
HowToo: A Platform for Sharing, Finding, and
Using Programming Strategies

Maryam Arab1, Jenny Liang2*, Yang Yoo1*, Amy J. Ko2, Thomas D LaToza1

1 Department of Computer Science, George Mason University, Fairfax, VA, USA, {marab, yyoo4, tlatoza}@gmu.edu
2 The Information School, University of Washington, Seattle, WA, USA, {jliang9, ajko}@uw.edu

*Note: These authors contributed equally.

Abstract—Developers rely heavily on resources to find technical
insights on how to use languages, APIs, and platforms, seeking
help from Stack Overflow, GitHub, meetups, blogs, live streams,
forums, documentation, and more. However, there is one kind
of knowledge for which resources are hard to find: strategic
knowledge. In contrast to technical knowledge, strategic knowl-
edge provides insight into how to approach problem-solving.
Prior work has demonstrated that developers can make use of
written strategies to improve their problem-solving. However,
there is currently no way for developers to share, curate, and
search for this knowledge at scale. To address this gap, we
contribute HowToo, a platform for sharing, finding, and using
programming strategies. Its key insight is that there are many
different approaches to the same problem, and developers may
need different strategies depending on their situation. In a
longitudinal evaluation with more than 30 students in a project-
based software engineering course, we found that: 1) students
viewed HowToo as complementary to technical resources; 2)
students viewed strategies as helping them be more systematic
and complete in their work; 3) HowToo helped students be more
confident in their problem solving; 4) when students were under
time pressure, they were less inclined to use HowToo to structure
their work, as being mindful required them to slow down.

Index Terms—Q&A, knowledge sharing, programming strate-
gies

I. INTRODUCTION

Software engineering is a highly distributed and social
activity, as developers share knowledge on online communi-
cation channels such as social media and online chats to solve
their programming problems [1]–[6]. They ask and answer
questions on Stack Overflow [7], [8], meet through meetups,
learn from tech talks, and participate in workshops [4], [5]
to gain expertise. Stack Overflow, in particular, has become
a primary resource for accessing technical knowledge about
programming languages, APIs, and platforms [7]. Many of
these shifts to social stem from an underlying need to seek
expert knowledge [7], [8].

While these sources excel at answering questions about
technical artifacts—explaining the semantics of a program-
ming language construct, sharing design patterns for a library,
revealing hidden side effects from a configuration setting in a
web service —they do not answer every question. In particular,
developers often need answers to “how to” questions: how
to debug, how to test, how to design a data structure, and
how to refactor code without introducing defects. However,

these kinds of problem-solving knowledge are rarely shared
online or taught in formal CS education contexts. Instead,
developers are left to develop their approaches independently,
often resulting in ineffective practices [9].

One way of capturing and sharing problem-solving knowl-
edge is through programming strategies, higher-level software
engineering techniques about how to approach solving a prob-
lem, described as a sequence of steps to reach a goal. Steps
may encompass acting, checking a condition, or collecting
requirements and information [10]–[12]. Figure 1(I) lists a
strategy for debugging a defect in an HTML page. The strategy
guides the developer to use the Chrome inspector to understand
how the browser interpreted the HTML to infer the problem.
Strategic knowledge is a central part of expertise [13]–[15].
Prior work has demonstrated that developers can make use of
programming strategies to improve their problem-solving [10].

While prior work suggests the potential of explicit program-
ming strategies to improve how developers solve problems, it
is unclear how to share and use them at scale. If developers
share strategies online, how should they be represented so that
other developers can search, browse for, and recognize them
as relevant? When developers use other developers’ strategies,
how should they clarify ambiguities and provide feedback? If
there were a way to find and use strategies, would developers
leverage them to structure their work or follow their existing
habits?

We designed HowToo, a platform for sharing, finding, and
using strategic knowledge from experienced developers to an-
swer these questions. HowToo contributes a novel combination
of features for a poorly supported aspect of programming.
This includes a novel representation of programming strategy
metadata for searching and browsing, an interface for using
and executing strategies step by step, and interactions that
facilitate strategy refinement based on developer feedback
(Figure 1). Together, these offer a comprehensive solution
to sharing hard-won software engineering expertise with the
world.

To evaluate HowToo, we conducted a formative evaluation
in an undergraduate software engineering course. This study
is the first to test programming strategies in a real team-
based software engineering context rather than a lab. The
study contained two phases: a training phase that required
using strategies in HowToo to familiarize participants with
them, and a testing phase where participants chose whether to978-1-6654-4592-4/21/$31.00 ©2021 IEEE

A

C

D

F

B

E

User

Line-specific
Feedback

Author

Refine strategy

General
Feedback

Clarifying
question

Address/Answer
Feedback

I

O
H

NJ

L
K

M

G

Fig. 1: HowToo enables (A, C, D, G, E) searching for, (B) requesting, authoring, (I, J, K, N) using, commenting on (L, M)
and (O) refining strategies. Arrows indicate transitions between system states.

use strategies in HowToo. We collected data through student
interviews, comments about using strategies during the testing
phase, logs of HowToo interactions, and a survey conducted
at the end of the semester.

The results revealed that 60% of participants continued
using the platform when it was not mandatory. Students found
HowToo to be complementary to other technical resources
such as Stack Overflow. They viewed strategies as offering
a checklist of tasks to complete, which helped them be more
confident about their internal knowledge while filling the gaps
in their current practices. Some students found that strategies
needed more details, descriptions, and clarity to be helpful.
Those who requested strategies from their peers on HowToo
believed that HowToo was the best place to find people with
similar problems. Finally, some students reported that more
collaboration and communication would make the platform a
better place to learn.

II. BACKGROUND

A. Explicit Programming Strategies

Many industries share strategic knowledge in the form of
standard operating procedures (SOPs) [16], and checklists
[17]. In safety-critical domains, such as operating a nuclear
power plant, SOPs provide step-by-step instructions which
promote efficiency, error prevention, and regulation compli-
ance. Checklists are commonly used in healthcare settings to
reduce errors and standardize medical procedures [17].

Similarly, software engineering is not just about solving a
specific problem—it is also about learning when and how to
apply strategies to solve a problem [18]. Prior work shows
that metacognition and problem solving play a key role in
improving the productivity, independence, and self-efficacy
of developers [10], [19]–[21]. Engaging with metacognitive

behaviors, such as reflection and comprehension monitoring,
is correlated with success in programming courses [21].
Programming strategies constitute a central component of
programming expertise [13]–[15].

Explicit programming strategies are human-executable pro-
cedures for accomplishing a task [10]. Strategies enumerate
a series of steps to accomplish a goal and identify actions to
overcome challenges. Following an expert developer’s explicit
programming strategy can increase task completion rates while
also enabling developers to work more systematically [9], [10].
Prior work has shown that explicit programming strategies
reduce comprehension errors [12], improve debugging success
[22], and reduce debugging time [11], [23].

B. Knowledge Sharing Platforms in Software Engineering

Question and answer (Q&A) platforms such as Stack Over-
flow can offer many benefits to software engineering problem
solving by crowdsourcing answers to questions about how
to use programming languages, APIs, and platforms [7],
[8], [18]. Using Q&A platforms is positively associated with
developer productivity [24], [25]. However, prior work has
shown that Stack Overflow questions occasionally go beyond
strictly technical knowledge, offering opinions, reviews, and
other content [26], [27]. Similar Q&A platforms exist for
student developers, such as Piazza [28], where students are
often encouraged to ask questions that reflect their reasoning
and problem-solving processes [29].

One benefit of Q&A platforms is the code examples they
contain [30], which enable developers to copy and adapt
solutions opportunistically [31]. While this can reduce devel-
opment time, it introduces other issues, such as propagating
vulnerable [32] and defective code [33], [34], as well as
not correctly attributing source code to authors [35]. Code
examples often lack essential contexts, such as background

knowledge, the rationale for the solution, or step-by-step
instructions for arriving at similar or related solutions [18].

Thus, while Q&A platforms can help answer many techni-
cal questions about specific languages, APIs, and platforms,
they rarely offer strategies for solving software engineering
problems with unknown answers.

III. MOTIVATING EXAMPLE

To illustrate how HowToo facilitates developers in sharing,
finding, and using strategies, consider a fictional scenario.
Alice is implementing a web page, and the page does not
render as expected. She visits HowToo to search for a strategy
to help (Figure 1), inputting the technologies she is using
alongside a few keywords describing her problem (A). She
then selects “debug” for the problem category (F). HowToo
finds no problems matching her query (C). Before requesting
a strategy for a new problem (B), Alice decides to edit her
search criteria. She edits the keyword and technology speci-
fiers and reruns her query. HowToo lists all problems in the
debugging category defined or requested by other developers
(D). She finds the second problem in the results relevant to
her problem, with seven strategies defined (G). Checking the
list of existing strategies (E), Alice notices that each lists its
usage requirements (H). Checking these requirements and the
description of each, she decides to try “Debugging HTML in
Chrome”. Alice starts using the strategy (I). HowToo supports
her in systematically following the strategy, helping her keep
track of her place by highlighting her current step in the
strategy (K), switch steps using arrow keys or buttons (J), and
record information she discovers and wants to remember for
later using a side-panel (N). Alice finds the usage of the word
“Inspect” on line 5 in the strategy unclear. As her confusion
is related to a specific line rather than the strategy as a whole,
she clicks the icon at the end of line 5 (L) to create a comment,
asking: “What does ’inspect’ mean? How should I inspect
the HTML element?” HowToo publishes her comment and
notifies the strategy author via email. The author then decides
to address the comment, adding additional detail to the line.
They then respond to the comment, describing the changes
made. HowToo notifies Alice that she received a response to
her comment.

Facing a second problem, Alice does not find the existing
strategies helpful. She navigates to the “Request Strategy” tab
(I), describing her problem and requesting a new strategy (B).
Her request is added to the list of new requests shown publicly
under “Unanswered” problems (D). Developers with strategies
to address this problem may respond to the open request and
create a new strategy (Figure 2).

IV. SHARING STRATEGIES WITH HOWTOO

The promise of explicit programming strategies [10], com-
bined with the lack of support for sharing strategies in mod-
ern Q&A sites, creates a critical gap in software engineer-
ing resources: how can developers share and reuse strategic
knowledge at scale? HowToo answers this question. HowToo
supports the accumulation and refinement of strategic software

engineering expertise in a central platform to help improve and
add to the collective knowledge of a developer community
over time. Developers first request a strategy by describing
their problem (Section IV-A). Strategy authors may then re-
spond to an open request by creating a strategy in an editor us-
ing a specialized strategy description language (Section IV-B).
Developers search for a strategy to address a problem they
face, using their understanding of their problem to identify
potentially relevant strategies (Section IV-C). Developers then
follow the strategy, using the environment to keep track of their
place and the information they collect. When the developer
finds the strategy confusing, incomplete, or unhelpful, they
may offer feedback or ask clarifying questions, which prompts
the strategy author to improve and refine their strategy (Section
IV-E).

A. Requesting strategies

When a developer cannot find an existing strategy relevant
to their problem, they may request a new one by describing
the problem they face. Developers describe their problem by
recording metadata, including a title, description of the prob-
lem, goals, technologies being used, and a problem category.
The optional technology metadata is helpful when the problem
is tied closely to a specific technology. The problem categories
are derived from a taxonomy of information needs [36],
refined through several rounds of piloting and iteration. They
include testing, debugging, learning, documenting, designing,
and coding (Figure 1-F). New strategy requests are posted
to a list of unanswered requests shown to all HowToo users,
prompting developers with the relevant expertise to write a
strategy. Strategy requests may generate multiple strategies for
the same problem, offering different approaches or supporting
different levels of developer prior knowledge.

B. Authoring strategies

There are many possible ways to encode strategic pro-
gramming knowledge, such as unstructured natural language
or natural language with hierarchical bulleted lists. HowToo
uses a more structured representation, Roboto [10], which is
primarily natural language but includes simple control flow
constructs, such as conditionals and loops, to enable strat-
egy users to be more systematic and comprehensive. Figure
2 shows the HowToo strategy authoring interface. HowToo
provides guidelines on how to use Roboto to define strategies
(C) and supports mimicking Roboto syntax through a sample
Roboto strategy (D). An editor for writing strategies (B) helps
developers learn Roboto syntax, offering meaningful syntax
errors.

One challenge in authoring an effective strategy is to gener-
alize it to support users with diverse expertise. To address this
challenge, authors are provided guidelines for writing effective
strategies (Figure 2-C). For example, HowToo suggests that
strategy authors separate the details from the main strategy
steps, moving them to descriptive text for only those who
might need them. HowToo supports hyperlinks for including
links to tutorials and supporting references in the strategy.

Strategy authors are encouraged to provide strategy metadata
(Figure 2-A), helping strategy users more effectively assess
relevance in browsing and searching.

C. Searching for strategies

Unlike searching for answers to questions about using a
programming language, API, or platform, which often benefit
from unique, pre-defined identifiers, there is no standardized
terminology for referring to software engineering problems.
Strategy seekers must be aware of what their problem is and
translate this into keywords to search. For example, imagine
someone searching for how to debug a defect involving
multiple threads: a strategy seeker using a Q&A system might
search for “debug threads”, but a strategy author might have
labeled a strategy “diagnose concurrency defects”.

To address this problem, HowToo does not rely exclu-
sively on search. Instead, it uses a standardized vocabulary of
software engineering activities and a combination of search,
browsing, and filtering. This first helps developers find the
problem for which they need help, and then have them select
from one or more strategies that may help solve this problem.
Figure 1 illustrates this process.

While searching for a programming strategy, there may be
multiple similar yet distinct candidate problems that match a
developer’s query. For example, there are many strategies to
debug a defect [10]. Further, any given problem may poten-
tially have many viable strategies. This requires developers to
decide which problems, as well as strategies, are relevant to
their situation. Previous work shows that users struggle with
recalling information over recognizing information [37]. To
support a developer’s recognition for potential problems and
strategies, we designed a rich metadata structure for strategies
and problems to display to the developer.

To implement the search functionality, we use a natural
language query to retrieve relevant problems for developers.
We expect that the problems expressed in the search query
will be similar to the titles of the problems on our platform
(e.g., the query “debugging front-end” will be similar to the
problem of “How do I debug front-end web UI code?”). Our
natural language search relies on fuzzy string searching for
matching queries with problem metadata [38].

To reduce the number of results displayed, developers can
refine their query by filtering problems by problem category
or technologies. For instance, in the list of strategies in Figure
1-E, each strategy is tagged with a set of technologies required
for the strategy to be effective (H). The developer may define
a problem category and technologies with which they are
familiar (Fig. 1-A) to find both related problems and strategies
(Figs. 1-D, E).

D. Using strategies

Strategies teach software engineering techniques with spe-
cific, prescriptive advice that describe concrete actions a devel-
oper should take in a specific order [10]–[12]. As humans have
limited working memory that might lead to human error when
there are too many items to keep track of [39], developers may

A

B

C

D

Fig. 2: Developers author strategies in HowToo by (A) writing
metadata and (B) using an editor to write a strategy in a strat-
egy description language. To support this process, developers
may consult (C) guidelines for authoring effective strategies
and (D) a sample strategy illustrating the language syntax.

forget the order of performing actions, lose track of the steps
they are performing, or forget variable values and information
in the previous step [10].

To help developers avoid these working memory mistakes,
HowToo offers two ways of externalizing the problem-solving
state. Users can control a program counter with keyboard
arrow keys and the “Next” and “Previous” buttons (Fig. 1-J).
A strategy statement’s description and line-specific comment
button are only shown when it is highlighted (Fig. 1-K, L).
To offload the burden of remembering information, strategy
users may take notes on the information they may need for
later, such as variable values, in a dedicated panel (Figs. 1-N).
Notes are not line-specific, allowing developers to access the
recorded information at any step.

E. Refining strategies

Authoring a strategy poses many challenges, such as choos-
ing the target level of knowledge for strategy users and
the level of detail. Understanding potential strategy users’
expectations and needs could help strategy authors articulate

a better strategy that is more usable for varying strategy
users. There are many ways to address this problem, such
as encouraging strategy authors to write additional details and
providing strategy writing guidelines. However, this does not
guarantee that enough detail is provided for a broad set of
strategy users. One approach is to treat strategies as a shared
document on which users can give feedback and suggestions.
This allows strategy authors to respond to feedback and
improve the strategy over time.

To support feedback loops, HowToo allows strategy users
to post threaded comments on both individual lines of a
strategy or across the entire strategy (Figure 1-L,M). Figure
1-O depicts the HowToo commenting workflow. When a user
posts a comment, HowToo sends an email notification to
the strategy author. Based on the comment, the author may
respond to the question, ask for clarification, or directly refine
the strategy. HowToo then sends a notification email to the
user regarding their comment. The user then may address
the author’s response. This communication cycle between the
strategy author and user may take several iterations while both
parties clarify, refine, and improve the strategy.

V. USER STUDY

In designing HowToo, we had two formative questions
about the platform’s ability to support sharing strategies:

• RQ1: How do students experience HowToo when using
it to support their programming?

• RQ2: How does HowToo benefit students?
To investigate these questions, we deployed HowToo in a

senior elective project-based software engineering course. The
course taught software engineering foundations while applying
this knowledge in team projects. The class consisted of 35
students that were divided into nine teams (T1-T9), each with
a project manager, a designer, and one or two developers. The
teams submitted weekly assignments to scaffold their progress.
The instructor authored seven strategies in HowToo related
to the assignments: setting up a GitHub repository, clarifying
design specifications, extracting requirements, designing an
architecture, translating requirements to testing plans, perform-
ing black-box testing, and triaging issues. The fourth author
was the instructor. In total, the platform had 43 strategies at
launch. During the second phase of the study, three strategies
were authored by students in response to peer requests. An
Institutional Review Board approved the study design.

The instructor encouraged students to contribute to HowToo
for extra credit by answering peer questions in the com-
ments, responding to strategy requests by authoring strategies,
or sharing their own internal strategies. To understand how
students interacted with HowToo, we logged interactions on
the platform. Throughout the course, the instructor described
HowToo as an independent service adopted to support the
class to avoid participant response bias [40], and encouraged
students to give critical feedback about the platform to help
the instructor decide whether to continue using it.

All students were 18 years or older and had completed at
least three programming courses. Students who were inter-

viewed received $15 Amazon gift card(s) for each interview
session in compensation for their time.

A. Method

The study consisted of a training phase and a testing
phase. During the training phase in the first five weeks of the
course, student teams were required to use a related strategy
for each weekly assignment. The instructor sent a link to a
HowToo strategy. Teams were required to use it and reflect on
challenges they faced and how they solved them by writing a
comment on a line or on the whole strategy.

In the testing phase during the last four weeks of class, there
was no obligation to use HowToo strategies. The purpose of
this phase was to investigate if students would use strategies
without significant external motivators or prefer to use other
resources for help. The only incentive provided was a single
point of extra credit for posting a strategy that a classmate
voluntarily used, which mirrored the kinds of reputational
incentives given on similar Q&A platforms. Students were
encouraged to use the platform to search for a desired strategy
or request one from the instructor, TA, or their peers. The first
author invited students to participate in an interview in three
cases: 1) to clarify HowToo comments, 2) to study a chain of
communication on the platform, and 3) to gather additional
context to the logs of certain interactions on the platform,
such as authoring a strategy, requesting a new strategy, or
searching for and using other strategies. At the end of each
phase, the first author invited all students to the interview. All
the interviews were conducted via Zoom, while the interviewer
video recorded the session. The videos were deleted after the
interview transcription.

At the end of the course, the instructor asked students to
complete a survey about their experience using HowToo, the
approaches they used to solve their problems during the testing
phase, what prevented or motivated them to continue using the
platform, and alternative approaches they leveraged.

The first author prompted the instructor to write weekly
structured diary entries on her experience for each strategy she
wrote during the training phase and her observations on how
students used each strategy. The diary prompted the instructor
to reflect on challenges the strategies helped with, reactions
to feedback that students provided, and overall impressions of
the strategies’ impact on students’ problem-solving.

B. Data collection

To answer our research questions, we collected data
from five sources: 1) semi-structured interviews; 2) com-
ments/feedback students made about the strategies; 3) the final
survey data collected from all 33 students about the strategies
they used, the platform itself, and the alternative approaches
they took; 4) the logs of user interactions including searching,
using, requesting, and authoring on HowToo from 20 students;
and 5) the instructor’s diary.

We conducted semi-structured interviews using specified
questions tailored the interviewee’s logs and open-ended ques-
tions to expand upon unexpected responses. The interviewers

were encouraged to ask relevant follow-up questions to explore
exciting topics. Interviewers gathered the user’s comments and
interaction logs before the interview.

In total, we conducted five interviews with four of the nine
teams. Four interviews focused on the students’ experience
using strategies in the training phase, while one interview
was with a student who requested a strategy and received a
response from a peer in the testing phase. For the first four
interviews and for each strategy, we asked interviewees to 1)
walk us through the steps they took to use each strategy;
2) explain how they solved a challenge they reported while
using the strategy, if applicable; 3) describe the benefits and
drawbacks of each strategy; and 4) report feedback about the
strategies and platform. For the strategy requester interview,
the interviewer asked the participant to describe 1) the steps of
requesting for and using a strategy, 2) other approaches they
tried before requesting a strategy, 3) the motivation to use to
HowToo, and 4) what motivated her to request a strategy.

We collected the interview transcriptions, the comments
from the training phases, and the final survey responses listed
in documents for data analysis and coding. We extracted the
number of students who used HowToo for the whole semester
and how they used the platform from the interaction logs.

C. Data Analysis

To analyze the data, we followed current best practices in
qualitative coding [41]. We did not analyze the participants’
ideas as quantified data; instead, we treated the analysis results
as claims for future investigation and checked the reliability
of our coding by sharing disagreements and resolving them to
arrive at an agreement.

Following these guidelines, we created separate documents
of the feedback from the training phase, interview transcrip-
tions, and survey responses for qualitative analysis [42]. Three
paper authors separately read each document and inductively
generated codes in the first round of qualitative coding. The
three paper authors separately identified topics related to the
research questions by creating codes with a brief description
and individually labeled each data record with zero or more
codes. To aggregate these codes, the paper authors first com-
pared the separately generated codes to identify those with
similar definitions and added them to the codebook under
a uniquely labeled code. The three authors compared the
codes, discussed instances of disagreement, and reached an
agreement by either adding or removing the code from the
codebook. Disagreements mainly stemmed from variations in
scoping codes rather than the meaning of the statements.
The authors agreed on scoping and resolved disagreements
in the first round of discussion. During this process, the
authors found that all remaining codes conveyed unique ideas
participants reported and added them to the codebook. The
authors then coded the responses in a second round using the
final codebook. They then applied pattern coding to the final
codes [43], which groups codes into several broader categories.
The result of this process are shown in Table I.

We also collected the instructor’s diary and the student’s

survey responses on their experiences authoring a strategy.
Because the instructor was also an author of this paper,
our analysis approach was to have the instructor read her
reflections for each of the five strategies she authored and
summarize the reflections holistically.

D. Results

1) RQ1: How do students experience HowToo when using
it to support their programming?

Students found strategies helpful in guiding them to struc-
ture their work, serving as a checklist of the task’s essential
steps. Table I summarizes students’ experiences with HowToo,
which we discuss below.

Elaboration & clarification. Students reported challenges
with strategies’ clarity. Some addressed this by requesting the
strategy author add additional information to the strategy or at
a particular step. Others suggested including an example of a
scenario or concept or adding “additional steps” to the strategy.
However, students were concerned about how adding detail
could sacrifice the strategy’s simplicity. One team reported:
“I think the fact some strategies needed to be improved a lot
also hindered how well they could help us, as some strategies
were more confusing than others to implement.”(T3)

In other cases, students believed that they needed additional
resources or tutorials to understand how to perform specific
steps in the strategy. Some requested the strategy author to pro-
vide background or tutorial resources with which they could
learn unfamiliar concepts. Others needed “guidelines” for
decision-making. For example, in a strategy which structured
requirements extraction from a design prototype, students
wanted additional guidance on whether all of the requirements
were met and all the scenarios were covered.

Incompleteness, wording, & syntax. Students reported
difficulties with confusing wording and strategies not being
comprehensible, not covering all possible scenarios, not in-
cluding descriptions on how to detect edge cases and separate
overlapping concepts, and not understanding when a step is
completed.

The Roboto syntax was new to students, and some reported
that some Roboto syntax was complex. For instance, students
found the “foreach” loop less confusing to use than the
“until” loop. Less-experienced students had more difficulty
understanding the Roboto syntax. One participant reported
that Roboto syntax’s similarity to traditional programming
languages made it easy to understand and follow:
“I think the “until” and “if” steps are useful in terms
of guiding us through the thought process of revising our
requirements.”(T8)

Platform engagement. The students interacted with each
other on the platform and found reading their peers’ comments
helpful. One student reported that communication about the
strategy helped to understand the strategy better and improve
its content over time:
“I think it (commenting) was more like having people share
their thoughts on it (strategy). So, like, Oh, do I agree with

TABLE I: A summary of the experiences of strategy users and authors

Theme Description
RQ1: How do students experience HowToo when using it to support their programming?
Elaboration & clarification Students needed more clarity on specific steps or the strategy as a whole. Additional resources

were needed to learn unfamiliar concepts.
Incompleteness, wording, & syntax Students experienced difficulties with confusing phrasing and strategy incompleteness and not

covering scenarios or edge cases. Roboto syntax made strategies easy to follow for some and hard
for others (e.g. confusion with the “until” loop).

Platform engagement Students found interacting with peers helpful and desired additional engagement opportunities.
Systematic approach Students found strategies helpful in systematic components creation and work construction, overlaps

and redundancies reduction, and covering gaps. Some used strategies as a list of hints on how to
get unstuck.

Following strategies Some felt that strategies were helpful for detailed programming problems, while others felt they
would be more helpful as high-level checklists for tasks.

RQ2: How does HowToo benefit students?
High-level guidance HowToo provides high-level guidance for completing tasks rather than a direct solution to problems.
Complementary resource Students found HowToo strategies to be complementary to other resources they reported using:

Googling, TA and Instructor, YouTube, StackOverflow, classmates, online tutorials, documentation,
lab sessions, previous course materials, and textbooks

Find others with the same problem Students reported that HowToo helped them find others with a similar problem context to receive
solutions faster.

that? Do I not? I think it’s more of like, at least so that
user who posted a strategy understands. It’s like a work in
progress over time. I feel like when you’re doing commenting
and people get feedback and improve on it.” (T6)

Others showed interest in being more engaged in the platform
if there was no rush to complete the assignment. A few
students said that when they returned to the training phase’s
strategies during the testing phase, they found those strategies
very helpful if they followed them precisely and carefully. Oth-
ers suggested additional features for HowToo, including visual
aids, screenshots, videos, attachments, and direct messaging.

Systematic approach. Strategies supported students in
problem solving. Students reported that having a strategy
helped overcome problem-solving difficulties:

“The strategy was very helpful for our group to system-
atically create the necessary components. There was some
initial difficulty to make sure that the components covered all
requirements, and to make sure that there wasn’t redundant
overlap between components.” (T3)

Some believed that strategies helped them to be more system-
atic, especially in structuring their work. Others reported that
strategies provided them with a starting point when they were
confused and hints to get unstuck at any problem solving step.
One team reported:

“[The] strategy helped us narrow down and make our
requirements to be concise and clear- I think it was valuable
for me and my team when we were struggling to figure out
where to start.” (T7)

Following strategies. Some students felt that strategies were
not helpful in programming-level tasks and were instead more
beneficial as a high-level checklists. They believed it would
be beneficial for managers to divide a task into procedural

task steps. However, others found the strategies helpful for
programming and learning. One team reported:
“The platform felt very developer-friendly but not to other
roles of a software engineering team.” (T2)

Some felt that HowToo was not helpful for developers with
urgent deadlines because systematically following strategies
was often time-consuming.

2) RQ2: How does HowToo benefit developers?

To answer this research question, we focused on under-
standing who would continue to use HowToo when it was
no longer required during the testing phase. Would HowToo
be considered a valuable source of information? If not, what
alternative approaches might students select, and why? By
evaluating the logs of interactions, we found that out of
33 students, 20 students continued using HowToo after the
requirement to use it in the training phase ended.

Three out of twenty students requested a strategy, and
three other students authored a strategy for their peers. The
first request was “How do I deliver and present an effective
software demo?”, and seven students, including the requester,
used it. The second request was “How do I complete an
effective user testing session?”, which eight students used.
The third request was “How do I set up a Firebase React
database?”, which six students used. Our analysis revealed
that students used their classmates’ strategies as a source of
help for their assignments and as a reference to author a new
strategy. After getting stuck, one requester reported referring to
HowToo, as she believed that the course instructor and peers
who might face the same problem were potential resources.
She reported:
“I think that is just like feedback and knowledge from other
peers or instructors on a problem like this, and this is what

you should expect.” (T6)
The survey results revealed that students found HowToo

to be a “complementary” resource, providing guidance for
problem-solving. Students found HowToo helpful in becoming
unstuck. Students who usually sought other resources found
HowToo to be a new type of resource that helped them guide
what they did. Others believed that HowToo could help them
find others with the same problem more quickly.

VI. LIMITATIONS

As a preliminary formative study of a new platform, our
study was necessarily limited. HowToo does not yet have the
scale of the content found on most mature Q&A platforms, and
so experiences with it might differ at a larger scale. Our study
was with undergraduate students enrolled in a course, which
differed from a professional work context in several ways.
Strategy use and understanding require mindful users. Time-
constrained projects may not be an ideal opportunity in which
to use and learn a new strategy. Prior work found that strategy
users need to repeat using a strategy to understand it and fully
benefit from it [10]. In this way, developer experiences in a
less time-constrained setting might differ.

To introduce HowToo and the concept of a strategy, we
required the use of the platform for five weeks during a
training phase, with a short phase of optional use following
this. In other contexts, users might never be required to use
the platform. Students were also given nominal incentives to
write a strategy; such incentives might not exist. Conversely,
the platform contained only 46 strategies, including the three
strategies authored by students. A widely used platform might
have many, many more strategies and might inspire more
confidence that new high-quality strategies could be rapidly
created (as is the case for content in existing Q&A plat-
forms [7]). As there were few strategies on the platform, stu-
dents generally browsed for strategies, and our study revealed
little about the challenges users might face in a context with
more strategies. Our results might also have been biased by
the students who chose to participate in our interviews. Finally,
the pandemic, online courses, and ongoing national and global
crises posed significant student participation barriers, limiting
our data collection.

VII. DISCUSSION

This paper introduced HowToo, the first platform for col-
lecting and sharing programming strategies. In a formative
case study, we found that HowToo could be complementary to
other resources and provide high-level guidance about how to
complete a task. Consistent with prior work [7], we found that
certain features of the HowToo design were critical for users,
such as fast response times, clear answers, guidelines, and
communication. The results also showed that, while students
found HowToo beneficial, it was not helpful under time
pressure, as it required students to problem solve more slowly
and mindfully. Some of these findings might, or might not,
vary in a professional work context, where the quality of work
might sometimes outweigh schedule pressure.

The instructor (the 4th author) also interpreted the stu-
dents’ experiences. When adopting HowToo, she leveraged a
multi-year history of observing students struggle with design
specifications, requirements engineering, architecture, and test
planning while authoring strategies. The strategies she wrote
targeted particular skill misconceptions by students, and she
hoped that focusing the strategies on common difficulties
would improve the quality of student work. Across the set
of strategies she wrote, she targeted students’ insufficient
attention to detail by scaffolding a specific repetitive task (e.g.,
checking every requirement for certain properties, writing a
comprehensive acceptance test plan based on requirements).
Therefore, she intended to help students complete those
repetitive tasks more thoroughly than in previous years. The
teaching diary revealed that students appreciated the guidance
on skills they lacked and reported feeling like their work
was more thorough. However, they desired more guidance
than the strategies provided. In assessing students’ work, she
perceived their submissions to be even more complete and with
greater attention to detail than in previous years. However, the
strategies did not necessarily lead to improvements in other
dimensions that were not targeted.

Based on the students’ feedback, the log data, and the
instructor’s reflections, one clear implication is that community
engagement is critical to the success of strategy sharing. We
found that strategy users mainly used communication within
strategies to clarify confusion points and help others when
they got stuck. Some of the comments suggested alternative
approaches to improve the strategy. More communication and
collaboration on the platform could make it a valuable resource
for lurking, offering additional insight into strategies. Students
referred back to HowToo during testing when they found oth-
ers with relevant knowledge (peers, TA, and instructor) more
easily, which assured faster responses. Consistent with prior
work [7], this demonstrates the importance of fast responses
to motivating participation in the platform.

ACKNOWLEDGEMENTS

We thank Hassan Assif and Stephen Hall for their contribu-
tions to the development and testing of HowToo and our study
participants for their time. This work was supported in part by
the National Science Foundation under grants CCF-1703734
and CCF-1703304.

REFERENCES

[1] N. Bakhuisen, “Knowledge sharing using social media in the work-
place,” University Amsterdam, 2012.

[2] S. Panahi, J. Watson, and H. L. Partridge, “Social media and tacit
knowledge sharing: Developing a conceptual model,” World Academy
of Science, Engineering and Technology, pp. 1095–1102, 2012.

[3] M.-A. D. Storey, L. Singer, B. Cleary, F. M. F. Filho, and A. Zagalsky,
“The (r) evolution of social media in software engineering,” IEEE/ACM
International Conference on Software Engineering, pp. 100–116, 2014.

[4] T. Chau and F. Maurer, “Knowledge sharing in agile software teams,”
Logic versus approximation, pp. 173–183, 2004.

[5] L. Singer, F. M. F. Filho, and M.-A. D. Storey, “Software engineering
at the speed of light: How developers stay current using Twitter,”
IEEE/ACM International Conference on Software Engineering, pp. 211–
221, 2014.

[6] M. Storey, L. Singer, B. Cleary, F. M. F. Filho, and A. Zagalsky, “The (r)
evolution of social media in software engineering,” Future of Software
Engineering Proceedings, pp. 100–116, 2014.

[7] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann,
“Design lessons from the fastest Q&A site in the west,” ACM Conference
on Human Factors in Computing Systems, p. 2857–2866, 2011.

[8] J. Herbsleb and D. Moitra, “Global software development,” IEEE
Software, pp. 16–20, 2001.

[9] M. Raadt, R. Watson, and M. Toleman, “Chick sexing and novice
programmers: Explicit instruction of problem solving strategies,” Aus-
tralasian Conference on Computing Education, pp. 55–62, 2006.

[10] T. D. LaToza, M. Arab, D. Loksa, and A. J. Ko, “Explicit programming
strategies,” Empirical Software Engineering, pp. 2416–2449, 2020.

[11] M. A. Francel and S. Rugaber, “The value of slicing while debugging,”
Science of Computer Programming, pp. 151–169, 2001.

[12] B. Xie, G. L. Nelson, and A. J. Ko, “An explicit strategy to scaffold
novice program tracing,” ACM Technical Symposium on Computer
Science Education, pp. 344–349, 2018.

[13] D. J. Gilmore, “Expert programming knowledge: A strategic approach,”
Psychology of Programming, pp. 223–234, 1990.

[14] P. L. Li, A. J. Ko, and J. Zhu, “What makes a great software engineer?”
IEEE/ACM International Conference on Software Engineering, pp. 700–
710, 2015.

[15] S. Baltes and S. Diehl, “Towards a theory of software development
expertise,” ACM Joint Meeting of the European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
pp. 187–200, 2018.

[16] D. Wieringa, C. Moore, and V. E. Barnes, Procedure writing: Principles
and practices. Battelle Press, 1998.

[17] A. Gawande, The checklist manifesto. New York: Picadur, 2010.
[18] H. Li, Z. Xing, X. Peng, and W. Zhao, “What help do developers seek,

when and how?” IEEE Working Conference on Reverse Engineering,
pp. 142–151, 2013.

[19] J. Cao, S. D. Fleming, M. Burnett, and C. Scaffidi, “Idea garden: Situated
support for problem solving by end-user programmers,” Interacting with
Computers, pp. 640–660, 2015.

[20] D. Loksa, A. J. Ko, W. Jernigan, A. Oleson, C. J. Mendez, and M. M.
Burnett, “Programming, problem solving, and self-awareness: Effects of
explicit guidance,” ACM Conference on Human Factors in Computing
Systems, pp. 1449–1461, 2016.

[21] D. Loksa and A. J. Ko, “The role of self-regulation in programming
problem solving process and success,” ACM Conference on International
Computing Education Research, pp. 83–91, 2016.

[22] A. J. Ko, T. D. LaToza, S. Hull, E. A. Ko, W. Kwok, J. Quichocho,
H. Akkaraju, and R. Pandit, “Teaching explicit programming strategies
to adolescents,” ACM Technical Symposium on Computer Science Edu-
cation, pp. 469–475, 2019.

[23] R. A. DeMillo, H. Pan, and E. H. Spafford, “Critical slicing for software
fault localization,” ACM International Symposium on Software Testing
and Analysis, pp. 121–134, 1996.

[24] B. Vasilescu, V. Filkov, and A. Serebrenik, “Stack Overflow and GitHub:
Associations between software development and crowdsourced knowl-
edge,” IEEE International Conference on Social Computing, pp. 188–
195, 2013.

[25] B. Vasilescu, A. Serebrenik, P. Devanbu, and V. Filkov, “How social
Q&A sites are changing knowledge sharing in open source software
communities,” ACM Conference on Computer Supported Cooperative
Work & Social Computing, pp. 342–354, 2014.

[26] M. Allamanis and C. Sutton, “Why, when, and what: Analyzing Stack
Overflow questions by topic, type, and code,” IEEE/ACM International
Conference on Mining Software Repositories, pp. 53–56, 2013.

[27] C. Treude, O. Barzilay, and M.-A. Storey, “How do programmers ask
and answer questions on the web?” IEEE/ACM International Conference
on Software Engineering, pp. 804–807, 2011.

[28] “Piazza,” retrieved May 6, 2021 from https://piazza.com/.
[29] M. Vellukunnel, P. Buffum, K. E. Boyer, J. Forbes, S. Heckman,

and K. Mayer-Patel, “Deconstructing the discussion forum: Student
questions and computer science learning,” ACM Technical Symposium
on Computer Science Education, pp. 603–608, 2017.

[30] S. Wang, D. Lo, and L. Jiang, “An empirical study on developer interac-
tions in Stack Overflow,” ACM Symposium on Applied Computing, pp.
1019–1024, 2013.

[31] J. Brandt, M. Dontcheva, M. Weskamp, and S. R. Klemmer, “Example-
centric programming: Integrating web search into the development envi-
ronment,” ACM Conference on Human Factors in Computing Systems,
pp. 513–522, 2010.

[32] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and
S. Fahl, “Stack Overflow considered harmful? The impact of copy&paste
on android application security,” IEEE Symposium on Security and
Privacy, pp. 121–136, 2017.

[33] T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, and M. Kim, “Are code
examples on an online Q&A forum reliable?: A study of API misuse
on Stack Overflow,” IEEE/ACM International Conference on Software
Engineering, pp. 886–896, 2018.

[34] C. Ragkhitwetsagul, J. Krinke, M. Paixao, G. Bianco, and R. Oliveto,
“Toxic code snippets on Stack Overflow,” IEEE Transactions on Soft-
ware Engineering, 2019.

[35] S. Baltes and S. Diehl, “Usage and attribution of Stack Overflow code
snippets in GitHub projects,” Empirical Software Engineering, pp. 1259–
1295, 2019.

[36] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated
software development teams,” IEEE/ACM International Conference on
Software Engineering, pp. 344–353, 2007.

[37] J. Nielsen, Usability engineering. Morgan Kaufmann, 1994.
[38] P. H. Sellers, “The theory and computation of evolutionary distances:

Pattern recognition,” Journal of Algorithms, pp. 359–373, 1980.
[39] J. Reason, Human error. Cambridge University Press, 1990.
[40] N. Dell, V. Vaidyanathan, I. Medhi-Thies, E. Cutrell, and W. Thies,

“‘Yours is better!’: Participant response bias in HCI,” ACM Conference
on Human Factors in Computing Systems, pp. 1321–1330, 2012.

[41] D. Hammer and L. K. Berland, “Confusing claims for data: A critique
of common practices for presenting qualitative research on learning,”
Journal of the Learning Sciences, pp. 37–46, 2013.

[42] J. Saldaña, The coding manual for qualitative researchers. SAGE
Publishing, 2009.

[43] M. B. Miles and A. Huberman, Qualitative data analysis: An expanded
sourcebook. SAGE Publishing, 1994.

