23, 1, 2.

[8] Cooper, S., Dann, W. and Pausch, R. 2000. Alice: a 3-D tool
for introductory programming concepts. Journal of
Computing Sciences in Colleges. 15, 5, 107–116.

[9] Dasgupta, S., Hale, W., Monroy-Hernández, A. and Hill,
B.M. 2016. Remixing as a pathway to computational
thinking. 1438–1449.

[10] Dewey, J. 1959. The child and the curriculum.

[11] Ericson, B.J., Guzdial, M.J. and Morrison, B.B. 2015.
Analysis of interactive features designed to enhance learning
in an Ebook. 169–178.

[12] Ericsson, A.K. and Charness, N. 1994. Expert performance:
Its structure and acquisition. American Psychologist. 49, 8,
725–747.

[13] Ericsson, A.K., Krampe, R.T. and Tesch-Römer, C. 1993.
The role of deliberate practice in the acquisition of expert
performance. Psychological Review. 100, 3, 363–406.

[14] Flavell, J.H. 1976. Metacognitive aspects of problem solving.
The nature of intelligence.

[15] Gouws, L.A., Bradshaw, K. and Wentworth, P. 2013.
Computational thinking in educational activities: an
evaluation of the educational game light-bot. 10–15.

[16] Guo, P.J. 2013. Online python tutor: embeddable web-based
program visualization for cs education. 579–584.

[17] G, Y. and K, F. 2014. The effects of teaching programming
via Scratch on problem solving skills: A discussion from
learners’ perspective. Informatics in Education - An
International Journal. 131, 33–50.

[18] Lee, M.J. and Ko, A.J. 2015. Comparing the effectiveness of
online learning approaches on CS1 earning utcomes. 237–
246.

[19] Lee, M.J. and Ko, A.J. 2011. Personifying programming tool
feedback improves novice programmers' learning. 109–116.

[20] Lee, M.J., Ko, A.J. and Kwan, I. 2013. In-game assessments
increase novice programmers' engagement and level
completion speed. 153–8.

[21] Palincsar, A.S. and Brown, A.L. 1983. Reciprocal teaching
of comprehension-monitoring activities. Technical Report
#269.

[22] Piaget, J. 1978. Success and understanding.
[23] Piaget, J. 1952. The origins of intelligence in children.

[24] Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N.,
Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E.,
Silver, J., Silverman, B. and Kafai, Y. 2009. Scratch:
programming for all. Communications of the ACM. 52, 11,
60–67.

[25] Rothkopf, E.Z. and Billington, M.J. 1979. Goal-guided
learning from text: Inferring a descriptive processing model
from inspection times and eye movements. Journal of
educational psychology. 71, 3, 310–327.

[26] Scardamalia, M., Bereiter, C. and Steinbach, R. 1984.
Teachability of reflective processes in written composition.
Cognitive science. 8, 2, 173–190.

[27] Schoenfeld, A.H. 1983. Problem solving in the mathematics
curriculum: A report, recommendations, and an annotated
bibliography.

[28] Tew, A.E. 2010. Assessing fundamental introductory
computing concept knowledge in a language independent
manner.

[29] Tyler, R.W. 1959. Basic principles of curriculum and
instruction. University of Chicago Press.

[30] Tyler, R.W. 1967. Changing concepts of educational
valuation. Perspective of Curriculum Evaluation. Rand
McNally & Company 13–18.

[31] Vygotsky, L.S. 1980. Mind in society: The development of
higher psychological processes. Harvard University Press.

[32] Vygotsky, L.S. 1962. Thought and language. MIT Press.
[33] Werner, L., Campe, S. and Denner, J. 2012. Children

learning computer science concepts via Alice game-
programming. 93–98.

[34] Zhu, J., Warner, J., Gordon, M., White, J., Zanelatto, R., &
Guo, P. J. (2015, October). Toward a domain-specific visual
discussion forum for learning computer programming: An
empirical study of a popular MOOC forum. In Visual
Languages and Human-Centric Computing (VL/HCC), 2015
IEEE Symposium on (pp. 101-109). IEEE.

326

