
Measuring Students’ Programming Skill via Online
Practice∗

Hongwen Guo
ETS Research Institute
Princeton, New Jersey

hguo@ets.org

Mo Zhang
ETS Research Institute
Princeton, New Jersey
mzhang@ets.org

Amy J Ko
University of Washington

Seattle, Washington
ajk@uw.edu

Min Li
University of Washington

Seattle, Washington
minli@uw.edu

Benjamin Zhou
University of Washington

Seattle, Washington
benzhou@uw.edu

Jared Lim
Georgia Tech University

Atlanta, Georgia
jlim419@gatech.edu

Paul Pham
University of Washington

Seattle, Washington
pkdpham@uw.edu

Chen Li
ETS Research Institute
Princeton, New Jersey

cli@ets.org

ABSTRACT
Allowing students to practice a programming task multiple
times fosters resilience and improves learning. However, it
is challenging to measure their programming skills in the
dynamic and adaptive learning environment, in terms of de-
termining the maximum allowed number of attempts, mea-
suring progress during learning, and producing a fair perfor-
mance score for different student groups. It is particularly
challenging to do so when different students adaptively prac-
tice different sets of programming tasks. In this study, we
leveraged data collected from an online learning platform
in a pilot study and applied psychometric models to ad-
dress two research questions: 1) How to measure students’
progress in an adaptive practice setting that allows for multi-
ple attempts and inform grading policies? and 2) How do dif-
ferent scoring rules affect bias analysis of the programming
tasks? From the log data, we extracted two practice features
(numbers of attempts and number of passed test cases), cre-
ated six different scoring rules for scoring student’s interme-
diate responses and final responses based on these practice
features. We then used psychometric models and best prac-
tices to create a common scale to measure the dynamic per-
formance that were comparable within individual students
who made different attempts and across students who prac-
ticed different sets of programming tasks. This common
scale ensured the comparability of performance within and
across different student groups. It furthered enabled us to

∗Proceedings of the 8th Educational Data Mining in Com-
puter Science Education (CSEDM) Workshop, July 2024

evaluate potential task biases between gender groups using
the differential item functioning (DIF) analysis. Our pre-
liminary results suggest that the final-attempt-based scoring
rule not only boosted students’ performance, but it also re-
duced the potential bias of programming tasks. This study
contributes to methodologies in using log data to measure
the dynamic programming skills and evaluate task biases in
the adaptive online practice setting.

Keywords
Psychometrics, Python coding task, Scoring, Item Bias, Fair-
ness

1. INTRODUCTION
As with any skill, practice makes perfect for programming
skills in computer science (CS) education. Decades of re-
search in learning theory has demonstrated the importance
of deliberate practice and having a ”coach” who provides
feedback for ways of optimizing performance, no matter
whether it is learning a new language, a new math topic,
or a new programming skill [1]. With advances in tech-
nologies, many online learning platforms and computer sci-
ence courses have been developed to align with the learning
theory by allowing learners to practice a problem multiple
times while providing immediate feedback, which encour-
age students to learn from their mistakes and strive for suc-
cess [10]. A recent large-scale randomized control study [15]
showed that students who used such a math learning plat-
form learned significantly more, and the impact was greater
for students with lower prior mathematics achievement. The
benefit of timely feedback for programming assignments in
CS education is also evident in a recent review [10].

However, repeated attempts in online practice pose chal-
lenges to assess students’ skills. For example, how many
attempts should be allowed? How to measure progress in
practice? How can we generate fair scores for diverse stu-
dent groups in CS learning contexts? These questions are

especially important for assessing programming skills, since
there are many different potential approaches to assessing
students’ performance when multiple attempts are allowed,
while some methods may unintentionally further marginalize
students from non-dominant groups in CS education [9, 16].
To examine the validity and fairness in CS assessments, a few
recent research studies applied the established psychometric
approaches such as the differential item functioning (DIF)
analysis methods [4], but on students’ final responses and
fixed test format. For example, using data collected from
a paper-and-pencil-based CS exam in a large CS1 course,
Davidson and coauthors applied DIF methods to evaluate
whether the tasks on the exam might potentially favor one
student group over the other [3]. Xie and colleagues inves-
tigated potential bias in an online CS curriculum using DIF
analysis and expert interpretations [18]. These studies high-
lighted the relevance of psychometrics and DIF analysis in
the context of CS education.

It is particularly challenging to measure student’s progress
in an adaptive online learning environment (such as person-
alized learning), where students with different levels of skills
are recommended to practice programming tasks with differ-
ent levels of difficulties. The measurement needs to quantify
both progress within a student and across student groups in
such a learning environment.

In the current study, we framed our investigation with two
preliminary two research questions to address the challenges:
1) How to measure students’ progress in an adaptive practice
setting that allows for multiple attempts and inform grading
policies? and 2) How do different scoring rules affect bias
analysis of the programming tasks?

To address the above two research questions, we investi-
gate how rigorous educational measurement methods (i.e.
statistical and psychometric models) can be used to create
comparable performance scores that are comparable within
and across students during practice. For this, it is nec-
essary to create a common scale, which reflects the dy-
namic/intermediate programming processes with different
numbers of attempts within individual students. It is criti-
cal as well that the common scale ensures that performance
scores are comparable across students who practiced dif-
ferent sets of programming tasks. We created and exam-
ined six scoring rules based on different maximum numbers
of allowed attempts. Under the different scoring rules, we
applied rigorous statistical and psychometric methods [13]
to create comparable performance scores, which further al-
lowed for psychometric analysis of task biases [3, 6, 7, 18]
between the men (the dominant CS student group) and the
non-men groups.

The following sections provide a more in-depth description
of our approaches. We first introduce the study design and
data collection, and present our proposed methodologies to
create a common scale for producing comparable perfor-
mance scores and for detecting potential task bias. We con-
clude the study with a discussion section on our preliminary
findings, the study limitations, as well as our future direc-
tion.

The current work explores an emerging terrain in adaptive

learning and assessment in CS education. Our work is pio-
neering in integrating educational data mining (i.e., creation
of programming practice features extracted from log data)
and the innovative applications of psychometric models to
build a common scale, measure processes, and evaluate po-
tential task bias on online practice platforms.

2. METHODOLOGIES
This study was approved by an Institutional Review Board
(IRB) prior to engagement with participants for data collec-
tion.

2.1 Study Design and Data Collection
The online learning platform we used for data collection
is capable of providing immediate feedback on test cases
(showing pass or fail) [19]. More importantly, in this study,
the research team implemented an adaptive learning/assessment
approach to recommend programming task sets that are
suitable to students with different programming skills for
effective learning and meaningful engagement [20].

To answer our research questions, we conducted a pilot study
and recruited about college students on a compensated, vol-
unteer basis from universities in North American who were
enrolled in introductory Python programming courses cur-
rently or prior to participation. The participating students
majored in different fields and varied in the number of pro-
gramming related courses and years of experience in pro-
gramming. For the bias analysis, we focus on self-described
gender, which included categories such as men, women, non-
binary, and free response options. In order to produce reli-
able bias analysis results, large samples are recommended;
thus, we compromised on two student groups: men (N=91),
the dominant gender group in computer science (CS) learn-
ing contexts who tend to be privileged in CS, and non-men
(N = 63), including women, non-binary students, and stu-
dents who reported other gender identities (exclude missing
responses). This allowed us to study whether any program-
ming task favored men over students with other gender iden-
tities, but did not allow us to do more fine-grained analysis
in the pilot study.

Students practiced Python programming tasks on an online
learning platform designed by researchers to facilitate re-
search on programming language learning [19]. CS content
experts on our team developed 21 Python coding tasks with
7 to 8 test cases per task. The tasks vary in their mea-
surement specifics and difficulty level, which allowed for an
implementation of an adaptive two-stage test design (refer
to Figure 1).

This adaptive design has been gaining attention and popu-
larity in learning and, particularly assessment field, mainly
because it takes into account the differences in student skill
levels and provides different tasks or different sets of tasks
to suit students’ skill levels ([17, 14, 20]). All students an-
swered a common task set of medium difficulty at the first
stage and were routed to either an easy or a hard task set
at the second stage depending on how well they did in the
first stage (refer to Figure 1). Based their final submitted
responses on the common task set, students who scored in
the lower half of the score distribution were routed to the
easy block, those who scored in the upper half were routed

to the hard task set. The task sets at the second stage were
more aligned to students’ skill levels, and hopefully students
would be more engaged with the practice.

Stage 1: Routing

Stage 2: Easy Stage 2: Hard

Figure 1: The Adaptive design with two stages and three
item blocks

The task delivery platform provides students with immedi-
ate feedback on which test cases they passed. Students were
allowed to attempt a task as many times as they like, or
until they passed all the test cases. Students were given a
2-week window to complete all the tasks, and were given $80
in recognition of their time and effort upon completing the
tasks. Students who invested a mean of less than 3 minutes
of effort into each problem set were not compensated as this
indicated either no effort to seek correct solutions or use of
external aids to generate solutions. This was roughly 5% of
the initial set of the participants, and some of these partici-
pants confirmed that they were just seeking compensation.

2.2 Data Preparation
2.2.1 Practice Features
Log data were collected from the online platform, which
contained fine grained information on what codes students
produced, what actions they took, and for how long, etc..
The fine-grained data have shown to be very useful in un-
derstanding students’ problem-solving processes and perfor-
mance [5]. In this preliminary study, we focused on two
practice features that capture students’ intermediate steps
before they submitted their final codes: the number of at-
tempts (i.e., number of running/testing their codes) and
how many test cased were passed in each attempt (please
also refer to Table 1 below for coding rules). More compre-
hensive analysis of the log data will be conducted in further
studies and in the next phase when larger samples are col-
lected. Note that in the following, a programming task is
also referred to as an item in psychometric modeling.

2.2.2 Different scoring rules
In preparing the data to create a common scale, we dichoto-
mously scored each programming task for each student in
each attempt. This choice was constrained by the two facts:
the sample size in the pilot study was relatively small, which
could only support the use of the simplest psychometric
model with dichotomouse responses (i.e, Rasch model; [4]),
and the empirical data showed that the numbers of passed
cases concentrated in the two ends (either a very low number
or a very high number). Please refer to the Results section
and Figure 3. In this study, we experimented with six scor-
ing/grading rules based on the process features. Table 1
provides a detailed description for each scoring rule on an
item, where x stands for the item score of a student, and E

for the event that the student passed at least half of the test
cases.

Table 1: Six scoring rules based on different number of attempts
on a task.

S1: x = 1 if E = True in the 1st attempt, otherwise 0.
S2: x = 1 if E = True in the 2nd attempt, otherwise 0.

If they did not have the 2nd attempt, S2=S1.
S3: x = 1 if E = True in the 3rd attempt, otherwise 0.

If they did not have the 3rd attempt, S3=S2.
S4: x = 1 if E = True in the 4th attempt, otherwise 0.

If they did not have the 4th attempt, S4=S3.
S5: x = 1 if E = True in the 5th attempt, otherwise 0.

If they did not have the 5th attempt, S5=S4.
SF: x = 1 if E = True in their last attempt, otherwise 0.

2.3 Data Modeling
In this section, we provide concise and conceptual descrip-
tions of the used psychometric and statistical methods. In-
terested readers are recommended to refer to the cited pa-
pers for technique details of these methods.

2.3.1 Item Response Models
Because of the adaptive study design, there was missing data
by design. The total sum of passed cases of all tasks is not
comparable across students as some students took the harder
task set and some took the easier one. It was necessary to
create a common (base) scale for comparability. We applied
the Item Response Theory (IRT) models [4] in psychomet-
rics that uses information from the observed task responses
for task difficulty calibration (i.e., estimation). Due to the
relatively small sample size (N = 159) we applied Rasch
model, the IRT model with the least number of parameters,
to obtain reliable parameter estimates [4]. In a Rasch model
(i.e., a latent logistic regression model), the probability for
Student i to get a correct answer on Task j (i.e., xj = 1)
depends on the student’s latent ability θi and the item dif-
ficulty dj :

P (xj = 1|θi, dj) =
1

1 + exp{−(θi + dj)}
. (1)

A student with higher programming proficiency (i.e., larger
θ) has a higher probability of getting the item correct, but
a harder item (indicated by a lower value of d) decreases
that chance. Note that in the following, to be consistent
with psychometric terminology, a programming task is also
referred to as an item.

2.3.2 Item calibrations
Because the sample sizes were relatively small, and they were
even smaller in the second stage of the study design, we used
a two-step approach to conduct item calibrations. There are
three sets of items and associated item difficulty estimates
(refer to Table 2 below).

Item Set Sample Item difficulty
Common set Every Student dcommon

Easy set Lower half scorers deasy
Hard set Upper half scorers dhard

Table 2: Item calibration samples

In the first step, we used Rasch model to estimate dcommon

for items in the common item set that everyone practiced
at stage one; in the second step, we used the fix-parameter
calibration method [12, 8] to obtain deasy and dhard esti-
mates for items at stage two in the easier set and hard set,
respectively. In the second step, dcommon estimates were
fixed, so that all ds were on the same scale. The two-step
item calibration approach can help to obtain more reliable
and accurate estimates of parameters ds (refer to [8] and
references therein).

Note that the item calibrations were conducted on the first
attempt only; that is, items were scored using S1 in Table
1. These item difficulty parameters (ds) were used as our
common (based) scale for the subsequent analyses, which
ensured that all subsequent performance scores based on
different scoring rules were comparable.

2.4 Performance Scores
For a test form consisting of J = 21 items, the true score Ti

[13] for Student i is defined as

Ti =

J∑
j=1

P (xj = 1|θi, dj) =
J∑

j=1

1

1 + exp{−(θi + dj)}
. (2)

However, again, because different students took different
test forms, either Form 1 (common item set plus the easy
item set; J1 = 15), or Form 2 (common item set plus the
hard item set; J2 = 15), the true score on different test forms
are not comparable either. Thus, it is necessary to ”equate”
true scores from one form to the other form to produce com-
parable scores. The equating process was realized through
the IRT equating procedure [13] to produce an equated score
for each student through the common scale determined by
item parameters ds obtained in the above item calibration
steps.

In our study, for each of the six scoring rules, two IRT equat-
ings were conducted: one from Form 1 to Full Form (the
full set; J=21), and the other from Form 2 to Full Form. As
such, the IRT equating acted as an imputing method, and
the equated score was set on Full Form to reflect a student’s
true score as if the student took the full set of 21 items.

Applying the six different scoring rules in Table 1 for item
score x in Equation 1, we produced six equated scores for
each student. Because item parameters ds were the base
scale and used in all IRT equatings, the equated scores were
comparable across students and scoring rules. The equated
scores can, therefore, be used as performance scores for com-
parison and the changes in these performance scores (based
on different scoring rules) reflect skill progress during the
programming processes on the tasks.

2.5 Item Bias Detection
It is sensible to evaluate biases at the item level since perfor-
mance score is a function of aggregated item scores (using
the psychometric models as described above). For each item,
we conducted differential item functioning (DIF) analyses
using the average item scores between the non-men (focal)
group to the men (reference) group [21]. There are various
statistical approaches for DIF analyses [4, 21]. In this study,
we applied a DIF approach that can evaluate the difference

in the average item scores (standardized mean difference,
SMD), as well as the difference in the average attempt (dif-
ferential number of attempts), conditioning on students who
have similar programming skills.

More specifically, let X be the item score (0 or 1), and T be
the total performance score [11]. To assess whether an item
functioned differently for students in two different groups, a
studied/focal group (Group f) and a comparison/reference
group (Group r), comparison is made between the expected
item scores for given total scores, Ef (X|T) and Er(X|T).
The SMD is a weighted sum of the differences of conditional
expectations between the focal and reference groups for an
item; that is

SMD =
∑
t

wft[Ef (X|T = t)− Er(X|T = t)],

where wft is the proportion of the focal group members in
the t-score group. In practice, E(X|T) is estimated by the
average item scores in the t-score group. In the DIF context,
T is often called the matching variable [7, 6, 11].

A statistically significant and negative SMD may indicate
that the studied item favors the reference group, and a sta-
tistically significant and positive one the focal group. The
choice of this DIF method was based on the small sample
sizes in our pilot data and the intuitive interpretation of the
DIF effect size (i.e. SMD). Similarly, differential number of
attempts is the difference in the weighted average attempt
numbers between the two groups after matching on the per-
formance score.

Figure 2 summarizes the architecture of modeling and anal-
yses used in the study.

Figure 2: Architecture

In the study, we used the R package mirt [2] to conduct IRT
item calibrations and programmed R codes to run the other
statistical and psychometric analysis. Interested readers are
referred to the references cited for technical details. Some
useful R codes for item calibration and score equating are
also available in [8].

3. RESULTS

3.1 Data Summary
As discussed earlier, if students kept trying a programming
task, they were most likely to pass all the test cases. Figure
3 shows the typical data pattern on one task. Most students’
numbers of passed cases were either close to 1 or close to 7,
and the counts around 1 shifted to 7 or 8 as they made more
attempts on the task. The same pattern was observed on
most of the tasks, and thus they supported the choice of
scoring the tasks dichotomously.

Figure 3: Distribution of numbers of passed cases on one item.
In each panel from left-to-right and top-to-bottom, the plot shows
the frequency Distribution of passed cases based on the first one,
first two, first three, first four and first five attempts, respectively,
on one task that had eight test cases. Note that in the first two
attempts, no students got all 8 cases correct.

The preliminary PCA analysis on the common item set showed
that the dichotomously scored responses had one dominant
dimension (i.e., uni-dimensionality was acceptable. Refer to
Figure 4).

10

15

20

25

1 2 3 4 5 6 7 8 9

Principal Components

V
ar

ia
nc

e
E

xp
la

in
ed

 (
%

)

Scree Plot

Figure 4: Dimensionality Analysis

3.2 Item Difficulty Distribution

Figure 5 presents item difficulty, calibrated on the first at-
tempt (S1) from the Rasch model. It was observed that item
difficulty of the 21 programming tasks had a good spread:
Tasks 8, 19, 20 and 21 were challenging to the participants,
Task 10 was very easy, and the rest tasks were somewhere
in between.

1 2 3 4 5 6 7 8 9 11 13 15 17 19 21

Item Difficulty Parameters: d

−
2

0
1

2

Figure 5: Item difficulty (d) estimates of the 21 tasks based
on the first scoring rule (S1). A positive bar indicates that
the item was more difficult for the non-men group.

3.3 Performance Score Distributions
Performance score distributions based on different scoring
rules (S1 to S5, and SF as in Table 1) are shown in Figure
6. As expected, as students practiced more on the program-
ming tasks, they made progresses and their performance be-
came better (except for a few students on the left tails of the
distributions who were likely to give up early). Overall, stu-
dents’ performance scores based on the final attempts (SF)
are clearly better than the other intermediate scores (the
solid black curve as shown in Figure 6).

0 5 10 15 20 25

0.
00

0.
05

0.
10

0.
15

Scale Score Distribution

D
en

si
ty

SF
S1
S2
S3
S4
S5

Figure 6: The six score distributions produced by the six
different scoring rules, respectively, from S1 to S5, and to SF.
The distributions shifted to higher scores as more attempts
were allowed.

3.4 Potential Item Bias
Item bias analysis results show that there was an overall
trend of reduced bias as students attempted more times on
the tasks. Using an effect size of 0.1 as a threshold, the
commonly used cut point to flag a meaningful difference in
SMD (refer to [7] and references therein), Figure 7 shows
that, in the first attempts (denoted as the solid orange cir-
cles), Items 12 and 14 were easier, but Items 2, 11, 16 and
21 were harder for the non-men group. However, the mag-
nitude of SMD dropped close to zero after the final attempt
(denoted as pink stars). In fact, the mean absolute error
(MAE) of the SMDs based on the final attempt had the

smallest value (0.036) compared to those based on the first
1 to 5 attempts (0.07 ∼ 0.08).

−0.4

−0.2

0.0

0 5 10 15 20

Item

S
M

D

Attempt

1

2

3

4

5

F

Figure 7: Standardized mean differences (SMDs) between the
non-men and men groups after matching on performance scores
on Item 1 to Item 21, respectively. The x-axis stands for items
(from 1 to 21), and the y-axis on the left stands for SMD (each
item has six SMDs based on the six scoring rules). Those six
SMDs are reported in different colors and point types (refer to the
keys on the right side of the panel). A positive SMD indicates
that the item scored by the associated scoring rule may favor the
non-men group.

Note that, because of the relatively small sample sizes, these
SMDs are not statistically significant, except for Item 21
(which had a sample size of 46 for the men group and 19
for the non-men group). Item 21 (a task that involved pro-
gramming skills such as loops, nested branching, and string
manipulation) seems to be much harder for the non-men
group in all the first 5 attempts, particularly when we only
count the first 4 attempts. However, similar to the other
items, the SMD of Item 21 was reduced to almost zero after
the final attempt.

Figure 8 shows the differential number of attempts between
the two groups. The non-men group attempted more times
on Items 1, 3, 4, 16,17, 19, and 21. Particularly on Item
21, the non-men group attempted about 5 more times on
average (with a statistical significance) than the men group
with comparable programming skills. In other words, the
diminished SMD on Item 21 between the two groups might
be resulted from significantly more effort and more attempts
on this item by the non-men group.

0

1

2

3

4

0 5 10 15 20

Item

A
tte

m
pt

Differential Number of Attempts

Figure 8: Differential number of item attempts between the non-
men and men groups from Item 1 to Item 21. A positive bar
indicates that the non-men group made more attempts on the
item.

4. DISCUSSION
In this pilot study, we attempted to address an emerging
research topic on how to measure learning progress in the
adaptive learning and practice platform. We leveraged log
data collected from the online learning platform to extract
programming practice features and developed a general ap-
proach to integrate statistical and psychometric methods
and best practice with log data features to measure students’
progress in programming practice. The statistical and psy-
chometric methods helped to create dynamic performance
scores that captured students’ progress during practice and
were comparable within individual students who made dif-
ferent attempts and across students who practiced different
sets of programming tasks. Such comparability of perfor-
mance scores not only helps to measure progress in pro-
gramming practice, but it also helps to evaluate potential
task biases between diverse student groups. The current
study contributes to methodologies in measuring learning
progress and evaluating programming tasks in the dynamic
and adaptive online practice setting, which is likely to be
applicable to other practice and assessment scenarios.

Our preliminary results may have implications for assess-
ing programming tasks in online practice. First, even in a
complex situation where multiple attempts are allowed and
different programming tasks are adaptively recommended to
students, we can still use features extracted from log files to
capture students’ programming processes and take advan-
tage of, and develop if necessary, statistical and psychomet-
ric methods to assess students’ progress and produce compa-
rable performance scores. Most importantly, these practice
features and rigorous methods can help identify what tasks
may have potential bias and favor one student group over the
other. Overall, our preliminary results show that repeated
practice with immediate feedback improved all students per-
formance and reduced item biases.

These preliminary findings also suggest assessing students’
performance on their final attempt, which gives control back
to students and allows them decide how many times they
want to practice a task. This may boost students’ confi-
dence and improve their performance. As long as students
keep trying on a task with feedback, they may eventually
pass all test cases, and their effort may help mitigate poten-
tial task bias. In addition, our preliminary findings indicate
that programming tasks that showed initial bias need more
investigation from content perspectives, especially if they
are used in contexts that do not allow repeated practice and
immediate feedback and that have high stakes.

In terms of recommending tasks for students with different
skill levels to practice, performance scores based on the first
attempt, or the first few attempts, may have better differen-
tiability than those based on the final attempt, thus they are
recommended for targeted classroom instruction, if needed.

One major limitation of the current study was the relatively
small sample sizes of the pilot data and limited numbers of
programming tasks, which makes it challenging to generalize
the preliminary findings to broader CS education scenarios.
The team is preparing for a larger scale data collection in the
coming year to reexamine the research questions and evalu-
ate whether similar findings remain. In particular, follow-up

studies will investigate why some tasks may be biased from
content perspectives and aim to provide guidelines for de-
veloping fair programming tasks. Further studies will also
make use of the fine-grained log data and experiment with
machine learning techniques in better understanding stu-
dents’ learning behaviors and programming styles, as well as
their association with characteristics of programming tasks.

Finally, we end with implications for CS educators. For CS
educators, these preliminary results clearly support forma-
tive assessment policies that allow for repeated practice and
feedback, to encourage learning and mitigate potential bi-
ases in task design that might advantage some groups in CS
education. They also suggest that restricting attempts may
limit the opportunity of observing students to demonstrate
their skills and learn from feedback. Future work should
further explore these recommendations, particularly in other
learning contexts (e.g., with different forms of feedback, such
as auto-graders with hints), other identities (e.g., race, eth-
nicity, ability), and items (e.g., more complex programming
assignments often found in formal education).

5. ACKNOWLEDGMENTS
This material is based upon work supported by the National
Science Foundation under Grant No. 2055550 and 2100296.

6. ADDITIONAL AUTHORS
7. REFERENCES
[1] J. D. Bransford, A. L. Brown, and R. R. Cocking,

editors. How people learn: Brain, mind, experience,
and school. National Academy Press, Washington,
DC, 2000.

[2] R. P. Chalmers. mirt: A multidimensional item
response theory package for the r environment.
Journal of Statistical Software, 48(6):1–29, 2012.

[3] M. J. Davidson, B. Wortzman, A. J. Ko, and M. Li.
Investigating item bias in a cs1 exam with differential
item functioning. In Proceedings of the 52nd ACM
Technical Symposium on Computer Science Education,
pages 1142–1148, March 2021.

[4] R. J. De Ayala. The theory and practice of item
response theory. Guilford Press, 2009.

[5] K. Ercikan, H. Guo, and H.-H. Por. Uses of process
data in advancing the practice and science of
technology-rich assessments. OECD Publishing, 2023.

[6] H. Guo and K. Ercikan. Comparing test-taking
behaviors of English language learners (ELLs) to
non-ELL students: Use of response time in
measurement comparability research. ETS Research
Report Series, 2021.

[7] H. Guo and K. Ercikan. Differential rapid responding
across language and cultural groups. Educational
Research and Evaluation, 26(5), 2021.

[8] H. Guo, M. S. Johnson, D. F. McCaffrey, and L. Gu.
Practical considerations in item calibration with small
samples under multistage test design: A case study.
Technical Report RR-24-03, ETS, 2024.

[9] M. Hamilton, A. Luxton-Reilly, N. Augar, and et al.
Gender equity in computing: International faculty
perceptions and current practices. In ITiCSE ’16:
Proceedings of the 2016 ITiCSE, Working Group
Reports, pages 81–102, 2016.

[10] Q. Hao, D. H. Smith IV, L. Ding, A. Ko, C. Ottaway,
J. Wilson, and T. Greer. Towards understanding the
effective design of automated formative feedback for
programming assignments. Computer Science
Education, 32(1):105–127, 2022.

[11] P. W. Holland and D. T. Thayer. Differential item
functioning and the Mantel-Haenszel procedure. In
H. Wainer and H. I. Braun, editors, Test validity,
pages 129–145. Erlbaum, Hillsdale, NJ, 1988.

[12] S. Kim. A comparative study of IRT fixed parameter
calibration methods. Journal of Educational
Measurement, 43(4):353–381, 2006.

[13] M. J. Kolen and R. L. Brennan. Test equating, scaling,
and linking: Methods and practices. Springer-Verlag,
New York, NY, 2nd. edition, 2004.

[14] D. Mead. An introduction to multistage testing.
Applied Measurement in Education, 19(3):185–187,
2006.

[15] R. Murphy, J. Roschelle, M. Feng, and C. A. Mason.
Investigating efficacy, moderators and mediators for
an online mathematics homework intervention. journal
of research on educational effectiveness. Journal of
Research on Educational Effectiveness, 13(2):235–270,
2020.

[16] A. Oleson, B. Xie, J. Salac, et al. A decade of
demographics in computing education research: A
critical review of trends in collection, reporting, and
use. In ICER ’22: Proceedings of the 2022 ACM
Conference on International Computing Education
Research, 2022.

[17] H. Wainer and R. J. Mislevy. Item response theory,
item calibration, and proficiency estimation. In
H. Wainer, editor, Computerized adaptive testing: A
primer, pages 65–102. Erlbaum, 1990.

[18] B. Xie, M. Davidson, and A. Ko. Domain experts’
interpretations of assessment bias in a scaled, online
computer science curriculum. In Proceedings of the
52nd ACM Technical Symposium on Computer
Science Education (SIGCSE ’21), Virtual Event, USA,
March 13–20 2021. ACM.

[19] B. Xie, J. O. Lim, P. K. D. Pham, M. Li, and A. J.
Ko. Developing novice programmers’ self-regulation
skills with code replays. In Proceedings of the 2023
ACM Conference on International Computing
Education Research, Volume 1., pages 298–313, 2023.

[20] K. Yamamoto, H. J. Shin, and L. Khorramdel.
Multistage adaptive testing design in international
large-scale assessments. Educational Measurement:
Issues and Practice, 37:16–27, 2018.

[21] R. Zwick. A review of ETS differential item
functioning assessment procedures: Flagging rules,
minimum sample size requirements, and criterion
refinement. Research Report No. RR-12-08, 2012.

