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Computing education has growing inclusion and equity challenges (e.g. exclusionary online learn-

ing experiences, biased assessments, inadequate student feedback mechanisms). Many groups ex-

perience minoritization in computing education, including students who are Black, Indigenous, and

people of color (BIPOC), women, non-binary students, transfer students, international students,

first-generation students, and students with disabilities. To ensure diverse students can realize their

potential to participate in and challenge computing communities, we must enable stakeholders (e.g.

students, teachers, curriculum designers) to take informed, timely, and equitable actions. This dis-

sertation explores how to design interactions with data to inform stakeholders in support of such

actions.

While data often perpetuates and exacerbates inclusion and equity challenges when improp-

erly used, it can also support equity-oriented goals if properly contextualized for interpretation by

stakeholders. I explored how stakeholders interpreted data in three contexts: 1) informing students

of what to learn next in an adaptive, self-directed online learning experience; 2) informing cur-

riculum designers with empirical evidence of assessment bias; 3) and informing teaching teams

of inequities using contextualized student feedback. Through these studies, I identified how stake-

holders’ relationships with educational structures and systems impacted their interpretations of data

for equity-oriented goals. These factors have implications to the research and practice of learning

at scale, computing education, and human-computer interaction. Therefore, I claim the following



thesis statement:

Interactions with data that consider prior knowledge, perceptions of power relationships,

and cultural competency can enable computing education stakeholders to connect their in-

terpretations of data with their domain expertise in service of equity-oriented goals.
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GLOSSARY

AGENCY: A learner's capacity to de�ne and pursue learning goals [14]. Learners may exert
agency by choosing to use one tool to learn over another, to study a speci�c topic, to try
a certain exercise, to review some instruction, or to decide they know enough and quit.
Exerting agency is required to make decisions.

BIPOC (BLACK, INDIGENOUS, AND PEOPLE OF COLOR):A commonly used phrase and acronym
that refer to ethnic groups that computing communities and societal structures often bias or
disadvantage against. While popular in usage, this terminology is not without problems.
In particular terms such aspeople of colorcan be considered harmful [301] and often am-
biguous. For example, it is ambiguous whether BIPOC includes people who are Asian and
Paci�c-Islander. I use BIPOC to prioritize common understanding and familiarity without
further explanation (e.g. when showing teaching teams demographic data with StudentAmp
in Chapter 5). But I prefer to use more speci�c language when there are opportunities for
stakeholders to become familiar with the term. For example, I refer to African/Black, His-
panic/Latinx, Native/Indigenous, and Paci�c-Islander/Alaskan Native (AHNP) to refer to
ethnic groups that are often minoritized when working directly with curriculum designers to
interpret data on DIF in Chapter 4.

BIAS: Systematic favoring of certain (often dominant) groups over other (often minoritized) in
a socially situated context. Types of bias includepreexisting biasesthat have roots in social
institutions, practices, and attitudes;technical biaseswhich arise from technical constraints
or design decisions; andemergent biaseswhich arise in a context of use [113].

CRITICAL: An stance that seeks to understand how dominant ideologies become infused in
social norms, ultimately allowing systems and ideologies of oppression to occur [273].

COMPUTING EDUCATION RESEARCH:How people learn and teaching computing, broadly con-
strued [162]. Within this dissertation, I investigate include data science within the domain
of computing education and investigate it at the K-12 (secondary) and university (post-
secondary) level.

DATA: Arti�cial constructs that re�ect decisions and biases of people who created and use them
[305]. Within this dissertation, data I consider include log data of learners' past actions on

vi



an online learning system, performance on assessments, student demographics, challenges
students report, and students' perceptions of classmates' challenges.

DISPARITY: Unjust or unfair differences, typically implying the need to address these differ-
ences. This dissertation considers educational disparities, which may result from differential
or biased treatment of students from minoritized groups, differences in preparatory privilege,
and different responses to educational systems or different sets of educational needs [234].

DIVERSITY: Which demographic groups are and are not represented or included in various
spaces and practices [172]

EQUITY: Improving access and supporting successful participation and achievement of diverse
students learning computing [172]. Whereas equality might require equal access, equity re-
quires equalizing outcomes [274]. The may necessitate unequal inputs to addressing dispar-
ities that arise from structures and norms failing to include or serve students of minoritized
groups.

INTERPRETATION (OF DATA): Making sense of data through a complex intersection of implicit
beliefs that re�ect broader social discourses [23]. In this dissertation, I consider how prior
knowledge, perceived power relationships, and cultural competence affect the formation of
stakeholders' beliefs and experiences in the process of interpreting and making sense of data
to consider equity-oriented actions.

LEARNING: A process in which learners can realize their human dignity and potential (to par-
ticipate in existing systems, challenge oppressions) without enduring a process of dehuman-
ization. Learning computing provides learners with an opportunity to engage with powerful
tools that they can use to unseat individual and collective social oppressions. Adapted from
[282].

MINORITIZED: Groups that are not positively privileged or favored and often stigmatized. In
computing education, they include students who are women, non-binary, African-American/Black,
Hispanic/Latinx, Native American/Indigenous, Paci�c Islander, transfer students, not �uent
in English, and/or �rst-generation, as well as students who have disabilities and/or have �-
nancial or familial responsibilities. Systemic cultures and norms tend to favor dominant
groups and disadvantage minoritized groups.

STAKEHOLDER: Any group or individual who can affect or is affected by the achievement of
objectives related to computing education. Stakeholders are de�ned by and understood in
relationship to their interaction with a technology or sociotechnical system [112]. Adopted
from the framing of stakeholders from Value Sensitive Design [90, 112].
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VALIDITY: An evaluation of coherence and completeness of an argument for a given stake-
holder to interpret and use data within a given sociopolitical context. This is a situated
framing of Kane's framing of validity in psychometrics literature [148, 149, 150].
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Chapter 1

INTRODUCTION: OPPORTUNITIES AND RISKS OF WIELDING DATA

The representations we make up often take on realities of their own. In the 1930s, Otto G.

Lindberg and Ernest Alpers of General Drafting Co. were creating a road map of New York state

[213]. To prevent competing companies from copying their maps, they created the �ctitious place

of “Agloe,” as shown in Figure 1.1A. The idea was that if anybody else produced a map with Agloe

on it, Lindberg could sue them for copying their map. Fast-forward two decades and sure enough,

the map company Rand McNally produced a New York state map that included Agloe. But when

Lindberg tried to sue for copyright infringement, Rand McNally lawyers defended themselves by

saying that Agloe actuallydid exist. Because somebody had seen Agloe on a map, realized nothing

was there, and built the Agloe General Store (Fig 1.1B). And while nothing exists at that location

after the Agloe General Store closed decades ago, Algoe appeared on road maps as recently as

the 1990s, and on the United States Geological Survey (USGS) Geographic Names Information

System and Google Maps in 2014. The made-up data that was Agloe, NY took on a reality of its

own.

Data are powerful not just because they are abstract representations of reality, but also because

they take on realities of their own. The fake location of Agloe is an innocuous example of this

phenomenon. But when data relate to people and their wellbeing, the stakes are higher. We have

seen that the decisions we make when we produce, sample, analyze, model, interpret, and use data

lead to a “coded gaze” where the views of the select few who have the power to develop systems

propagate throughout society [37]. As a result, many groups �nd themselves being excluded in

a data-de�ned society. We have already seen examples of data exclusion and the consequences:

The 2020 US census only asks about biological gender, excluding non-binary, trans, and gender

non-conforming people from being considered in government decision-making; facial recognition
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Figure 1.1: How a representation becomes a reality of its own: The �ctitious town of Agloe, NY
was originally created to protect a map from copyright infringement (A). But then it became a
reality (B). ©Booklist/ American Library, Joyce Conroy

datasets are predominantly of white men, resulting in diminished classi�cation accuracy for darker

skin and the false arrest of a Black man in Detroit [217, 242]; comparisons of academic perfor-

mance by race (typically with white, non-Hispanic students as the baseline) cannot consider con-

textual factors that impact achievement, resulting in a de�cit framing for students who are Black,

Indigenous, and People of Color (BIPOC).

1.1 Context of study: equity in computing education

Within the context of computing education, a boom in interest and enrollment resulted in the

use of more scalable data-driven technologies to support learning experiences. Examples include

online learning platforms to make remote learning more feasible [298], intelligent tutoring sys-

tems that use data from other students' performance to personalize and adapt learning experi-

ences [304, 144], and auto-graders to make evaluating assessments more ef�cient [73]. But these

learning experiences are often either standardized to serve the majority or trained on data from

students of dominant identity groups (e.g. able white and Asian men). As a result, these experi-

ences will typically fail to serve and even harm students in minoritized groups, groups that have
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