
© Copyright 2015

Michael J. Lee

Teaching and Engaging with Debugging Puzzles

Michael J. Lee

A dissertation

submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2015

Reading Committee:

Katie Davis

Mark Guzdial 
 

Julie Kientz

Program Authorized to Offer Degree:

Information Science

University of Washington

Amy J. Ko, Chair

Abstract

 Teaching and Engaging with Debugging Puzzles

Michael Jong Lee

 
Chair of the Supervisory Committee:  

The Information School

This dissertation describes Gidget, an online educational debugging game that is designed to

engage and teach novices introductory programming concepts. Players solve puzzles throughout

the game to help a robotic character complete its missions. These puzzles are actually debugging

tasks, where players must inspect, modify, and test existing code to fulfill the goals that are

written as test cases. Each level teaches a specific concept or set of concepts related to topics that

are covered in introductory programming courses.

The dissertation defines the core principles that constitute an educational debugging game.

Three controlled experimental studies show that the game is engaging to novice programmers.

This was especially true when 1) the compiler/interpreter and its feedback messages were

personified, 2) objects in the game attributed more purpose to the game goals, and 3)

assessments were integrated seamlessly into the game. Another controlled experiment, where

Associate Professor, Amy J. Ko

participants were assigned to use one of three learning interventions, revealed that those who

completed the Gidget game or an online tutorial on a website called Codecademy showed similar

learning gains, with Gidget players doing so in about half the time.

Thousands of people have played Gidget through its development and public release. It has

been shown to be appealing to a broad range of users independent of age, gender, education, or

place of residence. A total of 68 teenagers from underrepresented groups in computing (i.e.,

females, and those from rural communities) took part in four, weeklong summer camps. With

only about 5 hours of training playing through and completing the Gidget game, these teenagers

were able to create a total of 210 of their own Gidget levels with minimal or no outside help.

Furthermore, Gidget has attracted several thousands of players since its release. Registered

players, composed of 54.8% males and 45.2% females, completed 0-37 levels playing between

between 1 minute to 5.22 hours each.

TABLE OF CONTENTS
List of Figures v ..

List of Tables vii ...

1. Introduction 1 ...

1.1. The Problem 2 ...

1.2. A Solution 3 ...

1.3. Research Approach 4 ...

1.4. Definitions 5 ..

1.5. Contributions 5 ..

1.6. Outline of Dissertation 6 ...

2.Related Work 8 ..

2.1. Technologies to Teach Programming 8 ...

2.2. Using Games as a Tool to Teach Programming 9 ...

2.3. Game Based Learning, Gamification, and Related Theories 11

3. The Gidget Game 13 ...

3.1. The Game Curriculum 18 ..

3.2. The Gidget Puzzle Designer 19 ...

3.3. Automated Data Collection 19 ..

3.4. Variations in Versions 21 ...

4. Effect of Personified Feedback on Engagement 23 ..

4.1. Background and Motivation 23 ...

4.2. Methodology 24 ..

4.2.1. Control vs. Experimental Condition 25 ...

4.2.2. Recruitment 27

4.2.3. Pricing and Validation 28 ..

! i

4.2.4. The Participants 29 ..

4.3. Study Results 31 ..

4.3.1. Experimental Condition Players Complete More Levels 31

4.3.2. No Significant Differences in Play Time 32 ..

4.3.3. No Significant Differences in Execution 33 ..

4.3.4. Experimental Condition Players Want to Help the Game Character 34

4.4. Discussion 35 ..

4.5. Limitations 36 ...

4.6. Summary 36 ...

5. Effect of Purposeful Goals on Engagement 38 ..

5.1. Background and Motivation 38 ...

5.2. Methodology 39 ..

5.2.1. The Three Level Conditions 39 ...

5.2.2. Participant Recruitment, Compensation, and Demographics 40

5.2.3. Procedure and Dependent Measures 41 ...

5.3. Study Results 42 ...

5.3.1. Animal Condition Players Complete More Levels 43 ..

5.3.2. Animal and Bug Condition Players Play Longer 44 ..

5.3.3. No Significant Differences in Code Execution Strategies 45

5.3.4. No Significant Differences in User Interface Usage 46 ...

5.3.5. No Significant Differences in Attitudes 47 ...

5.4. Discussion 47 ...

5.5. Limitations 48 ..

5.6. Summary 49 ...

6. Effect of In-Game Assessments Engagement 50 ..

6.1. Background and Motivation 50 ..

6.2. Methodology 51 ...

6.2.1. Assessment Levels 53 ...

! ii

6.2.2. Participants and Procedure 55 ..

6.3. Study Results 57 ...

6.3.1. Engagement Study: Assessment Condition Players Complete More Levels 57

6.3.2. Engagement Study: Assessment Condition Players Play the Game Longer 59

6.3.3. Speed Study: Assessment Condition Player Complete the Same Levels Faster 60 ...

6.3.4. Speed Study: Effects on Play Time and Style 61 ...

6.4. Discussion 63 ...

6.5. Limitations 65 ..

6.6. Summary 65 ...

7. Effect of the Gidget Game on Learning 66 ..

7.1. Background and Motivation 66 ..

7.2. Methodology 66 ...

7.2.1. Learning Activity 1: Codecademy Course 68 ...

7.2.2. Learning Activity 2: Gidget Game 69 ..

7.2.3. Learning Activity 3: Gidget Puzzle Designer 69 ..

7.2.4. Knowledge Test for CS1 Concepts 70 ..

7.2.5. Participants and Procedure 73 ..

7.3. Study Results 74 ...

7.3.1. Better Post-Scores with Tutorial & Game Condition Players 74

7.3.2. Differences in Percent Increase of Scores 76 ...

7.3.3. More Time on Exams for Tutorial & Game Condition Players 78

7.3.4. Differences on Learning Activity Time 79 ...

7.3.5. No Significant Demographic Differences in Test Scores 80

7.3.6. No Significant Demographic Differences in Test Time 81 ..

7.4. Discussion 82 ...

7.5. Limitations 84 ..

7.6. Summary 85 ...

8. Outreach Activities and Public Release 86 ..

! iii

8.1. Motivation 86 ...

8.2. Outreach Activities for Underrepresented Groups 86 ..

8.2.1. Camp Participants 87 ..

8.2.2. Results & Discussion 88 ...

8.2.3. Summary 90

8.3. Public Release 91 ...

8.3.1. Online Players 92 ...

8.3.2. Results & Discussion 92 ..

8.3.3. Summary 97

8.4. Limitations 98 ...

9. Conclusion and Future Work 99 ..

9.1. Future Direction 100 ..

9.2. Summary of Contributions 102 ...

9.2.1. Guidelines & Technology 102 ...

9.2.2. Study Results 102 ..

9.3. Final Remarks 103 ..

Bibliography 105 ..

Appendix 119 ..

• Gidget Language Grammar 120 ..

• Pseudo-Code Tests 122 ..

• Gidget Game Assets (Images + Sound Effects) 130 ...

• Gidget Game Screenshots 141 ..

• Gidget Curriculum – Detailed Level Breakdown 171...

! iv

LIST OF FIGURES

Figure 1.1. Screenshot of the (A) Gidget game start screen, and (B) main game interface 3

Figure 1.2. A map of the contributions in this dissertation and their corresponding chapters 6

Figure 3.1. Screenshot of Gidget with added callouts on different interface elements 13

Figure 3.2. Screenshot of Gidget’s story when the game is first started 15 ..

Figure 3.3. Screenshot of the Gidget’s dictionary/glossary 16 ...

Figure 3.4. Screenshots of Gidget’s (A) Tooltips, and (B) IdeaGarden help tools 16

Figure 3.5. Screenshot of the AnswerDash interface in Gidget. 17 ..

Figure 3.6. Gidget’s syntax highlighting (left) and explanation of the error (right) 17

Figure 3.7. Map of the curriculum’s units, topics, and number of levels 18

Figure 3.8. Screenshot of the Gidget Puzzle Designer editing one of the default levels 20

Figure 3.9. Screenshot of the first version of Gidget using the original language 21

Figure 4.1. Representations and error messages of Gidget based on its game condition 24

Figure 4.2. Layout of execution button used to express different styles of communication 26

Figure 4.3. Comparison of the Personification Study’s levels completed by condition 31

Figure 4.4. Histogram of levels completed for each condition. 32 ...

Figure 4.5. Comparison of the Personification Study’s play time by condition 32

Figure 4.6. Comparison of the Personification Study’s button presses by condition 34

Figure 5.1. Visual representations, names, and goals for the three conditions 39

Figure 5.2. Comparison of the Purposeful Goals Study’s levels completed by condition 43

Figure 5.3. Histogram of levels completed for the Purposeful Goals Study’s conditions 44

Figure 5.4. Comparison of the Purposeful Goals Study’s play time by condition 44

Figure 5.5. Comparison of the Purposeful Goals Study’s button presses by condition 45

Figure 5.6. Proportion of the Purposeful Goals Study’s interface usage to overall time on levels

played 46 ...

Figure 6.1. Example of a multiple choice question (left) and a click-grid question (right) 51

Figure 6.2. The different level sequence for the control and assessment conditions 53

! v

Figure 6.3. Diagram of the sequence of messages for correct and incorrect answers 54

Figure 6.4. Number of players remaining after each level in the engagement study 58

Figure 6.5. Comparison of Assessment Study’s (Engagement) levels completed by condition 59

Figure 6.6. Comparison of Assessment Study’s (Engagement) play time by condition 60

Figure 6.7. Comparison of Assessment Study’s (Speed) adjusted play time on same levels by

condition 60 ..

Figure 6.8. Comparison of Assessment Study’s (Speed) execution button  
presses by condition. 62 ..

Figure 7.1. Screenshot of a Codecademy beginner’s Python tutorial 67 ..

Figure 7.2. Screenshot of two different pseudo-code questions and their answer choices from the

pre- & post-tests 71 ...

Figure 7.3. Comparison of Learning Study’s pre-test and post-test scores by condition 75

Figure 7.4. Comparison of Learning Study’s pre-test and post-test play time by condition 79

Figure 8.1. Most campers’ levels included several programming concepts and a storyline. 88

Figure 8.2 Some teams from the first Oregon camp used Gidget to create pixel art 89

Figure 8.3 Campers taught their parents how to play Gidget using their levels 89

Figure 8.4. A camper’s unprompted doodle expressing her affinity towards Gidget 90

Figure 8.5. Screenshots of the account creation prompt and instant access warning 91

Figure 8.6. People from all over the word have played Gidget 93 ...

Figure 8.7. Players mostly come from urban areas within the USA 93 ..

Figure 8.8. Most players quit after the first level, but account holders (B) finish more levels 95

Figure 8.9. Relationship between saved-account holders’ age and levels completed 96!....................

! vi

LIST OF TABLES

Table 3.1. Seven design principles for an educational debugging game 14

Table 4.1. Examples of the variations error messages and font styling 26 ...

Table 4.2. The Personification Study’s participant demographics 30 ...

Table 5.1. The Purposeful Goals Study’s participant demographics 41 ...

Table 6.1. Experimental design for the two Assessment Studies 52 ...

Table 6.2. The Assessment Study’s participant demographics 53 ..

Table 6.3. Summary statistics for the two Assessment Studies and conditions 57

Table 6.4. Summary statistics for the Speed Study’s learners’ play styles 61

Table 7.1. The Learning Study’s participant demographics 74 ...

Table 7.2. The Learning Study’s summary statistics of pre-test and post-test scores 75

Table 7.3. The Learning Study’s percent increase between pre-test and post-test scores 77

Table 7.4. The Learning Study’s summary statistics for activity times 79 ...

Table 8.1. The campers’ demographics 87 ..

Table 8.2. Summary of the levels created by the campers 88 ...

Table 8.3. Player information from the public release 92 ...

Table 8.4. Summary statistics from the public release 94!...

  

! vii

ACKNOWLEDGEMENTS

I wish to thank my committee members for all their time and dedication. A special thanks to

and concern for all of his students is admirable, and I could not imagine a better mentor. I would

also like to give thanks to my committee members, Julie Kientz, Katie Davis, and Mark Guzdial

for their service and taking the time to support me through my dissertation process.

I would also like to acknowledge the many other advisors I have been fortunate to work with

throughout my academic career. First, I would like to thank Dr. David Kirsh for introducing me

to research as an undergraduate student, and allowing me to gain invaluable experience teaching

introductory programming and design courses. Next, I thank Dr. Robert Glushko, who

demonstrated the importance of information organization and open standardization in service

design. I also thank Dr. Kimiko Ryokai, who helped me identify my research interest and co-

authored my first two research papers.

Finally, I would like to thank the many collaborators I worked with on launching the Gidget

game online and with helping on summer camp outreach activities. At the University of

Washington, this includes: Polina Charters, Fanny Luor, Michael Beswetherick, Nadav

Ashkenazi, Steven Raden, Staffan Hellman, and Christina Xiao. At Oregon State University, this

includes: Dr. Margaret Burnett, Dr. Irwin Kwan, Dr. Catherine Law, Faezeh Bahmani, William

Jernigan, Amber Horvath, Jilian Laferte, Taylor Cuilty, and Sheridan Long.

This work was supported by the National Science Foundation under grants CNS-1240786,

CNS-1240957, CNS-1339131, CCF-0952733, CCF-1339131, IIS-1314399, IIS-1314384, and

OISE-1210205. 

! viii

Dr. Amy Ko, my chair and advisor, for taking me on as his first full student and spending

countless hours helping me become the researcher I am today. Her insight, patience, expertise,

DEDICATION

To my parents, Sean Lee and Alice Lee,  
for all their support and love.

! ix

! 1

1. INTRODUCTION

Programming is increasingly becoming an important 21st century skill. End-user programming is

already quite prevalent in the workplace – some estimate that for every professional software

developer, there are four non-professionals writing programs without any formal training or

experience in programming (Scaffidi et al. 2005). In the USA alone, computer science related

jobs are increasing at double the national average and are among the top paying fields (Bureau of

Labor Statistics 2012), but there are not enough people trained to fill these roles. At current rates,

it is estimated that there will be over one million unfilled computing jobs by 2020, which equates

to a $500 billion opportunity (Bureau of Labor Statistics 2012). These numbers highlight the

need to create more public interest in computing and acquiring the necessary skills to pursue

these jobs not only through formal educational settings, but also through new types of

discretionary educational resources.

In recent years, major efforts such as the Hour of Code and CS Education Week events have

attracted millions of people, including celebrities and even the U.S. president, to try

programming using many of the discretionary learning resources available for free online (Beres

2014). These resource include tutorial websites such as Codecademy (n.d.) and CodeSchool

(n.d.), open-ended creative environments such as Scratch (Maloney et al. 2010) and Alice

(Cooper, Dann, & Pausch 2000; Dann, Cooper, & Pausch 2011), and educational games such as

Wu’s Castle (Eagle & Barnes 2008) and LightBot (n.d.). Users of these systems report that they

enjoy these informal resources more than traditional coursework because they allow for

flexibility in how they learn, they provide a better sense of retention of the material (Boustedt et

al. 2011), and they are more motivating, engaging, and interesting than traditional classroom

courses (Cross 2006). Some of these attitudes can be attributed to these resources’ use of game

mechanics such as scaffolded materials, structured mastery learning, concrete goals, and

extrinsic incentives such as badges (Young 2008). Furthermore, these online resources allow

users to learn about programming in a safe environment at their own pace (Steffe & Gale 1995),

which gives them the opportunity to clear up any of their negative misconceptions about

programming or their ability to learn it, to something more positive (Charters et al. 2014).

! 2

1.1. THE PROBLEM

Unfortunately, these many online educational resources have three major issues: it is unclear 1)

to what extent learners are engaged with the material, 2) whether they show measurable learning

outcomes, and 3) who is actually using these types of resources. First, unlike traditional

classrooms, learners in discretionary settings have the option to disengage with the content at any

time. Traditional educational resources have peers and instructors that can help motivate or

engage a struggling learner immediately, but most online resources do not. Therefore, knowing

how to keep a learner engaged with the educational material is very important. If the learner

decides the material is too boring, too easy, or too difficult, they may decide they do not like the

subject, which may have long-lasting, negative consequences. Unfortunately, although there are

many studies examining what learners find difficult and discouraging about learning

programming, there are fewer works specifically examining what factors engage learners. This

leads to a whole new set of pedagogical and design challenges, where players need to be

sufficiently challenged to keep them interested and coming back, but not so much as to

discourage them, all while actually teaching them. Knowing what engages learners, especially in

the context of online learning, will be crucial in making effective educational tools.

Furthermore, although there are major efforts to attract more people to programming (Beres

2014) and a long history to make it more accessible to learners (Kelleher & Pausch 2005),

educators struggle with understanding how to teach people programming (Guzdial 2014) in an

effective and measurable way. Few (if any) of the many online resources report anything beyond

the number of users that have signed up for their services and how many activities their users

have completed. We do not know how long people interact with an activity, if they ever come

back, or, most importantly, what they are learning, if anything. This lack of evaluation makes it

unclear how useful these tools are beyond merely engaging learners for a brief period of time,

which resources are actually successful at teaching coding, or what parts of these resources

contribute to success or failure. Without this knowledge, we risk designing instructional tools

that do not actually instruct learners (Garris, Ahlers, & Driskell 2002).

! 3

1.2. A SOLUTION

What if we could use the internet to effectively teach a wide range of people computer

programming concepts at their own discretion and pace, while keeping them entertained? In this

dissertation, I describe how my research does this using an online programming game called

Gidget (see Figure 1.1). Gidget introduces programming (and debugging) to novices in a low-

barrier, engaging way that produces measurable learning outcomes. Through my research, I

explore how different design elements in a game affect people’s engagement with the activity

and measure their learning outcomes. This leads to my thesis:

An online game can engage and measurably teach programming

concepts covered in a typical introductory computer science (CS1)

course to a wide range of learners.

More specifically, the research questions (and related sub-questions) that arise from this thesis

are:

• RQ 1. Do players of an educational debugging game show measurable signs of

engagement playing the game?

• RQ 1.1. How does (compiler/interpreter) feedback affect players’ engagement?

• RQ 1.2. How do goals affect players’ engagement?

• RQ 1.3. How does explicit testing in the game affect players’ engagement?

Figure 1.1. Screenshot of the (A) Gidget game start screen, and (B) main game interface.

�

! 4

• RQ 2. Do players of an educational debugging game show measurable learning of

programming concepts covered in a typical introductory programming (CS1) course?

• RQ 2.1. To what extent are players able to transfer their understanding of

fundamental CS1 concepts from the Gidget language to pseudo-code?

• RQ 3. Who is playing the educational debugging game?

• RQ 3.1. Does the game appeal to underrepresented groups in computing?

• RQ 3.2 What are the demographics of the people who are choosing the play the

game?

In the following sections, I describe my approach, provide some definitions of terms used

throughout the dissertation, list my contributions, and detail the contents of the following

chapters.

1.3. RESEARCH APPROACH

The work outlined in this dissertation draws from practices in Human-Computer Interaction

(HCI) research. I used a participatory design process involving representatives from several

stakeholder groups to inform the design of the first version of the game. This was done to ensure

the game would appeal to a wide audience, and included a middle school student, several high

school students, a college student, a graduate student, a computer science educator, and a college

graduate with a non-technical job.

Using an iterative interaction design approach (Frayling 1993; Zimmerman et al. 2007), I

continued to modify and update the game as I conducted and finished more studies. My design

decisions for each iteration of the game were based primarily on empirical evidence gathered

from controlled experiments (i.e., A/B or A/B/C testing) that were conducted to answer the

specific research questions listed in the previous section about the game’s effect on its users. The

game described in this dissertation is the result of the findings from these controlled experiments.

! 5

1.4. DEFINITIONS

This dissertation uses several terms that will be defined here for clarification. First, both the

Gidget game and its eponymous protagonist will be referred to as Gidget throughout the paper –

with the context clearly differentiating between the two. Seven design principles (detailed in

Chapter 3) define what constitutes an educational debugging game and how Gidget fits these

properties. In the game, players must solve puzzles (i.e., fix code defects) to pass each level.

Defects, errors, and bugs all refer to some code in the game that results in a fault or failure,

preventing the player from completing the level.

The studies described in this dissertation focus on a specific group of players. A novice

programmer, the primary target audience of Gidget, refers to someone who does not have any

experience (either formally or informally) with writing or reading computer code. Conversely,

those with any programming experience are referred to as experienced programmers, and the

extent of their experience or ability with programming is not distinguished since they are not the

primary focus of this dissertation. The novice programmers from our studies will be primarily

referred to as learners, but depending on the context, may also occasionally be called: players,

users, campers, and participants.

1.5. CONTRIBUTIONS

This dissertation provides a number of contributions:

• A description of seven design principles that define the components needed to make an

educational game that effectively engages and teaches introductory programming

concepts to novices.

• Evidence that novice programmers are engaged with an educational game when:

• The computer compiler/interpreter is personified.

• The game goals are made more purposeful using specific types of data elements.

• In-game assessments (i.e. exams) are added at the end of each subject module.

• Evidence that novice programmers can effectively and measurably learn introductory

programming concepts using an educational game.

! 6

• Evidence that an educational programming game can attract a wide range of players.

• Knowledge about who is attracted to play the game.

To summarize, this dissertation describes Gidget, a novel approach to teach programming

through debugging puzzles in a way that appeals to a broad audience, engages its users, and

shows measurable learning outcomes.

1.6. OUTLINE OF DISSERTATION

Figure 1.2 provides a visualization of the content in this dissertation, depicting the studies

conducted to answer the research questions above. The studies described in Chapters 4 through

7, and parts of Chapter 8, were all previously reported elsewhere in peer-reviewed publications

with myself as the first author and lead researcher. In these chapters, I use the inclusive pronouns

we and our to describe the work for consistency and to acknowledge my coauthors’

contributions.

• Chapter 2 – Related Work

• Chapter 2 summarizes the works closely related to this dissertation, including different

technologies used to teach programming, and the use of games as a medium to teach

programming.

• Chapter 3 – The Gidget Game

• This section describes the instrument used in all the studies detailed in this

dissertation. It includes an explanation of the game’s interface, its curriculum, the

optional puzzle designer interface, automated data collection, and the relevant

differences in the various iterations of the game throughout its development.

• Chapter 4 through 6 – Studies About Learners’ Engagement

Figure 1.2. A map of the contributions in this dissertation and their corresponding chapters.

�

! 7

• These chapters detail three different controlled experiments exploring the factors that

affect players’ engagement with the game. The studies in Chapters 4 and 5 primarily

manipulate the presentation of textual and graphical information to see how it affects

learners. The study in Chapter 6 manipulates the inclusion or exclusion of assessments

(i.e., exams) throughout the game to see how it affects learners.

• Chapter 7 – Study About Learners’ Learning Outcomes

• Chapter 7 measures the pre-test and post-test scores of learners before and after

playing Gidget (and two other learning activities) to see how it affects learners.

• Chapter 8 – Outreach & Public Deployment Demographics

• Chapter 8 reports on two activities used to reach a wide range of players for Gidget.

The first is an outreach activity using Gidget at summer camps for teenagers,

specifically focusing on underrepresented groups in computing. The second is a public

release of the game and a demographic overview of its players.

• Chapter 9 – Conclusions and Future Work

• Before listing some final remarks, this chapter summarizes the dissertation as a whole

and provides ideas about the future direction that this work can talk so that educational

games can continue to be a relevant player in computing education.

! 8

2.RELATED WORK

2.1. TECHNOLOGIES TO TEACH PROGRAMMING

This research follows a long tradition of efforts to create programming environments for

beginners (Kelleher & Pausch 2005). Many of these technologies have focused on increasing

learner motivation by incorporating new factors to entice learners to explore computational

activities. For example, Logo (Papert 1980) and EToys (Kay 1997) both created computational

spaces for children to explore music, language, and mathematics; Light-bot (n.d.) pushed players

to take the robot’s point-of-view of the environment to successfully navigate through levels;

Playground (Fenton & Beck 1989) and LEGO Mindstorms (Barnes 2002) had similar goals,

enticing children with the modeling and simulation of phenomena from the world or actually

enabling them to write programs that sense the world. These approaches and others like them

seek to entice learners with their intrinsic curiosity about the world and its processes.

Other approaches have motivated children with opportunities for self-expression. Play

(Tanimoto & Runyan 1986), My Make Believe Castle (Logo 1995), Hands (Pane, Myers, &

Miller 2002), ToonTalk (Harel 1991), Stagecast (Smith, Cypher, & Tesler 2002), Toque (Tarkan

et al. 2010) and others all focus on enabling learners to create novel animations and games.

Similar efforts have been made at the college level with projects such as Georgia Computes!

(Bruckman et al. 2009) and Game2Learn (Barnes et al. 2007), which encourages students to

create and test their own games. Examples include Bug Bots (Chaffin & Barnes 2010) – a game

where players attempt to repair robots by dropping tiles into a flowchart representing a computer

program – and Virtual Bead Loom (Boyce & Barnes 2010) – a game where students are

encouraged to learn looping functions to create bead artwork instead of placing beads one at a

time. Other systems that have added to these self-expression goals the ability to share the content

one has created. For example, MOOSE Crossing invites learners to create characters and spaces

in a virtual, multi-user text-based world (Bruckman 1997); more recently, Storytelling Alice

(Kelleher, Pausch, & Kiesler 2007) and Scratch (Maloney et al. 2010) have focused on enabling

learners to tell and share stories. Kelleher et al. (2007) were one of the first to demonstrate that

! 9

opportunities and affordances for storytelling can significantly improve learners’ motivation to

program. My work follows these traditions, but provides learners with the story, allowing them

to contribute to its progress by interacting with a character in a game.

While all of the systems discussed thus far aimed to increase motivation, several systems

have aimed to lower demotivating factors in programming tools. Such approaches include

simplifying the textual programming language syntax (Bruckman 1997; Papert 1980), designing

languages that mimic how children describe program behavior (Pane, Myers, & Miller 2002),

preventing syntax errors entirely by designing program construction interfaces that use drag and

drop interactions (e.g., Kay 1997; Maloney et al. 2010) or form filling (Logo 1995; Smith,

Cypher, & Tesler 2002) rather than text. Others have attempted to simplify the debugging of

programs by enabling learners to select “why” questions about program output (Ko & Myers

2004; Kulesza 2009). My research follows the same vein as these projects, aiming to mitigate

factors inherent to programming that would diminish motivation by changing the programming

environment.

2.2. USING GAMES AS A TOOL TO TEACH PROGRAMMING

This research also follows a long tradition of using games as a motivational tool to teach

computer programming. Games have been used to teach programming as informal learning

interventions, have shown to positively effect motivation (Garris et al. 2002; Cliburn 2006;

Malone 1981; Gee 2003), and attract people to pursue computing education (Papastergiou 2009).

Learners’ motivation is of critical importance and can have a major impact on their learning

(Farthing 1997; Armstrong et al. 1998). Moreover, motivation is crucial in programming

education, where learners are required to actively apply their knowledge (Feldgen & Clua 2004).

Therefore, understanding what motivates people to start and continue to learn programming can

potentially lead to better quality learning experiences and new ways to attract people to

programming. Gaming can be used to provide a low-pressure, non-threatening, and engaging

medium to learn new skills such as programming (Griffiths 1997). Well-designed games could

share the attributes of a good teacher: they provide immediate feedback of success of failures,

assist in learning at different rates, and offer opportunities to practice (Gentile 2009). My

! 10

research follows the same vein as these projects, aiming to provide a low-barrier, safe

environment that uses best practices in education to teach players computer programming with

little or no human intervention.

Studies using the ARCS model (attention, relevance, confidence, and satisfaction) (Keller &

Suzuki 1988) have shown that it is important to raise and maintain motivation of learners in the

very early stages of learning computer programming, as this is the moment when motivation

changes the most (Tsukamoto et al. 2008). Games have been suggested to maintain learners’

motivation in programming through the early stages of learning. Learning by playing games is

becoming increasingly recognized in research and educational practice for its their engaging

properties (Garris et al. 2002; Gee 2003), with some empirical evidence showing that games can

be effective tools for enhancing learning and understanding of complex subject matter (Cordova

& Lepper 1996; Ricci et al. 1996). Moreover, gaming has been shown to be of interest to a broad

range of people and not only to those who are already engaged in technological studies

(Papastergiou 2009). Recent statistics reveal that the average gamer in the USA is 37 years old

(with a mean of 12 years of gaming experience), 97% of youth play video games, 42% are

female, and the number of people over 55 years old playing games is increasing (Ito et al. 2009;

newzoo.com 2011; NPD 2011).

Games have a rich history in education. For example, in his studies, Clibrun (2006) found

that when given the option to use a game or non-game assignment for the course covering the

same topic, nearly 80% of the students opted to use the game, even though the average grade

received was 6% lower than non-game assignments. Although this was the case, the majority of

students still reported preferring using the game-based assignments, suggesting that games do

indeed provide psychological motivation and increases course enjoyment, even though they may

not improve students’ scores (Cliburn 2006). In addition to preferring games as homework

assignments, there is evidence that the use of web and game programming examples in place of

classical programming examples in formal education settings have been found to be more

motivating for novice programmers (Feldgen & Clua 2003). These findings demonstrate people’s

general preference towards games and game elements as substitutes for other activities, possibly

making educational content and concepts more relatable or engaging to learn.

! 11

Games also appeal to both genders, leveraging enthusiasm for entertainment and social

relevance (Barnes et al. 2007), and appear to have equal benefits for both males and females. For

example, a study found that despite males’ greater involvement with liking and experiencing

computer gaming, and generally having a greater initial knowledge of computers, the learning

gains in the experiment were not significantly different from females’, and that the game was

equally motivating for both genders (Papastergiou 2009). These findings suggest that games can

provide a neutral educational space for learning, where anyone, regardless of experience or

gender, can benefit.

2.3. GAME BASED LEARNING, GAMIFICATION, AND RELATED THEORIES 1

In addition to prior works about games used in practice, there are several related theories of

learning that explore how people can use games or game-based elements to effectively learn new

things. In particular, game based learning (GBL) explores how games with defined learning

outcomes contribute to pedagogy (Prensky 20015). This is often confused with “gamification,”

which is the use of game thinking and game mechanics in a non-game context to engage (and

sometimes teach) users (Huotari & Hamari 2012). Both GBL and gamification have been used in

efforts to teach programming. For example, Minecraft classes add directed learning tasks into

playing the game (Schifter & Cipollone 2013; Short 2012; Zorn et al. 2013) and Scratch Online

(n.d.) incorporates “favoriting” and “loving” uploaded projects, which rewards users by having

popular projects featured on their front page. Prior work has also shown that summer camps

using games or tools/activities with gamification are great at engaging their users (Bruckman et

al. 2009; Webb & Rossen 2011; Zorn et al. 2013), but that all of these required instructional

scaffolding by teachers for learners to succeed. Similar to these related projects, my research

uses a game specifically designed with game based learning objectives to teach users computer

programming in a low-barrier, safe environment – but with little or no human intervention.

Games and gamified elements may include a range of learning theories in their design: some

constructivist (allowing learners to participate and experiment in non-threatening scenarios),

some experiential (learning by doing), and some situated (providing relevant context or setting;

 Parts of this section have been adapted from my ICER 2015 publication (Lee & Ko 2015).1

! 12

for multiplayer, learning takes place alongside social interaction and collaboration). Some games

open-ended, creative games such as Minecraft (n.d.) and programming environments such as

Alice (Kelleher, Pausch, & Kiesler 2007) and Scratch (Maloney et al. 2010), are largely

unstructured and allow users to explore, tinker, and create content that is meaningful for

themselves. These attributes align with constructivist theories of learning through hands-on

experience (Steffe & Gale 1995) and constructionist ideas of learning through construction of

meaningful projects (Papert & Harel 1991). My game uses the ideas from both constructivism

and constructionism, where learners first construct knowledge for themselves through the

experience of examining and solving programming puzzles throughout the game’s curriculum,

and further develop their knowledge by then creating their own projects through tinkering and

exploration after completing the game.

! 13

3. THE GIDGET GAME

Gidget is a web application that is playable in a web browser (see Figure 3.1) and developed

using the seven design principles outlined in Table 3.1 . We derived these seven principles by 2

drawing from best practices in game design, educational technologies, learning sciences, help

systems, and by observing our players interact with earlier iterations of Gidget. Table 3.1 defines

each of the principles in more detail and lists the related studies (and chapter numbers) using

Gidget. The description of the game in this chapter also highlights principles when applicable.

The game is motivated by a story: there has been a chemical spill from a factory and Gidget,

a small robot capable of identifying and solving problems with programs, has been deployed to

clean up the area (P2-game; Figure 3.2). Unfortunately, Gidget was damaged in transit, and is

only able to provide code (Figure 3.1-A) that partially, but not completely solves each level’s

goals (P3-fallible; Figure 3.2). It is the player’s job to help the robot by diagnosing and fixing

 This table and chapter have been adapted from my VL/HCC 2014 publication (Lee et al. 2014).2

Figure 3.1. Screenshot of Gidget with added callouts on different interface elements.

�

! 14

the faulty code in each level (P1-debug) to satisfy each level’s mission goals (P4-goals; Figure

3.1-C) in the form of assertions about the game’s world state.

Gidget uses an imperative, Python-like programming language designed specifically for the

game (the complete language grammar is described in the appendix). The language supports

dynamically typed-variables, Boolean operators and expressions, conditionals, mathematical

operators, loops, objects, functions, and domain-specific keywords for the game characters to

interact with their world. These interactions primarily include finding things in the world (Figure

3.1-D), going to them, checking their properties, and carrying them to other places on the grid. In

some cases, objects have their own abilities, which Gidget can call as functions. After each

execution step, the effect of these commands are shown in the ‘program state’ panel (Figure 3.1-

E) and explained by Gidget (Figure 3.1-F) to reinforce the semantics of each command (P5-

Table 3.1. Seven design principles for an educational debugging game

Principle Description
P1-debug Debugging First: Encourage learners to learn programming concepts by debugging existing

programs before creating new programs. Unlike many other educational technologies where
creation occurs immediately (Kelleher, Pausch, & Kiesler 2007; Maloney et al. 2008), our
approach provides nearly complete, but broken programs for learners to debug and fix before
moving onto the more demanding task of creating new puzzles from scratch.

P2-game Game-oriented: To make the environment be engaging to those who want to be entertained
by solving puzzles (Cao et al. 2013, Lee & Ko 2011, Lee & Ko 2012, Lee, Ko, & Kwan 2013),
not just engaging to those who want to learn programming, it should feel like a game, drawing
upon games’ combination of interactivity, story, and objectives to benefit learning (Gee 2003).

P3-fallible Computers as helpful but fallible: Frame computers as helpful but fallible collaborators. This
is in contrast to other educational environments, which often frame the compiler, interpreter,
development environment, and other programming tools as all-knowing, authoritative figures,
which can be discouraging for novice programmers (Lee & Ko 2011). The study described in
Chapter 4 supports this principle.

P4-goals Embedded goals: Give learners an explicit goal as scaffolding (Ram & Leake 1995). Provide
one specific game goal – debugging faulty code – so that learners are focused and not
distracted by additional objectives that can be distracting and negatively affect performance
(Anderson et al. 2011). The study described in Chapter 5 supports this principle.

P5-instruction Embedded instruction: Provide embedded instruction, with specific learning objectives, a
planned curriculum, and an explicit, sequenced set of instructional materials and tasks (Ellis
2005, Lee, Ko, & Kwan 2013). This contrasts with open, creative environments, where learners
are left free to explore at will (Kelleher, Pausch, & Kiesler 2007, Maloney et al. 2008, Monroy-
Hernandez & Resnick 2008). The study described in Chapter 6 supports this principle.

P6-help Scaffolded help: Deliver, on request, in-game help, including “Idea Garden” (Cao et al. 2012,
Cao et al. 2013) help that provides incomplete examples, problem-solving strategies, and
higher-level programming concepts to enable learners to help themselves

P7-gender Gender inclusiveness: Females represent 42% of all video game players in the USA (ESA
2011), but are seriously underrepresented in computing fields (NCWIT 2010). We aim at this
problem by building on best practices for reaching both males and females (e.g., Burnett et al.
2011, Subrahmanyan 2007, Werner, Hanks, & McDowell 2004), such as avoiding competitive
objectives and using a gender-neutral protagonist.

! 15

instruction). Each step costs Gidget 1 unit of ‘energy’ (displayed at the top, right of Figure 3.1-

E), which forces players to consider how to write efficient programs that can be solved using the

allocated amount of energy. Different levels may start with different amounts of energy, and

restarting the level resets the energy units back to its original value.

To aid the players with debugging, the game offers four execution controls: one step, one

line, to end, and stop (P1-debug; Figure 3.1-B). These controls function similarly to

conventional breakpoint debuggers, allowing players to run parts of the program or all of it, halt

the program, and edit code at any time. The one step button evaluates one compiled instruction,

displaying text explaining the execution of the step. The one line button evaluates all steps on

one line of the code, just as a breakpoint debugger does, jumping to the final output of that line.

The to end button evaluates the entire program and the goals, animating each step in quick

succession. If any errors are encountered, the program execution pauses, feedback is provided,

and the player is given the option to restart the level or continue execution. The stop button

allows the player to halt the program and edit code during any part of the execution. When the

learner uses one step or one line, Gidget provides a detailed explanation of the execution of each

statement in the program, highlighting changes in the runtime environment. This serves as the

Figure 3.2. Screenshot of Gidget’s story when the game is first started.

�

! 16

game’s primary instructional content, explicitly teaching the language syntax and semantics (P5-

instruction & P6-help).

The game features several forms of scaffolded help to assist learners to succeed on their own

(P1-help). On first load, the game shows an interactive tutorial that goes over the major interface

elements to help learners begin playing Gidget. The help system also includes an in-game

reference guide that provides explanations and examples of each command in the language,

along with information about programming concepts such as variables, functions, the stack, and

loops. The reference guide is available as a standalone dictionary/glossary (Figure 3.3) or as

tooltips that appear when hovering over tokens in the code editor (Figure 3.4-A). The game also

uses the Idea Garden help system (Figure 3.4-B; Cao et al. 2011) to detect context-sensitive

Figure 3.3. Screenshot of Gidget’s dictionary/glossary.

�

Figure 3.4. Screenshots of Gidget’s (A) Tooltips, and (B) IdeaGarden help tools.

�

! 17

programming anti-patterns related to the learners’

code (Jernigan et al. 2015), and the AnswerDash help

system (Figure 3.5) which allows players to click on

any part of the interface to ask questions about it or

read responses to others’ queries. Finally, the game’s

code editor provides keystroke-level feedback about

syntax and semantics errors, underlining erroneous

code in red and explaining the problem in Gidget’s

speech bubble (Figure 3.6).

Gidget’s graphics, text, and game goals were all

designed to be gender-inclusive (P7-gender). The

game’s story integrates socially relevant themes (i.e., cleaning a chemical spill and saving

animals), helping a partner, and provides challenge through puzzles—all of which have been

shown to appeal to both genders (Reinecke, Trepte, & Behr 2008). Throughout the game, Gidget

does not use gendered pronouns and remains androgynous, allowing the learner to decide how

to characterize the game’s protagonist to their individual preference. Gidget also avoids game

mechanics, like achievements or competition, that would possibly disengage females (Yee 2006).

Following the premise that language impacts culture, it eschews violence-oriented terminology

(e.g., players “remove” a game object

instead of “destroying” it; players “run” or

“stop” a program instead of “executing” or

“killing” it) (Misa 2010). Finally, its

collection of scaffolded help offers

information in the “selective” and

“comprehensive” style statistically favored

by males and females, respectively

(Meyers-Levy 1989).

Figure 3.5. Screenshot of the
AnswerDash interface in Gidget.

�

Figure 3.6. Gidget’s syntax highlighting (left)
and explanation of the error (right).

�

! 18

3.1. THE GAME CURRICULUM

The game consists of 7 units with a total of 34 levels (see Figure 3.7). Each game level teaches a

particular programming concept (P5-instruction), challenging the player to find and fix the

defects in each level’s program so that it passes the provided goals, which are executable test

cases (all of the levels are described in detail in the appendix). Following the mastery learning

paradigm (Pear 2004), each of the game’s levels is designed to be passable only if the learner has

grasped a particular concept in the game’s programming language. Unit 1 focuses on moving

Gidget and other objects around in the world by using simple keywords such as up, down, left,

right, grab, and drop. Unit 2 furthers the ideas from the previous section, introducing the goto

keyword, and working with lists. Unit 3 introduces variables, types, and values. Unit 4 presents

the declaration and use of functions and objects. Unit 5 shows how to use Boolean values,

expressions, and logic. Unit 6 focuses on loops. Finally, Unit 7 does not teach any new concepts,

but challenges the player to write solutions from scratch to satisfy the level’s goals. The last two

levels in each unit are designed to be a cumulative overview, requiring the learner to recall and

use the keywords and concepts covered in that unit.

Each level starts with Gidget briefly explaining the level’s objective and providing hints

about which concepts to use. The order of units and the sequence of levels was designed

iteratively based on curricula found in CS1 textbooks (Deitel & Deitel 2005; Felleisen et al 2001;

Lewis & Loftus 2005; Tew 2010; Zelle 2004), pilot testing with novice programmers, and

Figure 3.7. Map of the curriculum’s units, topics, and number of levels.

�

! 19

collaborators’ cumulative experience teaching CS1 courses. A list of overall learning objectives 3

drove the creation, consolidation, and refinement of the levels (Bjork 1999). Each level was

designed to address one or two specific learning objectives related to the language syntax or

semantics. The sequence of levels was also influenced by the game story, and by the language

itself (since certain keywords and concepts are easier to understand once other concepts have

been learned). This sequence was validated by testing with participants in-person and online by

observing that the order of levels was not a barrier in their progress through the game.

Additionally, we validated the curriculum as engaging to online adult participants (P2-game;

Lee, Ko, & Kwan 2013) and that it positively affected their attitudes towards programming,

regardless of age, gender, or level of education (Charters, Lee, Ko, & Loksa 2013).

3.2. THE GIDGET PUZZLE DESIGNER 4

Learners are given access to the game’s puzzle designer once they complete the curriculum (see

Figure 3.8). The puzzle designer allows them to create, save, modify, and share new levels using

the Gidget language. The puzzle designer is an interface that allows the player to write code for

new levels’ behavior, add introductory text to the level, change the size of the world, set the goals

and original code for the level, and view the usable graphics and sounds in the game (all these

are listed in the appendix). It also introduces the concept of event handling (i.e., having objects in

the game wait for a condition before running a code block), which was not covered in the game

curriculum. In addition to creating levels from scratch, learners can also click on the puzzle

designer’s option menu to look through all the levels they had passed in the game’s curriculum.

The puzzle designer provides an option to duplicate these levels so that players can look through

and modify the level’s initial code, broken code, and solution code.

3.3. AUTOMATED DATA COLLECTION

The game automatically logs several user interactions within the game for each player. In

addition to the total number of levels completed, the game logs the following for each level: the

 In addition to myself, collaborators included Information Science and Computer Science professors.3

 More details about the Gidget Puzzle Designer can be found in Chapter 7.2.3. 4

! 20

time spent on the level, the number of times a tooltip appeared, the number of times the

dictionary was used (and which term was looked up), the number of times the tutorial was

triggered (and the number of steps/slides viewed), the mouse cursor position (and time spent

dwelling on certain interface elements), the total time spent editing code, all the code versions,

actions within the code versions (e.g., deletion events, cut/copy/paste events, and undo events),

when and how many times each of the execution buttons were pressed, and each time the “clear

code” and “restore original code” buttons were pressed.

Throughout several studies, the game also collected data from users in the form of

questionnaires that were administered at the end of the game or when the user decided to quit. In

addition to demographic data (e.g., gender, age, location, education), the questionnaires asked

about people’s prior programming experience, attitudes towards programming (before and after

playing the game), what they liked most and least about the game, whether or not they felt

compelled to help the robotic character while playing the game, and whether or not they would

recommend the game to a friend.

Figure 3.8. Screenshot of the Gidget Puzzle Designer editing one of the default levels.

�

! 21

3.4. VARIATIONS IN VERSIONS

In addition to the experimental manipulations for the controlled experiments discussed in later

chapters, Gidget went through several revisions throughout its development (for example, Figure

3.9 shows the first version of Gidget). This section lists the major differences among the various

Gidget versions that are relevant to the material covered in this dissertation:

• The studies described in Chapters 4 and 5 used a simpler imperative programming language

that had 7 basic commands that allowed the game’s protagonist to find, identify, pick up,

move, compare, and drop objects around in the world. This was replaced by the more

expressive language modeled after Python that was described earlier in the first section of

this chapter.

• The studies in Chapters 4 and 5 had a total of 16 levels, where the first 9 focused on teaching

the 7 basic commands in the robot’s syntax grammar and variations. The subsequent 9 levels

taught useful design patterns for composing these commands to achieve more powerful

behaviors. This was replaced by the curriculum described in Chapter 3.1.

Figure 3.9. Screenshot of the first version of Gidget using the original language.

�

! 22

• The studies in Chapters 4 and 5 used a slightly different set of execution buttons. Gidget’s

earlier version of the all steps button functioned like the current to end button, executing all

of the level’s code and goal while animating each step in quick succession. Moreover,

Gidget’s earlier version of the to end button functioned exactly like the latest all steps button,

but only showed the final state of the code execution and goal checking without animating

any of the intermediate steps. The studies in Chapters 4 and 5 (which used the earlier simpler

programming language) did not include the stop button.

• The code pane for the studies in Chapters 4 and 5 included a button labeled “?” on the top-

right portion of the code pane, which opened up a syntax guide (also labeled as “cheat

sheet”) that described the different language commands and syntax. In subsequent studies

using the updated language, this functionality was replaced by a dictionary button that

opened up a glossary of terms, definitions, and examples (see Figure 3.3).

• The studies in Chapters 4, 5, and 6 displayed a 9-slide tutorial of static images when a player

first started the game. This was replaced by the interactive tutorial described in the first

section of Chapter 3 and covered the same material.

• The study in Chapter 6 removed several of the execution/communication visualizations in

the game. For example, the interface integrated the execution buttons into the code pane and

no longer included the players’ speech bubble and character avatar. Moreover, Gidget’s

speech bubble originated from the character in the world pane instead of having a separate

and redundant image of the character.

• The study in Chapter 6 introduced the level progress indicator/map in the interface, allowing

players to see the total number of levels and how far they had progressed in the game.

• The current version of the game uses a completely updated set of consistently-styled

character images and updated interface aesthetics (see Figures 1.1 and 3.1).

• The current version of the game no longer includes any questionnaires.

• The current version of the game allows players to save their progress by creating user

accounts. The account creation process asks for players’ name, email address, age, and

gender. Google analytics collected additional aggregate information including returning vs.

new visitors, and location (e.g., city, state, country) of users.  

! 23

4. EFFECT OF PERSONIFIED FEEDBACK ON ENGAGEMENT 5

This chapter describes the first of three studies that addresses RQ1 – do players of an educational

debugging game show measurable signs of engagement playing the game? More specifically,

how does compiler/interpreter feedback affect players’ engagement playing the game?

4.1. BACKGROUND AND MOTIVATION

For most beginners, the experience of writing computer programs is characterized by a distinct

sense of failure. The first line of code beginners write often leads to unexpected behaviors, such

as syntax errors, runtime errors, or program output that the learner did not intend. While all of

these forms of feedback are essential to helping a beginner understand what programs are and

how computers interpret them, the experience can be quite discouraging (Ko, Myers, & Aung

2004; Ko & Meyers 2009) and emotional (Kinnunen & Simon 2010).

These findings have significant implications for computing education. To many learners,

error messages are not perceived as actionable facts, but as evidence that they are incompetent

and that the computer is an all-knowing, infallible authority on what is right and wrong

(Beckwith, Burnett, & Cook 2002). Even in programming environments designed for beginners

such as Alice (Kelleher, Pausch, & Kiesler 2007) and Scratch (Maloney et al. 2010), where

syntax errors are impossible and most runtime errors are avoided by having the runtime do

something sensible rather than fail, the communication between the learner and the computer is

framed as one-way: the computer does not express its interpretation of the code, it simply acts

upon it without explanation. These relationships between learners and programming tools are

more command-and-control than collaboration.

And yet, how people perceive their relationship to a computer is a critical determinant of not

only their attitudes towards computers, but also their performance in using them to accomplish

tasks (Klein, Moon, & Picard 1999). Moreover, studies have shown that people expect computers

to behave with the same social responses that people do (Nass 2000); for example, automated

 This chapter has been adapted from my ICER 2011 publication (Lee & Ko 2011).5

! 24

systems that blame users for errors negatively affect users’ performance and their attitudes

toward computers (Fogg & Nass 1997).

Since many people view computers as authoritative figures (Beckwith, Burnett, & Cook

2002), and negative feedback from computers affects people’s performance on conventional

computer tasks (Klein, Moon, & Picard 1999), we were curious how programming tool feedback

might affect novice programmers engagement with a learning activity. To investigate this, we

designed two versions of the Gidget game (Figure 3.9), changing the way feedback was

presented by manipulating the robot protagonist’s level of personification, changing

communication style, sound effects, and appearance (Figure 4.1).

4.2. METHODOLOGY

The goal of this study was to investigate the role of programming tool feedback on learners’

engagement. To do this, we designed a study using the Gidget game, shown in Figure 3.9, with

two conditions manipulating the personification of the robot protagonist, Gidget. By

personifying Gidget, we aimed to increase the agency of the character, adding human-like

qualities to an otherwise cold and emotionless entity. In the control condition, Gidget was

represented as a faceless terminal screen that provided terse, impersonal feedback in response to

commands and error messages (Figure 4.1-A and Figure 4.1-B). In contrast, the experimental

condition represented Gidget as an emotive robot that included the use of personal pronouns such

as “I” in the feedback, coupled with facial expressions corresponding to the runtime error state of

Figure 4.1. Representations and error messages of Gidget based on its game condition.

�

! 25

the program (Figure 4.1-A and 4.1-B). Participants were recruited on Amazon Mechanical Turk

and offered $0.40 for completing the first level and $0.10 for each additional level completed.

The total bonus and the levels completed were displayed in the upper right corner of the

interface, along with a button giving the participants the option to quit at any time (Figure 3.9).

The key dependent variable in this study was levels completed as a measure of learners’

engagement with the game.

Our null hypothesis was:

H0: There is no difference in levels completed between the control

condition, using conventional, emotionless feedback and the

experimental condition, using personified feedback.

In the rest of this section, we discuss the experiment designed to test this hypothesis.

4.2.1. Control vs. Experimental Condition

Personification of the robot’s appearance was a key manipulation in our experiment. In the

control condition, Gidget was designed to be a cold, emotionless computer terminal – something

that the player would feel minimal emotional attachment towards. In contrast, in the

experimental condition, Gidget was designed to be more humanlike – a cute, unconfident robot

with changing facial expressions based on the success of its execution. In the control condition,

Gidget had two distinct states: an error/fail state that was shown during any syntax or runtime

error, and a neutral state that was shown otherwise (Figure 4.1-A). The error state, with its large,

jarring stop icon, attempts to capture the style common to compiler error messages. In contrast,

the experimental condition had three distinct states for Gidget: an error/fail state that was shown

during any kind of error, a success state that was displayed when a goal was completed, and a

neutral state that was shown otherwise (Figure 4.1-A). These facial expressions were specifically

designed to make Gidget more human-like and add affect to its messages throughout the game.

In both conditions, Gidget was designed to be verbose to help players know what was going

on with the code during execution. The messages in the control condition were terse, actionable

facts about the program state, presented in conventional fixed-width Courier New font (see

! 26

Figure 4.1-B and Table 4.1). The text in the experimental condition contained the exact same

information, using the softer, sans-serif Verdana font (see Figure 4.1-B & Table 4.1), but was

personified in three specific ways. We started with the control text, then followed one or more of

these rules: use a personal pronoun (e.g. “I,” “you”), admit failure (e.g. “I don’t know this

command”), and express affect (via exclamation points and emoticons). More examples are

shown in Table 4.1.

The dialogue pane between Gidget and the player exhibit another major difference between

the two conditions. In the control condition, the player is portrayed as a satellite dish (Figure 4.2)

to signify that there is a large physical distance between the learner and robot, requiring radio

communication. In the experimental condition, players are given the choice between three

avatars (Figure 4.2) to represent themselves when they first start the game. This image is used in

place of the satellite dish from the control condition, signifying that there is closeness and

teamwork between Gidget and the player.

Next, the shape of the communication text boxes are different between the two conditions

(as seen in Figure 4.2). The control condition was designed to look visually cold and direct. In

contrast, the experimental condition used comic speech-bubbles for both Gidget and the player

with the intention of having the exchange look like a conversation (Figure 4.2). These themes

Table 4.1. Examples of the variations error messages and font styling.

control experimental

“Unknown command, so skipping to next
step.”

“I don’t know what this is, so I’ll just go on to the next
step.”

“Dropped cat. Removing from memory
banks.” “I dropped the cat. I’ll remove it from my memory.”

“ERROR: Nothing to ask by that name.” “Hmm… I couldn’t find anything to ask by that name.”

Figure 4.2. Layout of execution button used to express different styles of communication.

�

! 27

were extended to other parts of the interface, where the control condition’s interface boxes have

sharper curves than their experimental condition counterparts, which have larger, rounded

corners.

Furthermore, there were labeling differences between conditions. First, level titles in the

experimental condition were composed of the control conditions' level name with the addition of

“Gidget” to add agency. For example, level 1 was titled “Testing Scanner” or “Testing Gidget’s

Scanner,” and level 5 was titled “Utilizing Special Items” or “Using Special Items with Gidget.”

In the same manner, the memory pane was labeled “Memory banks” in the control condition, and

“Gidget’s memory” in the experimental condition.

Finally, sound effects were played in both conditions when Gidget performed an action or

when a major event, such as Gidget running out of energy or Gidget not completing his goals,

occurred. They were designed to supplement the text and provide additional depth to the world

as Gidget moved through it. All sound effects were identical between conditions, except the

general error and parser error sounds, which were manipulated to evoke different feelings. Errors

in the control condition used sounds similar to those heard in operating systems when a critical

error occurs. In contrast, errors in the experimental condition used sounds to attract players’

attention without making it seem like the computer was “yelling.” These sounds were

deliberately chosen to add or subtract from the personification between the two conditions.

4.2.2. Recruitment

Previous studies have shown effects due to giving computers personality traits in adult

populations of varying ages (Fogg & Nass 1997,; Nass, Fogg, & Moon 1996; Nass 2000). We

focused on replicating these studies in programming tools for adults of a similar age range. To

recruit these individuals, we used Amazon.com’s Mechanical Turk (n.d.), an online marketplace

where individuals can receive micro-payments for doing small tasks called Human Intelligence

Tests (HITs). It is an attractive platform for researchers because it provides quick, easy access to

a large workforce willing to receive a small monetary compensation for their time (Ross et al.

2010). Since workers are sampled from all over the globe, Mechanical Turk studies have the

benefit of generalizing to varied populations more than samples from limited geographic

! 28

diversity that are more common in traditional recruiting methods (Kittur, Chi, & Suh 2008).

However, due to the nature of the low monetary compensation and anonymity of the workers,

careful consideration has to be taken to ensure that participants are not “gaming the

system” (Downs et al. 2010, Kittur, Chi, & Suh 2008). To address this, we required that

participants complete at least one level to receive credit for the HIT, ensuring that they actually

had to interact with Gidget and the code before being allowed to quit.

4.2.3. Pricing and Validation

Since our game had a total of 18 levels (see Chapter 3.4), we decided that we would compensate

our participants with a base rate and a nominal bonus payment for each level they completed.

Previous studies have found that higher payment does not necessarily equate to better results

(Hsieh, Kraut, & Hudson 2010), so we wanted to calibrate our payments to established market

prices. To do this, we observed Mechanical Turk HITs tagged “game” for a period of 14 days.

These HITs were further filtered to include only those that had an actual gameplay element as the

main component as opposed to tasks such as writing reviews for third party games. From these

HIT descriptions, we constructed a list of ‘reward’ and ‘time allotted’ values, along with any

explicit bonus payments mentioned. Our goal was to set a base reward that was high enough to

attract participants, but also as low as possible to minimize participants’ sense of obligation to

spend time on our HIT. Likewise, we wanted our bonus payment per stage to have a minimal

factor on participants’ decision to continue the game.

Based on our data, we determined our optimal base reward as $0.30 for starting the HIT, and

an additional $0.10 for each level completed. To ensure participants actually tried the game, we

required that they complete at least one level to get paid. This meant the range of compensation

participants received was between $0.40 and $2.00. Participants were not informed of the total

number of levels, eliminating this factor from their decisions to continue playing the game.

Finally, we deliberately avoided mentioning anything about programming in the HIT description

and tags to prevent people from self-selecting out of the HIT because of its association with

programming. However, since the HIT description included the words “game” and “robot,” we

may have introduced some gender-biased self-selection effects.

! 29

To further validate our pricing model and detect defects and usability problems in the game,

we conducted a pilot test on Mechanical Turk with 12 paid participants. In addition, an informal,

4-participant, lab study was conducted to gather information that we could not capture from

Mechanical Turk. In this lab study, participants were asked to think-aloud while playing the

game to test the clarity of the instructions and observe any problems they had with the interface.

Observational study participants were volunteers and were not compensated for their time.

The pilot study results verified that participants were willing to complete levels and that the

system functioned as-intended overall. Based on the data we received, we clarified some of the

post-game survey questions and fixed several minor defects. We also set the ceiling for

submission time to 3 hours to make the HIT less intimidating, as setting it too high could be

misinterpreted by potential participants as the task being overly difficult. The observational study

surfaced unclear instructions, confusing interface elements, defects, and usability problems in the

game. Based on this information, we improved the text and interface elements, running another

pilot to ensure that the usability and clarity of the game had improved.

4.2.4. The Participants

On game load, each participant was randomly assigned one of two conditions: control or

experimental. This information, along with their current state in the game were logged on the

client-side to ensure participants would not be exposed to the other condition, even if they

refreshed their browser. Once a participant chose to quit, they were given a post-survey and a

unique code to receive payment for their submission. The survey was designed to get

demographic information (e.g. gender, age, education, country), identify prior programming

experience, and solicit feedback and attitudes about the game. In addition to the survey

responses, we automatically collected the following information from each participant upon

quitting: the number of levels completed; time stamps for level start, level complete, quit, and

any execution button invocations; all character-level edits to each level’s program, execution

button presses, game condition, choice of user avatar (if in the experimental group), IP address

(to verify location), and payment code.

! 30

We defined “novice programmers” as participants who reported in the survey that they have

never had: 1) “taken a programming course,” 2) “written a computer program,” or 3)

“contributed code towards the development of a computer program.” This information was cross-

validated with an additional question later in the survey that asked them to rate their agreement

with the statement, “I identify myself as a beginner/novice programmer.”

Because we deliberately chose not to mention anything about programming in our HIT

description, we were not able to control for a specific target audience. Therefore, we recruited a

sample of 250 participants from Mechanical Turk, with 116 meeting our criteria as being novice

programmers. Since the scope of this study is how personification of the computer and its

feedback affects novice programmers, these 116 participants are the primary focus of the

analyses discussed in this chapter (a short discussion on the differences found with experienced

programmers can be found in my publication: Lee & Ko 2011).

The study used a balanced, between subjects design with 58 participants in each condition.

Demographic data revealed that there that participants from the control and experimental

conditions were well proportioned, with no significant differences between groups by gender,

age, or education (see Table 4.2). There were a total of 50 females and 66 males across the two

conditions, ranging from 18 to 59 years old. As shown in Table 4.2, participants were spread

across 24 countries, with most participants coming from the USA (27.6%) followed closely by

India (22.4%). About 13.8% of participants were the lone representatives of their respective

Table 4.2. The Personification Study’s participant demographics.

control (n=58) experimental (n=58)

gender 35 males, 23 females 31 males, 27 females

age 18-55 years 
median = 25

19-59 years 
median = 27

some college or greater 49/58 = 84.4% 51/58 = 87.9%

Location: USA 15 17

Location: India 13 13

Location: Other 16 14

Location: No data 14 14

! 31

countries. Many did not provide geographical data (24.1%). Consistent with other Mechanical

Turk study demographics, our sample of novice programmers were well educated (Downs et al.

2010, Kittur, Chi, & Suh 2008), answering that their highest level of education achieved was:

less than high school (<1%), high school (13%), some college (23%), an associates degree (3%),

a bachelor’s degree (38%), a masters degree (14%), or a doctoral degree (6%).

4.3. STUDY RESULTS

This section reports the quantitative results comparing players’ engagement from our two groups.

Throughout this analysis, we use the non-parametric Wilcoxon rank sums test with α=0.05

confidence, as our data were not normally distributed.

4.3.1. Experimental Condition Players Complete More Levels

The minimum and maximum number of levels

completed for both conditions were the same,

at 1 and 15, respectively (see Figure 4.3 for a

distribution box plot). The median number of

levels completed for the control and

experimental conditions were 2 and 5,

respectively. There was a significant difference

in the number of levels participants completed

between the two conditions (W=3803, Z=2,

N=116, p<.05), with the experimental condition

players completing significantly more levels –

meaning that we reject our null hypothesis.

The distribution of ‘levels completed’ (Figure 4.4) shows that a large number of participants

from both groups quit the game after completing the first level. This was particularly true for

those in the control group, who lost 41.3% of their members in contrast to the 29.3% lost by the

experimental group. The large drop off in the sixth level for both conditions will be addressed in

the discussion section, below. Since all participants were classified as novice programmers and

Figure 4.3. Comparison of the
Personification Study’s levels completed by

condition.

�

! 32

there was no statistical difference in demographics, this suggests that our personification of

Gidget in the experimental condition had a positive effect on participants’ motivation to play.

4.3.2. No Significant Differences in Play Time

The minimum time spent playing the game for

the control and experimental condition was

5.4 minutes and 8.4 minutes, respectively

(Figure 4.5 plots the full distribution). The

maximum time spent playing the game was

2.81 hours and 2.97 hours respectively. The

median overall play time for the control and

experimental conditions were 27.1 minutes

and 35 minutes, respectively. There was no

significant difference in the length of time

participants in either condition played the

game overall (W=3689.5, Z=1.6, N=116, n.s.).

Since the previous result showed that the experimental group completed more levels than

the control group, we checked to see if participants in either group were spending more time per

individual level. To do this, we calculated the median time each participant took to complete the

levels they attempted, and then compared the two resulting distributions of medians. We found

that there was no significant difference in the median time to successfully complete levels

Figure 4.4. Histogram of levels completed for each condition.

�

Figure 4.5. Comparison of the
Personification Study’s play time by condition.

! 33

between conditions (W=3407.5, Z=0.08, N=116, n.s.). Likewise, there was no significant

difference in the time participants spent on the level they attempted, but did not complete

(W=3387.5, Z=-0.03, N=116, n.s.).

The difference in levels completed, but the lack of significant difference in playing time

suggests that those in the experimental condition learned commands (i.e., by completing more

levels) more efficiently. This suggests that something in our manipulation caused the

experimental condition participants to better understand and use the commands to fix Gidget’s

problematic code. We address possible explanations for this in our discussion.

4.3.3. No Significant Differences in Execution

There were no significant differences in how frequently the participants used the four execution

control buttons overall (one step: W=3693.5, Z=1.7, n.s., one line: W=3532, Z=0.8, n.s., all

steps: W=3488, Z=0.5, n.s., to end: W=3740, Z=1.9, n.s.; N=116) (see Figure 4.6 for the

distribution of clicks for each button).

Since we found previously that the experimental group completed more levels than the

control group, we checked to see if there was a difference between the conditions for the number

of code executions used per individual level. To do this, we calculated the median number of

code executions each participant used to complete the levels they attempted, and then compared

the two resulting distributions of medians. This was repeated for each execution button. We

found that there were no significant differences in the median number of code executions for

completed levels by condition (one step: W=3293, Z=-0.5, n.s., all steps: W=3061.5, Z=-1.9, n.s.,

to end: W=3305.5, Z=-0.5, n.s.; N=116). However, we found that the use of one line was

significantly different: W=2987.5, Z=-2.3, N=116, p<.05. On closer inspection of the data, we

found that this difference was due to participants in the control condition using a higher median

number of one line code executions. This means that participants in the control condition were

running their code line-by-line, but skipping some of the finer details provided by the one step

execution.

Finally, we checked both conditions to see if there was a difference in the raw number of

code executions for levels the participants attempted but did not complete. We found that there

! 34

were no significant differences between conditions in the number of code executions for levels

that participants attempted but did not complete (one step: W=3339.5, Z=-0.3, n.s., one line:

W=3310, Z=-0.5, n.s., all steps: W=3303.5, Z=-0.5, n.s., to end: W=3483, Z=0.5, n.s.; N=116).

Since participants quit on different levels of varying difficulty, this suggests that those from both

conditions put approximately the same amount of effort into testing and executing their code

before deciding to give up, independent of the level they were playing.

4.3.4. Experimental Condition Players Want to Help the Game Character

There was no significant difference in participants’ self-reported level of enjoyment playing the

game between the two conditions (W=3117, Z=-1.1, N=116, n.s.). Likewise, there was no

significant difference in participants’ reporting whether they would recommend the game to a

friend wanting to learn programming (W=3629.5, Z=1.4, N=116, n.s.). These results are

Figure 4.6. Comparison of the Personification Study’s button presses by condition.

�

! 35

consistent with reports by Nass et al. (1996), who found that participants did not attribute success

or enjoyment of an activity to changes in their performance.

There was, however, a significant difference in participants’ reporting that they wanted to

help Gidget succeed (W=3901, Z=3.1, N=116, p<.01). Participants in the experimental condition

were significantly more likely than those in the control condition to agree to the statement, “I

wanted to help Gidget succeed.”

4.4. DISCUSSION

Our findings from this study demonstrate that more personified programming tool feedback can

have a positive effect on novice programmers’ engagement with a debugging game. More

specifically, we have shown that casting the computer as a verbose but naïve and unconfident

teammate that blames itself for errors has demonstrated to have a positive effect on novice

learners’ engagement using a simple textual programming language. We also found that novice

programmers exposed to this unconfident teammate were more likely to report that they wanted

to help it.

These results, combined with the lack of a significant difference in median time spent on

levels or execution of the program, suggests that the experimental group was likely making

better use of the information provided by the robot than the control group. One possible

explanation for this is that by personifying the feedback provided by the programming

environment, experimental group participants were more likely to attend to the information

content in the messages, and thus more likely to understand the program semantics. This is

supported by our finding that the control group participants were significantly more likely to use

the one line execution control, skipping over many (but not all) of the robot’s messages. Another

interpretation is that both groups attended to the messages similarly, but the phrasing led the

experimental group participants to somehow process the information more deeply, by framing it

as human rather than computer.

Although our results suggest that our manipulation increased success on completing levels,

we did not find that participants were willing to spend more time playing the game. This may be

due to the unconstrained nature of Mechanical Turk tasks, which provide no additional extrinsic

! 36

incentives to continue; it may also be due to difficulties that learners encountered in particular

levels of the game. This was particularly true of level 6, where there was a major drop off of

participants in both conditions (Figure 4.4). This level introduced conditional statements,

suggesting that it is an inherently difficult concept for novice programmers to comprehend. More

work needs to be done to uncover how feedback tool personification affects other aspects of

motivation such as wanting to continue to work on a problem after multiple failures on a single

level.

4.5. LIMITATIONS

This study has a number of limitations that limit its generalizability. First, Mechanical Turk

allows participants to self-select into HITs given that they meet certain qualifications. The HIT

did not require any special qualifications and used the default setting from Amazon. Although we

tried to account for factors that would affect the HITs listing on Amazon’s HIT page, those who

filtered for higher-paying HITs would be less likely to find our HIT, whereas those filtering for a

tag labeled “game” would be more likely to find our HIT.

Also, the game was accessible by computer, connected to the Internet, listed on a website

requiring login. Although not directly translatable to programming ability, gaining access to the

game requires a fair amount of computer knowledge. As our demographic data indicated, our

participants were well-educated, with 86% of them reporting that they had some college

education or beyond.

Finally, though small, there was an economic incentive for participants to participate in the

study. Moreover, they would receive a bonus payment for levels they completed. Since these

economic incentives would not exist in a place like a classroom, it is unclear how or findings

would generalize to other extrinsically motivated learning contexts. For instance, Mechanical

Turk turk users have a choice of which tasks to engage in; students in a classroom often do not.

4.6. SUMMARY

This chapter presented a controlled experiment testing players’ engagement using the Gidget

game. By personifying the robot protagonist – characterizing it as fallible, having it convey

! 37

information about coding errors conversationally, and having it take the blame for mistakes – we

found that novice programmers complete significantly more game levels than learners who

received more conventional feedback, in a comparable amount of time. Given our results, we

conclude that personifying the computer and making it less authoritative has immediate benefits

for engaging novices wanting to learn how to program.

! 38

5. EFFECT OF PURPOSEFUL GOALS ON ENGAGEMENT 6

This chapter describes the second of three studies that addresses RQ1 – do players of an

educational debugging game show measurable signs of engagement playing the game? The study

in this chapter explores how the goals in the game affect players’ engagement.

5.1. BACKGROUND AND MOTIVATION

Engagement is a necessary condition for learning (Garris, Ahlers, & Driskell 2002), especially

for challenging topics such as computer programming (Carter 2006). Such engagement may only

occur, however, when objectives are meaningful (i.e. have a purpose) to the learner. Although

these effects have been examined in formal educational settings (Layman, Williams, and Slaten

2007, Margolis & Fisher 2002), much less is known about their effects in informal contexts,

especially in the space of educational games. For example, dropouts in CS1 courses are often

attributed to students feeling that their programs did not solve meaningful problems (Margolis &

Fisher 2002) or were lacking any practical context (e.g. sorting a list of meaningless numbers)

(Layman, Williams, and Slaten 2007). Additionally, the previous chapter described a study where

players who worked with a robot that used personal pronouns and had a face were significantly

more likely to report wanting to help it and completed approximately twice as many levels in a

similar amount of time as the other group (Lee & Ko 2011).

Whereas the study from the previous chapter investigated the effect of the visual

presentation of the program interpreter, in this study we investigate the effect of game goals,

manipulated by the presentation of data elements. Recent work has demonstrated that humans

have evolved to empathize with animals (Bradshaw & Paul 2010), suggesting that players may

attribute more purpose in the goals working with animate data objects, particularly vertebrates

(Batt 2009). In Gidget programs, data are the objects that the robot scans, analyzes, and moves,

which are directly tied to the goals that the player is trying to accomplish. Goals in the game

include transferring spilled chemicals into containers, checking attributes of objects, and moving

animals to safety. We hypothesized that changing the presentation of the data referred to in these

 This chapter has been adapted from my VL/HCC 2012 publication (Lee & Ko 2012).6

! 39

goals would influence the purposefulness of goals, thereby affecting players’ motivation to

achieve them, especially as goals become increasingly difficult to accomplish.

5.2. METHODOLOGY

We aimed to investigate how the purposefulness of goals, manipulated by the visual

representation of data elements and their labeling, affects learners’ voluntary engagement. Our

study had three conditions involving block, bug, and animal data elements, within the Gidget

game (see Figure 5.1). We used a between-subjects design with 41 participants in the animal

condition, and 40 each in the block and bug conditions. The key dependent variable in our study

was engagement, which we operationalized as the number of levels completed, the time spent on

each level, and the use of different UI elements.

5.2.1. The Three Level Conditions

The independent variables we manipulated in our experiment were the labels and visual

appearance of the objects referred to in the level goals (e.g. Figure 5.1). The data elements in the

block condition were inanimate colored blocks, and were intended to diminish the

purposefulness of the goals, separating them from the context of the story. In contrast, the other

two conditions’ data elements were designed to be specific, animate objects. In the bug

condition, the data elements included beetles, flies, ladybugs, bees, termites, butterflies, and

Figure 5.1. Visual representations, names, and goals for the three conditions.

�

! 40

spiders. In the animal condition, the data elements included cats, birds, dogs, kittens, puppies,

piglets, and rats. These conditions were intended to increase the purposefulness of the goals,

tying them to the context of the story. Supporting objects across the conditions did not follow

these categories, but were modified to be consistent with the game’s story (i.e. cleaning up an oil

spill) and type of object (e.g. block::bin, beetle::jar, cat::basket, respectively). Our hypothesis,

based on prior work showing that humans empathize and attribute more positive attitudes

towards vertebrates (Batt 2009, Bradshaw & Paul 2010), was that players would ascribe more

purpose in saving animals than inanimate objects (i.e. blocks), and therefore complete more

levels.

Since some levels included defects in the references to object names, we were careful to

inject defects consistently in all conditions. For example, level 1 included the following

misspelling of an object that Gidget needed to scan:

• block condition: scan bluck // should be block

• animal condition: scan ketten // should be kitten

• bug condition: scan baetle // should be beetle

In this case, we replaced the data elements’ first occurring vowel with an alternate vowel.

We were careful to control for these inconsistencies across all levels and conditions that included

misspelled names.

5.2.2. Participant Recruitment, Compensation, and Demographics

We recruited participants using Mechanical Turk and our pricing model and validation method

was carried over from the study described in the Chapter 4.2.3, which was designed to minimize

the effect of monetary compensation on players’ motivation to start and continue playing the

game. Participants were given $0.40 for completing the mandatory first level, and an additional

$0.10 per level completed thereafter. These decisions were validated to attract participation in a

new pilot test using the conditions developed for this study, consisting of 29 players from

Mechanical Turk, and 6 people in-person.

! 41

We focused on self-reported, rank novice programmers. Our HIT description deliberately

did not mention programming to prevent people from self-selecting out of the task. A total of 121

participants met our criteria for being novice programmers (see Chapter 1.4 and Chapter 4.2.4).

These were those who responded “never” to all of the following statements: 1) “taken a

programming course,” 2) “written a computer program,” and 3) “contributed code towards the

development of a computer program.” This information was cross-validated with an additional

question later in the survey that asked them to rate their agreement with the statement, “I identify

myself as a beginner/novice programmer.”

Participants were distributed proportionally among our three conditions by demographics

(s e e Ta b l e 5 . 1) , w i t h n o s t a t i s t i c a l l y s i g n i f i c a n t d i f f e r e n c e s i n a g e

(F(2,117)=1.46,MSE=111.3,n.s.), gender (χ2(2,N=121)=1.1,n.s.), level of education

(χ2(14,N=121)=4.0,n.s.), or country of residence (χ2(32,N=121)=30.7,n.s.). The median age was

26, ranging from 18 to 66 years old. Our sample included a total of 63 females and 58 males.

Fifteen countries were represented in our study, with participants primarily from the US (61.6%)

and India (14%). Our sample was well-educated, with 80.9% reporting that their highest level of

education was some college or beyond.

5.2.3. Procedure and Dependent Measures

On game load, each participant was randomly assigned one of the three conditions. Once a

participant chose to quit, they were given a post-survey asking about gender, age, country,

Table 5.1. The Purposeful Goals Study’s participant demographics.

block (n=40) animal (n=41) bug (n=40)

gender 20 males, 20 females 20 males, 21 females 21 males, 19 females

age 18-60 years 
median = 26.5

18-56 years 
median = 25

19-62 years 
median = 27

some college or greater 32/40 = 80% 32/40 = 80% 34/40 = 85%

Location: USA 25 27 22

Location: India 5 5 7

Location: Other 10 8 11

! 42

education, programming experience, and asked to select their agreement to the following

attitude-measurement statements on a 5-level Likert scale: 1) “I enjoyed playing the game,” 2) “I

would recommend this game to a friend wanting to learn programing,” 3) “I wanted to help

Gidget succeed,” and 4) “I enjoyed interacting with the objects in Gidget’s world.”

In addition to the survey responses, we collected a timestamped activity log of all

participants’ attempted levels including: (1) Each press of the execution buttons and a copy of

the code at the time of execution; (2) Level start & level end: events marking when a player

started, completed, or quit a level; (3) Idle start & idle stop: events marking mouse or keyboard

inactivity (of 30 seconds or more), and where in the UI the idle time occurred. Events were also

recorded marking resumption in activity; (4) Edit time (edit in & edit out): events marking when

the player clicked inside the code pane to edit code or clicked elsewhere to leave the editing

pane; (5) Pane time (time in & time out): timestamps of mouse cursor movement over or out of

the major UI panes.

From these, we calculated the following dependent measures for each participant: (1) Time

on level: how long individual participant was actively engaged with the code and interface of

each level overall, adjusted by subtracting idle time. This was calculated for each level by first

taking the difference of level end and level start, then subtracting idle time for that level; (2)

Time overall: how long each participant played the game overall, adjusted by subtracting idle

time. This was calculated by summing up the all of the time on level data per participant and

subtracting the sum of their idle time.

Finally, each participants’ number of levels completed, time to complete or quit a level, and

logs of execution buttons and UI pane activity, were used to compute dependent measures of

activity proportional to overall time spent on levels.

5.3. STUDY RESULTS

This section reports the quantitative results comparing players’ engagement from our three

groups. Throughout this analysis, we use non-parametric Chi-Squared and Wilcoxon rank sums

tests with α=0.05 confidence, as our data were not normally distributed. For post-hoc analyses,

we use the Bonferroni correction for three comparisons (α / 3 = 0.0167).

! 43

5.3.1. Animal Condition Players Complete More Levels

All participants completed at least one

level. The maximum number of levels

completed in the block, animal, and bug

condi t ions were 9 , 18 , and 16,

respectively (see Figure 5.2). There was a

significant difference in the number of

levels participants completed between the

three conditions (χ2(2,N=121)=7.3,p<.

05). Further post-hoc analysis with a

Bonferroni correction shows that the

significantly different pair was the block

v s . a n i m a l c o n d i t i o n s

(W=1380.5,Z=-2.5,p<.01), with the animal group completing more levels. Comparison of the

block vs. bug (W=1669.5,Z=0.5,n.s.) and the animal vs. bug (W=1427.5,Z=-2.0,n.s.) conditions

showed no significant differences.

Investigating further, Figure 5.3 shows that approximately 25% of the participants from each

group quit the game after completing only the first level. Next, many participants quit on level 4,

which required them to use the command learned in the previous level with a new command.

Finally, participants quit again in large numbers on level 6, which introduced conditional

statements. This is consistent with others’ findings that novice programmers have difficulty with

conditional logic (Dahorte, Zhang, & Scaffidi 2010). Here, the block condition had the most

drastic drop with 90% of its participants quitting, followed by a drop of 77.5% and 67.5% of

participants in the bug and animal conditions, respectively. All of the block condition’s

participants quit by level 10, whereas the other two conditions had a few participants complete or

nearly complete all the levels.

Since all participants were novice programmers with no statistical difference in

demographics, these results suggest that interacting with goals that use animal data elements had

Figure 5.2. Comparison of the Purposeful Goals
Study’s levels completed by condition.

�

! 44

a significant positive effect on participants’ engagement with the game, particularly on levels

introducing difficult concepts.

5.3.2. Animal and Bug Condition Players Play Longer

There was a wide range of overall play times

for the block, animal, and bug conditions

(4.9 min to 1.3 hrs, 6.9 min to 2.8 hrs, and

8.3 min to 1.9 hrs, respectively; see Figure

5.4 for a distribution box plot). There was a

significant difference in the length of time

participants played the game overall by

condition (χ2(2,N=121)=10.2,p<0.01). A

post-hoc analysis with Bonferonni correction

reveals that two conditional pairs were

significantly different: block vs. animal

(W=1330,Z=-2.9,p<.016) and block vs. bug (W=1889,Z=2.6,p<.016). In both cases, the block

condition players spent significantly less time playing the game than the other two conditions.

Play time between the animal and bug conditions did not differ (W=1620,Z=-0.2,n.s.).

Figure 5.3. Histogram of levels completed for the Purposeful Goals Study’s conditions.

�

Figure 5.4. Comparison of the Purposeful
Goals Study’s play time by condition.

! 45

Next, we investigated how quickly players completed levels by comparing participants’ ratio

of total play time to number of levels played, finding no significant difference

(χ2(2,N=121)=3.7,n.s.). In particular, the median times to complete the first 5 levels were very

close across conditions.

5.3.3. No Significant Differences in Code Execution Strategies

One possible explanation for the differences in levels completed was a different use of the game

UI. Therefore, we investigated the proportion of execution button presses per unit time on

completed levels (see Figure 5.5 for a distribution box plot), for each of the four execution

buttons, finding no significant differences in usage (one step: (χ2(2, N=121)=2.2,n.s.), one line:

(χ2(2,N=121)=0.5,n.s.), all steps: (χ2(2,N=121)=1.6,n.s.), to end: (χ2(2,N=121)=0.1,n.s.)). These

Figure 5.5. Comparison of the Purposeful Goals Study’s button presses by condition

�

! 46

results show that the differences in success were likely not due to one condition executing the

program more frequently or stepping through it differently.

5.3.4. No Significant Differences in User Interface Usage

Another possible explanation for the disparity in levels completed was differences in how

participants used the various panels in the UI. We examined the proportion of interface pane

usage to overall time on levels played (see Figure 5.6 for a distribution box plot), again finding

no significant differences among conditions (Code: (χ2(2,N=121)=2.5,n.s.), Goals:

(χ2(2,N=121)=4.0,n.s.), Execution: (χ2(2,N=121)=3.7, n.s.), Feedback: (χ2(2,N=121)=0.3,n.s.),

World: (χ2(2,N=121)=4.3,n.s.) , Memory: (χ2(2,N=121)=1.0,n.s.) , CheatSheet:

(χ2(2,N=121)=5.8,n.s.)). We also tested the proportion of time spent editing code (computed from

Figure 5.6. Proportion of the Purposeful Goals Study’s interface usage  
to overall time on levels played.

�

! 47

the logs) to overall time on levels and found no significant differences among conditions

(χ2(2,N=121)=0.9,n.s.). All of these results suggest that the differences in success and play time

were not due to players’ variations of user interface usage in the game.

5.3.5. No Significant Differences in Attitudes

Although there was a trend in survey responses indicating a positive experience playing the

game, there was no significant difference in participants’ self-reported level of enjoyment

comparing the three conditions (χ2(8,N=121)=5.8,n.s.) or whether they would recommend the

game to a friend wanting to learn programming (χ2(8,N=121)=4.1,n.s.). Similarly, there was a

positive trend in responses across conditions, but no significant difference in participants’ self-

reported desire to help Gidget succeed (χ2(8,N=121)=11.6,n.s.) or whether they enjoyed working

with their data elements (χ2(8, N=121)=5.5,n.s.).

5.4. DISCUSSION

Our findings show that goals involving animal objects, rather than block objects, significantly

increase learners’ engagement in a programming game, leading rank novices to play significantly

longer and complete significantly more levels. Moreover, we showed that these effects were not

due to differences in how players executed the programs, how they used the game UI, how long

they attempted each level, or how much time they spent editing their code.

There are several possible interpretations of these results. For example, how did participants

complete more levels even though they spent comparable amounts of time attempted them? One

possibility is that when reaching a difficult level, players were more motivated to help animals

and bugs, rather than blocks, and therefore kept playing. Prior research on computer science

recruitment shows that there are gender specific effects in motivation to enroll, specifically

related to the reasons for computing (females are enticed when they see how computing can be

used for a purpose) (Margolis & Fisher 2002). Players may have seen a greater purpose in saving

an animal or bug than in moving a block.

Another potential explanation is that participants paid closer attention to code involving

animal and bug objects and therefore understood the semantics of the programming language

! 48

better, making the difficult levels easier. The variation in object names between levels may also

have had an effect.

Because there were no distinguishable differences in play time between levels in each

condition, it is also possible that participants had comparable learning, but different amounts of

retention. The amygdala is also known to play a role in learning related retention (Chavez et al.

2009) and our study was motivated by research showing that the amygdala had a preference for

images of animals over other objects; therefore, players may simply have remembered more

about the meaning of commands from previous levels when the levels involved animals or bugs.

Our results have many potential implications for our understanding of online learning, the

role of game elements in engagement, and computing education pedagogy. Our results show that

purposeful goals may play a significant role in engagement in the context of self-guided,

discretionary, educational games. These findings support prior works done in classroom settings

(Kelleher & Pausch 2005, Margolis & Fisher 2002), and broadens them to informal learning

settings. Future work should investigate the effects of these factors on learning, both in formal

and informal contexts In addition, this study demonstrated that small changes to the game

elements can have a significant effect on engagement in educational games. Here, we had large

effect sizes, with double the overall play time and level completion, as was the case in our prior

study described in Chapter 4. This suggests that in the growing amount of work in educational

games research, game designers should be doing more on low-level factors that are predicted to

be influential by research in learning, memory, and attention.

5.5. LIMITATIONS

Our results have a number of limitations that may restrict their generalizability and validity.

These are the same limitations outlined in Chapter 4.5, including self-selection into a Mechanical

Turk HIT, prior computing ability, education (80.1% of the participants in this study had some

college education or better), and economic incentive.

In addition, capturing a timestamped activity log of participants’ interactions with the game

interface is an coarse instrument for measuring attention, particularly when it is done remotely,

tracking only mouse and keyboard activity. Since we defined interaction with an interface

! 49

element as having the mouse cursor over it, it is plausible that users may have been concentrating

on other parts of the interface without necessarily having the mouse cursor over it. This would be

acceptable if all the measurements were randomly distributed in the same way across conditions,

but could be problematic if they were systematically different.

5.6. SUMMARY

This chapter presented a controlled experiment testing players’ engagement using the Gidget

game. By manipulating the visual representation of data elements players interacted with in the

game, we have found that novice programmers complete more levels and play longer when

presented with images of animals instead of block objects. Given our results, we conclude that

purposeful goals, manipulated by the objects players interact with in a game, has immediate

benefits for engaging novices wanting to learn how to program. These findings, coupled with

those found in Chapter 4, support the notion from RQ1 that players of Gidget show measurable

signs of engagement playing the game.  

! 50

6. EFFECT OF IN-GAME ASSESSMENTS ENGAGEMENT 7

This chapter describes the last of three studies that addresses RQ1 – do players of an educational

debugging game show measurable signs of engagement playing the game? More specifically,

this chapter explores how explicit testing within Gidget affects players’ engagement playing the

game.

6.1. BACKGROUND AND MOTIVATION

As more people go online and new content becomes available, many are turning to online

educational resources to learn new skills such as programming. Sites such as code.org (n.d.)

attract millions of users annually and provides potential learners with links to many different

educational resources (Beres 2014). Unfortunately however, many of these resources struggle to

keep learners engaged (Daniel 2012) and few of them involve explicit evaluations of learning,

making it unclear how much learners actually learn or retain. Therefore, as these resources

increase in popularity, a significant design challenge will be improving engagement, while also

demonstrably improving understanding.

One way to potentially improve both engagement and understanding is to use assessments

(Poehner 2007). Assessments, which directly tests learners’ knowledge by asking them to

explicitly answer questions about the material, are widely used in compulsory settings not only

to measure learners’ progress and what they know (Butler & Roediger 2008), but also to improve

students’ learning itself (Black & William 1998). Assessments improve learning and

understanding partly by helping students practice course material and by identifying and

correcting misconceptions (Carpenter, Pashler & Vul 2006; Karpicke & Roediger 2007).

Unfortunately, there is a lack of research about how including assessments might affect

learners’ use of discretionary learning resources (Boustedt et al. 2011). Moreover, there is reason

to believe that assessments could actually harm engagement, even if they improve learning. For

example, assessments can lead to test-anxiety, negatively affecting engagement (Shute 2011),

especially if they get the wrong answer or feedback is lacking (Butler & Roediger 2008).

 This chapter has been adapted from my ICER 2013 publication (Lee, Ko, & Kwan 2013).7

! 51

Including assessments in educational games or resources that use game mechanics may be even

more harmful, as they may interfere with a player’s enjoyment of the game, creating a “testing”

mode that is poorly integrated with the rest of the game, leading the learner to disengage or even

quit the activity.

To begin exploring the role of assessments in discretionary computing education games, we

investigated the effect of integrated learning assessments on both engagement and speed across

two controlled experiments using Gidget. In our two experiments, we manipulated the inclusion

of explicit assessments like the ones shown in Figure 6.1-A, which asks learners to indicate the

final position of an object by mentally simulating the given program’s execution.

6.2. METHODOLOGY

The aim of our study was to determine how integrated, explicit assessments in an educational

computing game affects engagement and task completion speed in self-directed learners, and to

identify the extent of these effects. To do this, we conducted two separate controlled experiments

using Gidget, with the first measuring engagement and the second measuring task completion

speed (see Table 6.1). Each of our experiments had two conditions: the control condition’s

curriculum consisted of a series of levels without assessments, whereas the experimental

condition (which we will call the assessment condition), was identical, but also included two

assessment levels at the end of each set (i.e., unit) of levels.

Figure 6.1. Example of a multiple choice question (left) and a click-grid question (right).

�

! 52

In our engagement study, learners could quit any time, as with any discretionary learning

material. We hypothesized that the learners in the assessment condition would play the game for

longer and complete more levels because the assessments would offer additional opportunities to

practice each units’ concepts, leading to better understanding of the material and reducing the

likelihood of encountering difficulties and discouragement in subsequent levels. We measured

both the total number of levels completed and the total time playing the game.

Our speed study followed the same structure as the engagement study but was designed to

enable a direct comparison of how quickly participants completed Gidget game levels. To enable

this comparison, we operationalized speed as the total time required to complete the first three

sets of levels in the game. We hypothesized that even though players in the assessment condition

would have to spend more time on the assessment levels, the extra practice and feedback they

received through the assessments would result in them being more successful in subsequent

levels, completing individual levels faster than those in the control condition.

Both the engagement and speed studies were between-subjects designs with 200 and 30

participants respectively, split evenly across conditions (see Table 6.2). Participants were

recruited on Amazon.com’s Mechanical Turk. The speed study was launched after the

engagement study, without overlap, to prevent people from playing the game simultaneously; we

also prevented players from participating more than once. Though we attempted to recruit the

same number of participants for both treatments, the speed study attracted fewer participants

because it required a larger up-front time commitment in its task description.

Table 6.1. Experimental design for the two Assessment Studies

Study 1. Engagement 
(quit any time)

Study 2. Speed  
(complete half the game)

independent variables Gidget game with or without assessments

dependent variables # of regular levels completed and total
time playing the game

time required to complete a set of
levels (half of the total game levels)

! 53

6.2.1. Assessment Levels

The primary manipulation in our two studies was the inclusion or exclusion of assessment levels

in the game. Control condition learners played the game without assessment levels for 7 units,

spanning a total of 25 levels (Figure 6.2). In contrast, assessment condition learners played the

game with two assessment levels at the end of each unit (except the final unit) for a total of 37

levels (Figure 6.2). Other than the inclusion of these assessment levels, the sequence and content

of the levels were identical in both conditions.

The assessment levels were framed in a way to flow with the story and encourage learners to

help the robot with repairs to its logic chip. We took extra care to ensure that the assessments

were as close as possible to other game levels, using the same interface, but disabling the code

editor, code execution buttons, tooltips, and reference guide, requiring learners to recall their

Table 6.2. The Assessment Study’s participant demographics.

Study 1. Engagement Study 2. Speed

control (n=100) assessment (n=100) control (n=15) assessment (n=15)

gender 55 males, 45 females 58 males, 42 females 9 males, 6 females 8 males, 7 females

age 18-57 years 
median = 27.5

18-64 years 
median = 26

21-40 years 
median = 29

19-36 years 
median = 26

some college or
greater 86% 87% 93% 100%

Figure 6.2. The different level sequence for the control and assessment conditions.

�

! 54

knowledge from the previous levels, much like an exam would in a classroom setting. Related

studies have found that “closed book” exams demand more difficult and intricate retrieval mental

processes, but also amplify testing effects (Bjork 1999; Karpicke & Roediger 2007). Gidget

explained these constraints by stating the desire to complete the assessment levels using minimal

help from other resources.

Assessment levels came in two varieties: multiple choice (Figure 6.1-A), and click-on-the-

grid (Figure 6.1-B). Multiple choice assessments required the player to select from one of the

provided options, which were randomized to minimize ordering effects (Kehoe 1995). All

multiple choice questions had one correct key, and three or four incorrect distractors. Click-on-

the-grid assessments required the player to select a grid location as their answer to level question

which asked where either Gidget or another object in the world would be located after the given

code was run. The number of possible choices were equal to the number of grid tiles for the

level.

In addition to requiring the selection of a multiple choice option or grid location, learners

also had to write an explanation of 8 words or more explaining their reasoning before submitting

their answer. This self-explanation approach has been shown to minimize guessing and

contribute to students’ learning and understanding (Chi et al. 1994;, Smith 2007).

Figure 6.3. The sequence of messages for correct and incorrect answers.

�

! 55

Both types of assessments required learners to inspect the grid, program, and goals, and then

mentally simulate the execution of the program to determine the intermediate or final state of

some object in the game world. These were therefore direct assessments of players ability to

precisely and accurately reason about the language semantics. Clicking the “submit answer”

button ran the code, step by-step, visually showing the player how the code was being processed,

and the final state of the program. Gidget would then check the learners’ answer choice. If the

choice was incorrect, Gidget would show a sad face, give an explanation about why it was

wrong, then, show a happy face and proceed to explain what the correct answer was, and why

(Figure 6.3, right). If the answer choice was correct, Gidget would show a happy face and

explained why the learners’ answer choice was correct (Figure 6.3, left). These design decisions

were based on our prior study detailed in Chapter 4, which found personified feedback affected

learners’ engagement in a game, and studies in classroom settings that show immediate feedback

for exam questions enhances retention of the tested materials and reduces negative effects by

incorrect answer choices or distractors (Butler & Roediger 2008).

The content of the assessments were designed to test the specific ideas, concepts, and syntax

rules covered in each unit. Distractors were designed deliberately to test for common

programming misconceptions. Unit 1’s assessments were designed to be straightforward so that

learners could get familiar with how the assessment levels worked. Unit 2’s assessments

identified if learners could follow the control flow and use the correct syntax for list queries.

Unit 3’s assessments tested variable assignment and accessing array values correctly by index.

Unit 4 tested variable passing to functions and objects. Finally, Unit 5 tested whether the learners

could correctly trace control flow through conditional statements. Like our curriculum, all

assessment levels were validated with participants in-person and online by observing that they

were sufficiently challenging, that they covered the concepts from our list of learning objectives,

and that they were not a barrier in progressing through the game.

6.2.2. Participants and Procedure

We targeted non-programmers, defined as individuals who self reported that they had never

written computer code and had never taken a course related to computer programming (see

! 56

Chapter 4.2.4). We used Amazon.com’s Mechanical Turk to recruit participants, and our pricing

model and validation method was primarily carried over from the two prior studies described in

Chapters 4 and 5. Our goal was to set a base reward that was high enough to attract participants,

but also as low as possible to minimize participants’ sense of obligation to spend time on our

HIT. Likewise, we wanted to have any bonus payments to have a minimal effect on a worker’s

decision to continue playing.

For our engagement study, where learners could quit at any time after the first level, we set

our base reward as $0.30 for starting the HIT, and an additional $0.10 for each level completed.

We set the ceiling for submission time to 5 hours so that participants could gauge the difficulty of

the HIT compared to other HITs.

For our speed study, players were required to complete the first three units to receive

payment (totaling 13 or 19 levels, depending on the condition). There were no similar HITs to

base our payment on, so we ran several pilot tests to determine an optimal payment rate. The HIT

description was identical to that of the engagement study, but also included text explaining that

players were required to complete “half the game” before being allowed to quit, and that it could

take several hours based on our past observations. We found that nobody accepted/completed our

HIT until we started paying $7.00 to complete the first half of the game and $0.10 for each

additional level completed (interestingly, engagement study participants would have only been

paid $2.20 to complete the same number of 19 levels, or a maximum of $4.00 for completing the

entire game).

On game load, each participant was randomly assigned to the control or assessment

conditions. This information, along with their current state in the game were logged on the client-

side to ensure participants would not be exposed to the other condition, even if they refreshed

their browser. Once a participant chose to quit, they were given a survey to collect demographic

data (e.g. gender, age, education) and a unique code to receive payment for their submission. In

addition to the survey responses, we automatically collected the number of levels completed,

timestamps for level start, level completion, quit, all character-level edits to each level’s

program, and execution button presses.

! 57

Each of our studies were between-subjects, with an even split between the two conditions.

Demographic data revealed that participants in both studies and conditions were well

proportioned, with no significant differences between groups by gender, age, or education (see

Table 6.2). Consistent with other studies about the demographics of Mechanical Turk workers

(Ross et al. 2010), we found that our participants were well-educated, with the majority (86% or

more in all conditions) reporting that they had at least some college education or beyond (see

Table 6.2).

6.3. STUDY RESULTS

We provide quantitative evidence for our hypotheses about engagement and speed. Throughout

this analysis, we use the nonparametric Wilcoxon rank-sum test with α=0.05 confidence, as our

data were not normally distributed.

6.3.1. Engagement Study: Assessment Condition Players Complete More Levels

One of our measures of engagement was the number of levels completed (see Table 6.3). To

enable comparison of how far learners had progressed through the game’s instructional content,

we subtracted the number of assessment levels completed from the total number of levels

completed (see Table 6.3 – labeled as “adjusted”).

Table 6.3. Summary statistics for the two Assessment Studies and conditions.

Study 1. Engagement Study 2. Speed

control (n=100) assessment (n=100) control (n=15) assessment (n=15)

Min. levels completed 2 2 (2 adjusted) 13 19 (13 adjusted)

Median levels
completed 6 10 (8 adjusted) 14 19.5 (14 adjusted)

Max.levels completed 25 37 (25 adjusted) 25 37 (25 adjusted)

Min. time played 6.9 minutes 6.8 minutes 57.1 minutes 63.4 minutes

Median time played 26.3 minutes 41.9 minutes 121 minutes 102.2 minutes

Max. time played 142 minutes 296 minutes 186.6 minutes 198.3 minutes

! 58

There was a significant difference in the number of non-assessment levels completed

between the control and the assessment conditions (W=10851,Z=1.97,N=200,p<.05).

Participants in the assessment condition voluntarily completed a median of 8 levels, whereas the

control condition completed a median of 6 levels (see Figure 6.5). As additional confirmation,

we identified that within the speed study, assessment condition participants were more likely to

continue playing the game past the minimum required 3 units, voluntarily completing

significantly more levels than the control condition participants (W=277.5, Z=2, p<.05).

We examine more closely what may have influenced a participant’s decision to stop playing

in Figure 6.4. Everyone completed at least 2 levels and 1 control condition participant and 4

assessment condition participants completed the entire game. Many participants from both

groups quit the game after completing level 5 (10 players in the control, 15 players in the

assessment) and level 6 (28 players in the control, 12 players in the assessment). Level 6

corresponds to the beginning of a new unit (in this case, starting the goto & lists unit), and Level

7 required learners to combine the use of keywords from the previous unit and the new unit.

Next, 21 of the control group players quit after level 9 (level 10 started the variables unit), and

11 assessment group players quit after level 13 (level 14 began the functions & objects unit).

Since participants had little programming knowledge and there was no difference in

demographics, the assessments likely affected motivation when new concepts were being

Figure 6.4. Number of players remaining after each level in the engagement study.

�

! 59

introduced (i.e., starting a new unit) and when they had to be combined with previously learned

concepts.

6.3.2. Engagement Study: Assessment Condition Players Play the Game Longer

Our other measure of engagement was total time played. After subtracting the time played in

assessment levels, we found that participants in the engagement study’s assessment group

voluntarily played the game for significantly more time than participants in the control group

(W=8434.5, Z=-3.9, N=200, p<.01). As shown Table 6.3 and Figure 6.6, the assessment

condition learners voluntarily played twice as long as those in the control condition, with a

median overall play time of 41.9 minutes and 26.3 minutes, respectively.

Figure 6.5. Comparison of Assessment Study’s (Engagement) levels completed by condition.

�

! 60

Combined with the large difference in levels

completed described in the previous section, the

significant differences in play time suggests that

assessments caused learners to continue playing

even when reaching unit boundaries or difficult

levels.

6.3.3.Speed Study: Assessment Condition Player

Complete the Same Levels Faster

While the engagement study results show that

participants stayed engaged longer when given

assessments, this effect could be due to either improved motivation, improved understanding, or

a combination of the two. To separate these effects, our speed study held the incentives constant,

requiring every participant to complete a minimum number of levels for compensation.

Table 6.3 shows the descriptive statistics for the speed study results. We found no significant

difference in the total time participants played the first three units of the game (W=222, Z=-0.4,

N=30, n.s.), even though learners in the assessment condition were required to play an additional

six levels. However, if we adjust the times by excluding the time spent on assessment levels, we

find the difference in completion time was

significant (W=171, Z=-2.5, N=30, p<.05), with

participants in the assessment condition

completing the three modules twice as fast

overall, compared to control condition learners

(see Figure 6.7). This shows suggests that

assessments helped learners master the game’s

concepts faster and that adding a small number of

assessment levels essentially costs no extra time

for participants, but leads to better performance

and engagement.

Figure 6.6. Comparison of Assessment
Study’s (Engagement) play time by

condition.

�

Figure 6.7. Comparison of Assessment
Study’s (Speed) adjusted play time on same

levels by condition.

�

! 61

6.3.4. Speed Study: Effects on Play Time and Style

To better understand how participants used their time playing the game in the speed study, we

examined participants’ code versions, code executions, and code edit time. Descriptive statistics

for all the data reported in this section can be seen in Table 6.4.

There was no significant difference in the overall number of code versions participants ran

for the first three units between conditions. In addition, there was no significant differences in

how frequently the participants used the incremental execution control buttons (one step, one

line, and stop) overall for the first three units of the game. However, participants in the control

condition used the to end execution button significantly more than their counterparts (see Figure

6.8), suggesting that they consumed significantly less instructional content, as the to end

execution prevented players from reading Gidget’s explanations of program execution. Control

condition participants also spent (nearly significant) more time editing their code (as indicated by

having their mouse cursor or text caret in the coding pane) than those in the assessment

condition. These results suggest that learners in the assessment condition may have spent more

time understanding program semantics by executing the program stepwise instead of reading it

or executing it at full speed.

Table 6.4. Summary statistics for the Speed Study’s learners’ play styles.
control (n=15) assessment (n=15) significance test (n=30)

code versions 58 - 223 (med=75) 50 - 124 (med=71) W=204.5, Z=-1.1 not significant

"one step” clicks 0 - 2901 (med=268) 1 - 1883 (med=256) W=243, Z=0.4 not significant

"one line” clicks 8 - 426 (med=90) 0 - 357 (med=40) W=243, Z=0.5 not significant

"to end” clicks 11 - 73 (med=31) 4 - 59 (med=19) W=166.5, Z=-2.7 p < .05

"stop" clicks 0 - 112 (med=13) 1 - 51 (med=21) W=241.5, Z=0.35 not significant

focus time 29.1 - 177.2 sec
(med=61.7)

22.7 - 105.2 sec
(med=39.6) W=185, Z=-1.9 p = .051

unit 1 completion 10.8 - 57.2 min
(med=22)

7.6 - 46.9 min  
(med=24.2) W=227, Z=-0.02 not significant

unit 2 completion 12.1 - 70.2 min
(med-37.3)

20.1 - 73.9 min  
(med=33.5) W=210, Z=-0.9 not significant

unit 3 completion 8 - 108 min 
(med=40.8)

6.4 - 110 min 
(med=19.8) W=176, Z=-2.3 p < .05

! 62

Inspecting the overall time each participant spent on each unit, we found a general trend of

assessment condition participants completing levels faster than the control group (see Table 6.4,

median times in the last 3 rows). This is especially true of the third unit, which shows that the

assessment condition participants completed the unit significantly faster than their control

counterparts. Closer examination shows that participants in the assessment condition finished

significantly faster in the first level of the third module (W=164, Z=-2.8, N=30, p<.01), which

introduced variables, and the fourth level of the third module (W=172, Z=-2.5, N=30, p<.05),

which required the use of all the keywords and concepts used throughout the unit.

Finally, we calculated how much time assessment condition participants spent on

assessment levels in relation to regular levels. Overall, they played a median of 22 minutes

across 6 assessment levels. Checking the ratio of assessment play time to overall play time, we

found that participants spent a median of 23.8% of their total time playing assessment levels.

We also examined how well assessment condition learners performed on the assessments

and found that they averaged 4 out of 6 correct. We read through participants' incorrect responses

Figure 6.8. Comparison of Assessment Study’s (Speed) execution button  
presses by condition.

�

! 63

to identify their misconceptions. We found that the majority of misconceptions were the ones we

expected and for which we created appropriate distractors (as detailed in Chapter 6.2.1). The one

misconception that learners encountered that we had not expected was in the first unit. In the first

assessment level, 6 learners were unsure whether a number was required after a move command

(e.g., “up” vs. “up 1”) and got the answer incorrect. However, 5 of these 6 participants were able

to correctly answer the next assessment, which asked a similar question. We suspect that

misconceptions here and in later assessment levels were addressed and clarified since each

assessment showed the code execution, explained why the participants’ chosen answer was false,

and why the correct answer was true even if the participants’ answer choice was correct.

6.4. DISCUSSION

These findings demonstrate that including explicit multiple choice assessments with self-

explanations in a discretionary programming game can significantly increase learner’s

engagement and speed. In the case of Gidget, these effects were strong, with the learners given

assessments completing 30% more non-assessment levels (Table 6.3), playing twice as long

(Table 6.3), and completing levels about 20% faster (Figure 6.6), than those not given

assessments.

We also found that speed study learners in the assessment condition were only getting the

correct answer 66.67% of the time. However, they were spending an average of 24.9% of their

total play time on the assessments, and in the free-form answer section, many participants gave

reasonable explanations for why they thought their particular answer was correct (see Chapter

6.3.4). This indicated that learners were trying on the assessment levels, even though they could

proceed regardless of the outcome of their answer.

There are several possible interpretations of our results. The difference in performance that

we saw in the speed study might be because the assessment levels corrected misconceptions by

providing the correct answers (whether or not the learner submitted the correct answer), which

has been shown to improve performance in compulsory settings (Carpenter, Pashler, & Vul 2006;

Karpicke & Roediger 2007).

! 64

It is also possible that since the code in assessment levels were not executable, learners had

to mentally simulate and trace the program’s execution, giving them practice understanding the

program semantics unaided. Since control condition leaners’ were never presented levels with

these constraints and were always able to execute their code to see what happens, they were

likely more inclined to do that; this is consistent with the finding that control condition learners

used the to end execution button significantly more than the assessment condition learners (see

Chapter 6.3.4), rather than taking the time to understand how the code was running.

A third explanation is that since access to the reference guide and tooltips were disabled in

assessment levels, learners in the assessment conditions were required to recall how the

keywords and syntax worked using their memory. This may have allowed them to understand

both the syntax and semantics of the keywords better than those in the control condition, who

were always presented with levels that allowed quick access to definitions and examples through

the tooltips and reference guide.

Finally, since assessment levels required an explanation of the answer choice, assessment

condition learners had extra opportunity to reflect on their selections and translate that into text.

This may have allowed them to identify misconceptions on their own, and may have also

provided a means of direct comparison to the answer explanations Gidget gave about the

incorrect and correct answer choices. Allowing learners to explain their answer choices may also

increase the positive effect of assessments (Aleven & Koedinger 2002), including improved

understanding of the material being assessed (Chi et al. 1994).

These observations may also explain the completion of more levels and the longer play time

by the assessment group in our engagement study. Those in the control condition may have

found later levels too difficult, causing frustration and ultimately making them quit. In contrast,

those in the assessment condition may have found these levels less difficult due to their

experience from assessment levels, but sufficiently challenging to keep them engaged with the

game.

! 65

6.5. LIMITATIONS

This study had the same limitations as those mention in the prior studies (see Chapter 4.5 and

Chapter 5.5), including self-selection into a Mechanical Turk HIT, prior computing ability,

education, and economic incentive. There may also be limitations to the generalizability of the

game itself. Gidget uses a specific type of programming language and a specific framing of

programming. These may have interacted with assessments in a way that may not occur in other

settings.

6.6. SUMMARY

This chapter investigated how providing assessments to self-directed, independent learners

playing a game designed to teach programming would affect engagement and play time. By

manipulating the inclusion or exclusion of assessments at the end of each game unit—a

collection of levels designed to teach a set of programming keywords or concepts—we found

that learners who were given assessment levels complete more game levels and play the game

longer and that they completed non-assessment levels faster. Given our results, we conclude that

well-integrated, in-game assessments, have immediate benefits for engaging novices wanting to

learn how to program. Combined with the findings from Chapters 4 and 5, these results support

the notion from RQ1 that players of Gidget show measurable signs of engagement playing the

game.

! 66

7. EFFECT OF THE GIDGET GAME ON LEARNING 8

This chapter describes a study that addresses RQ2 – do players of an educational debugging

game show measurable learning of programming concepts covered in a typical CS1 course?

More specifically, this chapter explores to what extent players are able to transfer their

understanding of fundamental CS1 concepts from the Gidget language to pseudo-code.

7.1. BACKGROUND AND MOTIVATION

Chapters 4 through 6 have demonstrated that novice programmers can be engaged playing an

online educational debugging game. The results from Chapter 6 also showed some evidence of

learning: adding in-game assessments seamlessly into the storyline and gameplay of Gidget

improved the speed in which players were able to complete levels. Players were also able to

answer 66.7% of their assessment questions correctly, and were able to provide reasonable

explanations for their answer choices. However, even though these findings are promising in

regards to learning, it is still not well understood how effective Gidget and other online resources

are actually at teaching programming concepts in a measurable way.

Therefore, to investigate the learning outcomes of these various online resources, we

conducted a pretest-posttest experiment using three types of online educational technologies,

comparing the learning gains of each. We specifically compared the Python course on

Codecademy (see Figure 7.1), the Gidget game (see Figures 1.1 and 3.1), and the open-ended

creative environment found in Gidget called the Puzzle Designer (see Figure 3.8), which is

analogous to other creative development environments such as Scratch (Maloney et al. 2010) and

Alice (Cooper, Dann, & Pausch 2000; Dann, Cooper, & Pausch 2011).

7.2. METHODOLOGY

The goal of this study was to examine the extent to which novices showed measurable learning

gains after using one of three online learning technologies. To do this, we first selected three

learning activities that are representative of the types of discretionary, online resources that

 This chapter has been adapted from my ICER 2015 publication (Lee & Ko 2015).8

! 67

people currently use to learn programming: 1) an online tutorial system using a web-based IDE,

where learners go through a didactic, structured curriculum, 2) an educational game using an

IDE, where learners go through a problem-based, structured curriculum, and 3) an open-ended

creation IDE, where there is no planned curriculum, where learners acquire skills by creating

with code. Next, we created a test designed to measure one’s knowledge of different introductory

programming concepts before and after completing one of the learning activities.

Our null hypothesis was:

H0: There is no difference in learners’ post-test performance

among the conditions after completing their assigned learning

activity.

In the rest of this section, we describe our three learning activities in more detail, explain the

design of the pre-post test, and discuss the experiment designed to test the hypothesis.

Figure 7.1. Screenshot of a Codecademy beginner’s Python tutorial.

�

! 68

7.2.1. Learning Activity 1: Codecademy Course

Codecademy (n.d.) is a popular online interactive tutorial website that offers free courses in

multiple programming languages (see Figure 7.1). It has had over 24 million users who have

completed over 100 million exercises (Summers n.d.). For our study, learners participated in the

introductory “Python Language Skills” course. According to the Codecademy website, over 2.5

million users are enrolled in this course designed for beginners. The website also states that the

Python course takes an estimated 13 hours to complete.

Codecademy’s course interface consists of a two-pane window split vertically on the screen

(see Figure 7.1). The left pane lists consists of instructions, examples and hints for the user to

follow. For each activity, it contains a numbered list of explicit instructions for the user to follow

(e.g., “01. Set the variable my_varaiable equal to the value 10” and “02. Click the Save &

Submit button to run your code.”). The right pane is an IDE for users to type in and execute their

code, with an overlay on the upper-right corner that shows console output on code execution. In

case learners get stuck, there is a “Stuck? Get a hint!” button below the list of instructions on the

left pane that users can click to open up more help text. The hints are typically explicit

instructions (e.g., “All you need to do is type 3 after the equals sign on line 8.”) or closely

related examples (e.g., “Make sure you're setting your variable like this: the_machine_goes =

‘Ping!’ ”.). Finally, the bottom-most area of the left pane includes two buttons that opens up a

new browser tab: one labeled “Q&A forum” where fellow Codecademy users can post and

answer questions, and another one labeled “glossary,” that goes to a dictionary of Python

commands and concepts.

The introductory Python course has a total of 12 modules covering the following topics:

syntax, variables, mathematical and logical operator, strings, conditionals, control flow,

functions, lists and dictionaries, and advanced concepts (e.g., classes and file input/output). Each

module is split into two parts. The first part is designed to teach a specific concept or set of

concepts and consists of several activities that subsequently build on the previous activity. The

second part of the section is an exercise to practice combining the first part to build something

interesting. For example, in the case of the syntax module (where learners are introduced to

! 69

variable assignment and the use of mathematical operators), the second part of the module tasks

users to fill in variables with values to calculate gratuity for a meal.

To ensure that the concepts covered by Codecademy and the Gidget game were as close as

possible, we asked learners to complete only the first 8 of 12 modules before taking our post-test.

Although learners would not be tested on these extra advanced concepts on the post-test exam,

finishing them would have given them additional practice with many of the previously learned

concepts. We asked learners to keep track of the time they spent using Codecademy so that they

could report their total time after taking the post-test exam. Since the Codecademy website states

it takes around 13 hours to complete the 12 modules in the Python course, we told our tutorial

condition participants it would take approximately 10 hours to complete their assigned 8

modules before they started their activity.

7.2.2. Learning Activity 2: Gidget Game

Our second learning activity was the Gidget game and curriculum as described in Chapter 3

(also see Figures 1.1 and 3.1). Based on our experience with observing novices playing Gidget

(Lee et al. 2014), we told our game condition participants that Gidget would take about 5 hours

to complete before they started the activity. We required learners to complete all the levels before

taking the post-test. For this specific condition, we automatically logged the time learners took to

complete the game.

7.2.3. Learning Activity 3: Gidget Puzzle Designer

The Gidget Puzzle Designer (GPD) is an integrated development environment used to create and

edit Gidget levels (see Figure 3.8). It is normally unlocked after finishing the Gidget game (as

described in Chapter 3.2). However, for this study, participants were given access to the GPD

without any prior experience playing the Gidget game. This was to mirror other open-ended,

creation-oriented learning environments Scratch (Maloney et al. 2010), Alice (Cooper, Dann, &

Pausch 2000; Dann, Cooper, & Pausch 2011), and others (Kelleher & Pausch 2007), where users

are free to explore and tinker to make their own projects.

! 70

The interface for the GPD is a modified version of the regular Gidget game interface,

allowing modification of previously un-editable code such as the starting world code, the level

goals, the dimension of the world grid, and Gidget’s introductory dialogue and emotional state at

the beginning of the level. In addition, the status pane on the rightmost section is replaced by a

tabbed inventory of available characters and objects, ground tiles, and sounds that the learner can

use to populate and enrich their programs.

All of the same help tools available in the Gidget game are also available in the GPD. This

includes the syntax highlighting, tooltips, dictionary, and Idea Garden suggestions. In addition to

the help systems, the learners also had access to view and edit all the regular game levels, giving

learners puzzles to modify for creative purposes. These examples excluded the assessment levels

at the end of each module, and listed the levels in sequential order without indicating which

module they belonged to. Similar types of help and examples are available in both Scratch and

Alice to help bootstrap learner engagement.

Unlike Codecademy and the Gidget game, the GPD did not have a clear sequence of steps

or storyline for its users to follow. Therefore, to help orient our GPD users, we showed them a

list of directions before they started with their activity. First, we told them their task was to “Use

a creative canvas tool to create multiple stories for a robotic character named Gidget.” This is

based on several works, primarily by Kelleher et al. (2007a, 2000b), which shows that adding

storytelling elements to open-ended creative environments can significantly increase users’

engagement (Ivala et al. 2013; Ryokai, Lee, & Brietbart 2009; Umaschi 1997). Second, we told

them about the various help features available, and how to access them. Third, we asked them to

“create, explore, and play with the website for at least several hours to get the full learning

experience” with the activity. For this specific condition, we automatically logged the time

learners spent in the GPD, and collected records of all their levels.

7.2.4. Knowledge Test for CS1 Concepts

In order to measure how much participants learned and what they learned, we created and

validated a test designed to be taken before and after the learning activities. We adopted this pre-

test/post-test design as it widely used in both educational and non-educational contexts to

! 71

measure change resulting from experimental treatments (Bonate 2000; Chumley-Jones, Dobbie,

& Alford 2002; Dimitrov & Rumrill 2003).

First, we determined which concepts to test by comparing the topics that are taught

commonly in introductory programming courses (Deitel & Deitel 2005; Felleisen et al 2001;

Lewis & Loftus 2005; Tew 2010; Zelle 2004) to the set of concepts that were covered in our

Codecademy and Gidget game activities. We chose a total of eight concepts: basics (i.e.,

variables, mathematical operators, relational operators, Booleans), logical operators, selection

statements (i.e., conditionals), arrays, indefinite loops (i.e., while), definite loops (i.e., for),

function parameters, and function returns.

We modeled our test questions after Allison Tew’s dissertation work (2010) on the FCS1, a

programming language-independent test using pseudo-code. In her studies, Tew showed that

testing introductory programming students in the classroom with their native course language

and in pseudo-code were strongly correlated (Tew & Guzdial 2011) and has the extra benefit of

demonstrating transfer of learning (Bransford, Brown, & Cocking 1999). We generated pseudo-

code questions using the examples, descriptions, and two-page pseudo-code guide Tew provided

(Tew 2010). Questions used a verbose style adapted from guides for programmers published by

Whitford (n.d.) and Shackelford (1997). To minimize confounding factors in syntax design, we

followed the latest evidence on syntax learnability, excluding semi-colons and curly braces,

indenting code blocks, upper-casing reserved words, and closing program blocks with explicit

keywords (Sime, Green, & Guest 1976) (see Figure 7.2 for examples).

Figure 7.2. Screenshot of two different pseudo-code questions from the pre- & post-tests.

�

! 72

Based on guidelines and examples from Tew's dissertation, we designed 5 multiple choice

questions for each of the concepts covered in our learning activities, for a total of 40 questions.

All questions had one correct response and four incorrect distractors. We designed distractors to

deliberately test for common programming misconceptions (Bonar & Soloway 1985; Thompson

2006).

To validate our 40 questions, we recruited people on Mechanical Turk. Our participants

were paid $0.02 to answer one pseudo-code question, indicate their experience with

programming, and optionally provide their email address. No additional demographic

information was collected. Each participant could answer up to an additional 39 questions for

$0.02 each. In these cases, each additional question would be new, and the participant did not

have to re-enter their answers for programming experience or their e-mail address (if provided

previously). To mitigate ordering effects, questions were randomly sequenced each time a

participant took the survey. Answer choices for questions that did not require a specific order

were randomly arranged as well.

To identify problems with our questions and answer choices, we ran two rounds of pilot

tests, with each question getting at least 3 responses for each iteration of testing. We corrected

issues dealing with ambiguous/confusing wording, inappropriate distractors, syntax errors, and

typos. To achieve this, we looked for data anomalies (e.g., nobody getting the answer correct, or

everyone choosing the same answer) and requested open-ended feedback from our respondents.

We then ran a full test with 1,494 participants on Mechanical Turk and had a total of 8,011

responses to our questions (approximately 200 responses per question). The majority of our

participants only answered one question, with 11% completing 3 or more questions.

To avoid ceiling and floor effects and to maximize discriminability of the assessment, we

categorized our data by splitting responses by the Mechanical Turk participants’ self-reported

programming experience. As in our past studies, we categorized novices as those who responded

“never” to all of the following statements: 1) “taken a programming course,” 2) “written a

computer program,” and 3) “contributed code towards the development of a computer program.”

All other respondents were considered experienced programmers. For our finalized list of exam

questions, we selected the top 3 questions for each concept (for a total of 24) with highest

! 73

variance between novice and experienced programmers (that is, those that novices tended to get

incorrect and those with experience tended to get correct).

7.2.5. Participants and Procedure

The independent variable in our experiment was the instructional approach, which had three

levels: 1) tutorial (complete the introductory Python programming tutorial on Codecademy), 2)

game (play through the Gidget game), or 3) canvas (use the GPD to create Gidget levels). We

told participants that they were allowed seven days to complete their assigned task, and provided

an estimate of the number of hours their task would take (10 hours for the tutorial condition, 5

hours for the game condition, and open-ended for the canvas condition).

We recruited our participants from Mechanical Turk, specifically those who self-reported

that they had no experience with programming. We also required participants to be U.S. residents

to minimize English language barriers with the instructions and activities. Participants were

compensated $10.00 for completing their assigned task. This amount was carried over from the

study described in Chapter 6 and adjusted to account for the extra time required for the pre-test

and post-test.

We sent participants an e-mail with a link that randomly assigned them to a condition and

redirected them to the web-based pre-test. Each link was uniquely associated with a specific e-

mail address, so that we could identify the owner of each test. Like our pilot study described in

the previous section, we randomly ordered our finalized collection of 24 questions to minimize

ordering effects, also randomizing the order of the answers, where appropriate. The test only

showed one question at a time (see Figures 7.2-A and 7.2-B) and it was not possible to go back

to a previous question. Each question required a response before being able to move onto the

next question. There was a progress indicator on the top of the page showing participants how

many questions remained. The system automatically logged each answer choice and the total

time to complete the exams.

The pre-tests and post-tests were identical across all conditions. The only exceptions to this

were as follows: The post-test for those in the tutorial condition had two additional questions for

the participants to report how many modules they completed, and the time they spent to complete

! 74

their Codecademy activity. The introductory text for the pre-tests briefly explained that

participants would be answering coding questions and that they should try their best even though

they might not be familiar with the content. The introductory text for the post-tests briefly

explained that the questions were written in another, related programming language that covered

the same concepts available in the learning activity they had completed.

Our study was a between-subjects design, with an even split of 20 people each among the

three conditions. Our participants did not differ significantly by gender, age, or education (see

Table 7.1). Consistent with other studies about the demographics of Mechanical Turk participants

(Ross et al. 2010), we found that our participants were well-educated, with the majority reporting

that they had at least a bachelor’s degree (see Table 7.1).

7.3. STUDY RESULTS

This section reports the quantitative results comparing the learning outcomes from our three

groups. Throughout this analysis, we use non-parametric Chi-Squared and Wilcoxon rank sums

tests with α=0.01 confidence, as our data were not normally distributed. For post-hoc analyses,

we use the Bonferroni correction for three comparisons (α / 3 = 0.0033).

7.3.1. Better Post-Scores with Tutorial & Game Condition Players

Overall, participants did poorly on the pre-test exams, with a median score of 5 out of 24

questions correct (20.8%) across all three conditions (see Table 7.2 and Figure 7.3). This was

expected, as we had selected the questions most difficult for novices from our original set. We

compared the pre-test scores across the conditions and found no significant difference

Table 7.1. The Learning Study’s participant demographics.

tutorial (n=20) game (n=20) canvas (n=20)

gender 10 males, 10 females 11 males, 9 females 11 males, 9 females

age 18-35 years 
median = 23

18-41 years 
median = 25

19-29 years 
median = 23

some college or greater 19/20 = 95% 20/20 = 100% 20/20 = 100%

Location: USA 20/20 = 100% 20/20 = 100% 20/20 = 100%

! 75

Table 7.2. The Learning Study’s summary statistics of pre-test and post-test scores.

tutorial (n=20) game (n=20) canvas (n=20)

Minimum score on pre-test 2 of 24 = 8.3% 0 of 24 = 0% 3 of 24 = 12.5%

Median score on pre-test 5 of 24 = 20.8% 5 of 24 = 20.8% 5.5 of 24 = 22.9%

Maximum score on pre-test 8 of 24 = 33.3% 6 of 24 = 25% 9 of 24 = 37.5%

Minimum score on post-test 6 of 24 = 25% 4 of 24 = 16.7% 3 of 24 = 12.5%

Median score on post-test 12 of 24 = 50% 10 of 24 = 41.7% 5 of 24 = 20.8%

Maximum score on post-test 18 of 24 = 75% 16 of 24 = 66.7% 9 of 24 = 37.5%

Percent increase between median
pre-test and post-test scores 140% 100% -9.1%

Figure 7.3. Comparison of Learning Study’s pre-test and post-test scores by condition.

�

! 76

(χ2(2,N=60)=4.30, n.s.), confirming that all of our participants’ programming knowledge was

roughly equivalent prior to the learning activities.

Participants also did poorly on the post-tests, with the highest median score among the

conditions being 12 out of 24 questions correct (50%). However, comparing the post-test scores

across the conditions reveal that there is a significant difference in learning gains between

conditions (χ2(2,N=60)=27.03,p<.01). Post-hoc analysis with Bonferroni correction revealed that

two conditional pairs were significantly different: the tutorial vs. canvas conditions

(W=226,Z=-5.00, p<.01/3) and the game vs. canvas conditions (W=272.5,Z=-3.72, p<.01/3). The

scores on the post-test between the tutorial and game conditions did not show a significant

difference (W=365.5,Z=-1.20, n.s.). Based on these findings, we reject our null hypothesis.

These results indicate that though all the participants had approximately the same

programming knowledge during the pre-test, participants from the tutorial and game condition

performed significantly better on their post-test, and that their degree of improvement was also

significantly greater than that of the canvas condition. As seen in Table 7.2, the effect sizes of

learning gains were 140% and 100% increase in scores for the tutorial and game conditions,

respectively, whereas the median score from the canvas condition did not change significantly

(and were actually 9.1% worse). Since participants had little programming knowledge to start

with and there was no difference in demographics, the learning activities are likely the primary

cause of the increase in scores for the tutorial and game condition participants.

7.3.2. Differences in Percent Increase of Scores

Although we had a relatively small sample size of 20 participants per condition, we found

consistent patterns, particularly in the tutorial and game conditions, where participants made

large percent gains answering questions correctly in their post-tests compared to their pre-tests

(see Tables 7.3 and 7.4). As we saw in Chapter 7.3.1, the tutorial and game condition participants

performed much better than their canvas condition counterparts. This was particularly true for

the basic concepts (i.e., variables, mathematical and relational operators, and Booleans), logical

operators, while loops, for loops, function parameters, and function returns, where they increased

their rate of correct answers by at least 100% in their post-test compared to their pre-test.

! 77

Table 7.3. The Learning Study’s percent increase between pre-test and post-test scores.

Question + Concept (posttest - pretest) / pretest

(actual questions ordered randomly) tutorial game canvas

Q1 basics 175%* 60% -40%

Q2 basics 120% 60% 0%

Q3 basics 100% 50% 0%

Q4 logical operators 175%** 133.3% -66.7%

Q5 logical operators 125% 120% -40%

Q6 logical operators 150% 166.7% -20%

Q7 if / else 100% 100% 20%

Q8 if / else 100% 80% 0%

Q9 if / else 80% 100% 0%

Q10 arrays 75% 100% -33.3%

Q11 arrays 60% 50% -40%

Q12 arrays 100% 50% -33.3%

Q13 while 225% 166.7% -60%

Q14 while 333.3% 266.7% 0%

Q15 while 266.7% 125% 0%

Q16 for 100% 66.7% -50%

Q17 for 200% 133.3% 0%

Q18 for 80% 100% -40%

Q19 function parameters 140% 166.7% 25%

Q20 function parameters 233.3% 200% 0%

Q21 function parameters 233.3% 200% 25%

Q22 function return 166.7% 200% -50%

Q23 function return 80% 166.7% -33%

Q24 function return 125% 160% 0%

*Groupings with a mean greater-than-or-equal-to 150% are in bold. 
**Groupings with a mean greater-than-or-equal-to 150% are also italicized in red.

! 78

Tutorial and game condition participants made the largest improvements (greater than or

equal to 150% increase) with while loop and function parameters concepts. Tutorial condition

participants also made these large improvements answering questions about logical operators,

while the game condition participants also made similarly large improvements answering

questions about function returns. These results indicate that the tutorial and game conditions’

learning activities were successful in helping their participants learn about all the concepts we

tested for.

Canvas condition participants did not do well compared to their counterparts. Although we

know from Chapter 7.3.1 that the canvas condition participants did not do significantly worse on

their post-tests compared to their pre-tests overall, Table 7.3 shows that they struggled answering

many of the post-test questions, actually performing worse on many concepts in the post-test,

despite encountering the identical questions. This suggests that in some cases, learning activities

promoting exploration and creation without guidance might actually lead to confusion.

These results indicate that online, educational tutorial and game resources can be successful

at teaching users about programming concepts, but that open-ended creative resources, at least in

solitary, discretionary settings are likely not. Tutorial and game condition participants’ scores

indicate that there are large, measurable learning outcomes (see last row of Table 7.2), and that

these learning activities might teach certain concepts better than others (see above and italicized,

red text in Table 7.3).

7.3.3. More Time on Exams for Tutorial & Game Condition Players

During the pre-test, participants from all conditions spent roughly the same amount of time on

their exams (χ2(2,N=60)=5.39, n.s.) (see Figure 7.4 and Table 7.4). However, when we examine

the time they spent on their post-test, there is a significant difference in time spent by condition

(χ2(2,N=60)=17.87,p<.01). Doing post-hoc analysis with Bonferroni correction, we found that

the tutorial participants spent significantly more time on the post-test than the canvas condition

(W=288.5, Z=-3.29, p<.01/3); the same was true of the game vs. canvas conditions

(W=263.5,Z=-3.96, p<.01/3). The time spent on the post-test between the tutorial and game

conditions did not show a significant difference (W=417, Z=0.18, n.s.).

! 79

Table 7.4. The Learning Study’s summary statistics for activity times.

tutorial (n=20) game (n=20) canvas (n=20)

Minimum time on pre-test 20 minutes 22 minutes 20 minutes

Median time on pre-test 25.5 minutes 28 minutes 26 minutes

Maximum time on pre-test 33 minutes 31 minutes 41 minutes

Minimum time on activity 7.0 hours 3.61 hours 1.25 hours

Median time on activity 9.25 hours 4.76 hours 1.94 hours

Maximum time on activity 14.0 hours 7.22 hours 2.98 hours

Minimum time on post-test 23 minutes 29 minutes 19 minutes

Median time on post-test 35 minutes 34 minutes 24 minutes

Maximum time on post-test 55 minutes 42 minutes 35 minutes

Figure 7.4. Comparison of Learning Study’s pre-test and post-test play time by condition.

�

! 80

7.3.4. Differences on Learning Activity Time

Each of the three learning activities had largely different estimated times for completion (10

hours for Codecademy, 5 hours for Gidget, and open-ended for the GPD). Examining the time

spent on each task (see Table 7.4), we see that there was indeed a significant difference in time

participants spent on their respective activities (χ2(2,N=60)=52.34, p<.01). With a post-hoc

analysis with Bonferroni correction, we found that all pairwise comparisons were significantly

different: tutorial vs. canvas (W=210, Z=-5.40, p<. 01/3), tutorial vs. game (W=211, Z=-5.37,

p<.01/3), and game vs. canvas (W=210, Z=-5.40, p<.01/3).

Combined with the large difference on exam performance in the post-test and pre-test (from

Chapter 7.3.1), this suggests that the game condition was the most efficient of the three

conditions at improving participants’ post-test scores. Examining Table 7.4 reveals that the

tutorial condition participants took nearly twice as long as the game condition participants to

complete their assigned learning activity that covered the same materials (see Chapters 7.2.1 and

7.2.2), but performed similarly in their post-test (from Chapter 7.3.2), further demonstrating that

the game condition participants were most efficient at improving their post-test scores.

7.3.5. No Significant Demographic Differences in Test Scores

We found that there were no significant differences in learning gains within the groups by

gender. Respectively, the pre-test and post-test scores for each condition were: tutorial (W=118,

Z=0.96, n.s.) & (W=115, Z=0.72, n.s.); game (W=102.5, Z=0.59, n.s.) & (W=108, Z=1.00, n.s.);

and canvas (W=106, Z=0.85, n.s.) & (W=112, Z=1.33, n.s.). This indicates that males and

females all performed similarly within their respective conditions.

Next, we used a simple linear regression for each condition’s pre-test and post-test to predict

test scores based on age. No significant correlation was found between test scores or age for any

of the conditions in either of the tests. Respectively, the pre-test and post-test scores for each

condition were: tutorial (F(1,18)=0.10,n.s.;R2=0.01) & (F(1,18)=0.27,n.s.;R2=0.01); game

(F (1 , 1 8) = 0 . 1 5 , n . s . ; R 2 = 0 . 0 1) & (F (1 , 1 8) = 0 . 4 6 , n . s . ; R 2 = 0 . 0 3) ; a n d c a n v a s

! 81

(F(1,18)=2.32,n.s.;R2=0.11) & (F(1,18)=0.39,n.s.;R2=0.02). This indicates everyone performed

similarly within their respective conditions, regardless of their age.

For completeness, we also examined if prior education (as measured in Table 7.1) had an

effect on pre-test and post-test scores by condition. We found no significant differences within

groups by education. Respectively, the pre-test and post-test scores each condition were: tutorial

(χ2(2 ,N=20)=1.49,n .s .) (χ2(2 ,N=20)=4.30,n .s .) ; game (χ2(2 ,N=20)=0.51,n .s .)

(χ2(2,N=20)=3.95,n.s.); and canvas (χ2(2,N=20)=0.93,n.s.) (χ2(2,N=20)=1.66,n.s.). This indicates

everyone, regardless education, performed similarly within their respective conditions.

7.3.6. No Significant Demographic Differences in Test Time

We examined if gender had any effect on the time participants spent on the pre-tests and post-

tests by condition. We found that there were no significant differences within the groups by

gender. Respectively, the pre-test and post-test times for each condition were: tutorial (W=113.5,

Z=0.62, n.s.) & (W=103, Z=-0.11, n.s.); game (W=85, Z=-0.69, n.s.) & (W=108.5, Z=1.03, n.s.);

and canvas (W=86.5, Z=-0.57, n.s.) & (W=108.5, Z=1.04, n.s.). This indicates that males and

females all spent a similar amount of time on their tests within their respective conditions.

Next, we used a simple linear regression for each condition’s pre-test and post-test to predict

the time spent on tests based on age. No significant correlation was found between the time

participants spent on the tests and their age for any of the conditions in either of the tests.

Respectively, the pre-test and post-test scores for each condition were: tutorial

(F(1,18)=0.28,n.s.;R2=0.016) & (F(1,18)=0.09,n.s.;R2=0.005); game (F(1,18)=1.20,n.s.;

R2=0.06) & (F(1,18)=0.14,n.s.;R2=0.008); and canvas (F(1,18)=2.60,n.s.;R2=0.13) &

(F(1,18)=0.30,n.s.;R2=0.59). This indicates everyone spent a comparable amount of time on their

tests within their respective conditions regardless of their age.

Finally, we examined if education had any effect on the time spent on the pre-tests and post-

tests by condition. We found no significant differences within groups by participants’ level of

education. Respectively, the pre-test and post-test scores for each condition were: tutorial

(χ2(2,N=20)=2.02,n.s.) & (χ2(2,N=20)=0.34,n.s.); game (χ2(2,N=20)=0.04,n.s.) &

(χ2(2,N=20)=3.15,n.s.); and canvas (χ2(2,N=20)=0.94,n.s.) & (χ2(2,N=20)=3.49,n.s.). This

! 82

indicates everyone, regardless of their level of education, spent a similar amount of time on their

tests within their respective conditions.

7.4. DISCUSSION

Our findings show that online discretionary resources for computing education such as tutorial

websites and games can be successful in teaching novices programming concepts without the

need for additional external help. Even with relatively small sample sizes, we were able to see

large differences in the time players spent on the learning activities, the exams, and their exam

scores. All participants performed consistently within their own groups, without any significant

differences in the time they spent on either the pre-tests or post-tests, the time on their learning

activities, or on their exam scores. This consistency is also reflected in participants’

demographics, which showed no differences between males or females, people of different ages,

or level of education, within all conditions. This is particularly important for online discretionary

learning, because our results indicate that all of our learning activities were gender-neutral, with

everyone performing at equal levels within their respective conditions, which does not typically

happen in programming-related classroom settings (Rubio et al. 2015; Werner, Hanks, &

McDowell 2004).

We found that participants in the tutorial and game conditions significantly increased their

overall post-test scores by over 100% in comparison to their pre-test scores (see Table 7.2).

These participants showed considerable gains for similar questions (see Table 7.3), suggesting

that the learning activities from both the conditions taught similar concepts and also taught them

equally well. Although these participants showed improvements across all the concepts we tested

(see Table 7.3), the highest increases were in: basics, logical operators, while loops, for loops,

function parameters, and function returns. Moreover, participants from the tutorial condition

appeared to do slightly better on logical operator questions while participants from the game

condition did slightly better on the function return questions. We examined the instruction of

these two concepts in both Codecademy and the Gidget game, but did not find anything

obviously different from the modules teaching those specific concepts from the other concepts

within the same learning activity. Like the rest of the interactions within those groups,

! 83

Codecademy had its users follow step-by-step instructions entering code into its IDE, and the

Gidget game required participants to look through, diagnose, and fix broken code like every

other level. None of these findings were true for the canvas participants, indicating this

condition’s learning activity failed to teach the same concepts even though all the necessary help

resources were available to users.

We did not find any significant difference in the time participants spent on their pre-test

exams. However, participants in the tutorial and game conditions spent significantly more time

on their post-tests compared to their canvas condition counterparts. This suggests that those in

the tutorial and game condition found more reason to concentrate and take their time on their

respective post-test exams, possibly because they were better equipped to answer the questions

correctly. Conversely, without clear goals or instruction in the Gidget Puzzle Designer,

participants in the canvas condition likely did not learn the concepts necessary for them to

engage successfully with the post-test.

Although it is understandable that novices scored poorly on the pre-test since it was their

first time seeing programming code, examining the overall scores for both the pre-test and post-

test exams may give the impression that the exams were too difficult (i.e., the highest median

score was 12 out of 24 questions correct). However, novices performing badly on programming-

related concepts they recently learned is not uncommon (Bonar & Soloway 1985; Lister et al.

2004; McCracken et al. 2001; Soloway 1986). Comparable scores were also reported by Tew

(2011) who administered a similar pseudo-code test to students in various introductory

programming courses. Since these test questions were generated by combining scores from a

crowdsourced group of novices and experienced programmers, our results suggest that there is a

major gap in programming knowledge between beginners and those with more experience, and

that one short exposure with code, whether it be an online tutorial, online game, or even a formal

high school or university class (Tew & Guzdial 2011), may be enough to show some learning

outcomes, but is still far from mastery of the subject.

There was a large difference in the time people spent on their respective learning activities.

Learners spent the most time on the Codecademy course and spent the least amount of time using

the Gidget Puzzle Designer. The time spent on the Codecademy and Gidget game tasks are not

! 84

surprising, given that they are close to the developers’ estimated time to complete the activity. It

is also not too surprising that participants spent the least amount of time on the Gidget Puzzle

Designer task. Without any clear goals or instructions, the participants likely lacked the

motivation required to go beyond tinkering with the interface a bit. This means that goals are

important for engagement with an activity, and that without proper motivation, people are likely

to disengage with the activity. This is particularly worrisome for discretionary learning resources,

because this one negative/boring experience might cause a lasting impression of programming

being just that and the user deciding that computer science is not for them based on this one

experience. More generally, it may be that open-ended, but solitary creative learning tasks such

as these fail to engage online with more substantial extrinsic motivators, such as teachers, online

community, and more directed creative tasks.

7.5. LIMITATIONS

This study had the same limitations as those mention in the prior studies (see Chapters 4.5, 5.5,

and 6.5), including self-selection into a Mechanical Turk HIT, prior computing ability, and level

of education. There was an economic incentive for participants to participate in the study. We

tried to minimize this effect as much as possible. We believe that the economic incentive in our

study was minimal, as usage data for both Gidget and Codecademy show that thousands and

millions of people have used these systems without being paid to play.

We gave participants up to 7 days to complete their assigned activity. Although we asked

them to refrain from using any other resources to learn or practice programming, participants

could have potentially learned coding concepts from other places, even if it was unintentional.

Learning or practicing programming concepts outside of the assigned task could have potentially

affected exam outcomes, but could have happened in all conditions. However, unlike the

numerous resources to get guidance for Python, there are no external resources to get explicit

help for Gidget.

Finally, part of our Codecademy data was reliant on self-reported data that participants

provided, including the time they spent on the task and how far they got in the course. Although

we asked participants to stop at the “advanced concept” modules so the learning interventions

! 85

were as similar as possible, we had no way of enforcing that since Codecademy is a third-party

website.

7.6. SUMMARY

This chapter investigated the learning outcomes of three different types of programming

resources designed for beginners. By comparing the test scores of learners before and after their

respective learning activities, we found that the learners who took a Codecademy course and the

learners who played through the Gidget game showed considerable improvement in their test

scores. Though this was true of both cases, learners who played the Gidget game were able to

match the post-test performance of learners who completed the Codecademy tutorial, in

approximately half the time. Furthermore, we found that these participants also spent more time

on the post-test exam, suggesting that they found reason to try harder the second time taking the

exam. In contrast, those who were assigned to create programs from scratch using the Gidget

Puzzle Designer spent approximately the same amount of time on their pre-test and post-test

exams, and did not show significant improvements in their post-test exam scores. In addition to

these differences, we found that performance by demographics was consistent within all the

conditions, meaning that all three of our learning activities worked equally well (or equally

worse in the case of the canvas condition) regardless of gender, age, or level of education. Given

these results, we conclude that players of an educational debugging game do show measurable

learning outcomes of programming concepts covered in a typical CS1 course and they are able to

transfer their understanding of these programming concepts from their language of instruction to

pseudo-code.

! 86

8. OUTREACH ACTIVITIES AND PUBLIC RELEASE 9

This chapter addresses RQ3 – who is playing the educational debugging game? More

specifically, I ran four summer camps to see if the game appeal to underrepresented groups in

computing. I also released the game to the public to learn more about who is attracted to this type

of game, and how these users do playing the game.

8.1. MOTIVATION

Since I view research being as much about impact as it is discovery, I wanted to confirm that

Gidget is appealing to underrepresented groups in computing, and that could reach a wide and

diverse audience. Currently, little is known about who is actually using the many available online

learning resources. As Chapter 1.1 mentioned, few (if any) of these resources report anything

beyond the number of users that have signed up for their services and how many activities their

users have completed. This lack of evaluation makes it unclear how useful these tools are beyond

merely engaging learners for a brief period of time and how they might work with

underrepresented groups. Without this knowledge, we risk designing instructional tools that are

not actually helpful for learners (Garris, Ahlers, & Driskell 2002).

8.2. OUTREACH ACTIVITIES FOR UNDERREPRESENTED GROUPS

I ran a total of four summer camps over two consecutive years on college campuses in Corvallis,

Oregon, and in Seattle, Washington. Each summer consisted of two camps – one at each location,

focusing on two different kinds of underrepresented groups in computing. The Oregon camps

served male and female teenagers from rural communities (students from Corvallis and its

surrounding towns) while the Washington camps served only female teenagers.

The summer camps were intended to expose teenagers to programming, and to provide

enrichment activities related to computing. Each camp ran 3 hours per day for 5 days, for 15

hours total. About 5 hours were devoted to the Gidget puzzle curriculum; 5 hours to other

 Parts of this chapter describing summer camps have been adapted from my VL/HCC 2014 publication (Lee et al. 9

2014) and an unpublished manuscript (Jernigan et al. 2015).

! 87

activities such as icebreakers, guest speakers, and breaks; and 5 hours to creating new levels with

the puzzle designer and sharing them. Campers’ parents were invited to attend the last 1.5 hours

of the camp to learn about the camp activities and play through their teenagers’ levels. The

camps used identical staff members for each pair of summer camps. The staff provided no formal

instruction about Gidget or programming and redirected participants’ requests for assistance to

the game’s help system whenever possible.

8.2.1. Camp Participants

We had a total of 68 participants in our four summer camps over two years who ranged from 13

to 19 years old (see Table 8.1 for a detailed breakdown). For both years, we had 18 and 16

campers in each of the Oregon and Washington camps, respectively. Participants were divided

into same-gender pairs of similar age and were instructed to follow pair programming practices,

which are known to benefit both males and females (Werner, Hanks, & McDowell 2004). Three

participants had some prior experience with programming (one camper from each of the

Washington camps, and one from the first year’s Oregon camp). All other participants had no

prior programming experience. Staff members took extra care to ensure that teammates paired

with more experienced partners got their fair share of time working on the puzzles and creating

their own levels.

A total of three campers (one from the first Washington camp, and two from the second

Washington camp) were withdrawn from the camp by their parents after completing the first day.

The summer camp coordinator informed us that these parents did so because they “did not want

their child[ren] spending [summer camp] time playing a game.” Although the camp coordinator

Table 8.1. The campers’ demographics.

Summer 1 Summer 2

Oregon (n=18) Washington (n=16) Oregon (n=18) Washington (n=16)

gender 10 males 
8 females

0 males 
16 females

7 males 
11 females

0 males 
16 females

age 13-19 years 
median = 13.5

13-19 years 
median = 14

13-17 years 
median = 15

13-17 years 
median = 15

! 88

reassured the parents of these three teenagers that Gidget was a legitimate educational tool

designed to engage novices and teach then programming concepts, none of them re-enrolled their

children in the camp. These withdrawn campers are not included in our statistics in Table 8.1.

8.2.2. Results & Discussion

After only about 5 hours of self-directed instruction with our debugging game, participant teams

from all four of our camps created a total of 210 Gidget levels, with every team applying

programming concepts they encountered playing the game in this creation process. We examined

these participant-created levels, focusing particularly on the programming concepts used in the

Table 8.2. Summary of the levels created by the campers.

Summer 1 Summer 2

Oregon (n=18) Washington (n=18) Oregon (n=18) Washington (n=16)

levels created 2-10 levels 
median = 5

1-12 levels 
median = 6.5

total levels created 101 levels 109 levels

Figure 8.1. Most campers’ levels included several programming concepts and a storyline.

�

! 89

levels and the level’s story, as storytelling elements in these environments are known to affect

engagement (Kelleher, Pausch, & Kiesler 2007; Kerr et al. 2013).

Each team created between 1 and 12 levels (see Table 8.2). Most campers created Gidget

puzzles (see Figure 8.1) or mazes meant to challenge other players, but some participants also

had partially-completed or proof-of-concept levels. Some participants repurposed the level

designer for unintended functionality. For example, some teams built levels to hold solutions to

their other levels, some made story-related levels without any puzzle-solving elements, and a few

teams used the level designer to draw pixel art (see Figure 8.2).

Every team designed two or more complete levels that used at least one of the programming

constructs they encountered while playing through the came curriculum. The minimum

knowledge to create a Gidget level is a Boolean expression to indicate a goal. Non-trivial Gidget

levels (such as Figure 8.1) require knowledge of variables, Booleans, objects, and events. All

teams used at least one Boolean expression in their levels since it was mandatory to have a goal

Figure 8.2 Some teams from the first Oregon camp used Gidget to create pixel art.

�

Figure 8.3 Campers taught their parents how to play Gidget using their levels.

�

! 90

(written as an assertion). Some teams demonstrated their knowledge by writing their own

incomplete puzzle code containing functions and loops for other players to debug.

Most teams motivated their levels using stories in Gidget’s mission text: over 82% of the

teams motivated at least one level with story text. Approximately 20% of all the teams created

multiple levels with a continuous story thread. The Gidget character was popular as a domestic

figure (having a house or partner) or as an altruistic hero (often rescuing animals in outer space).

None of our participants developed stories focused on popular culture as observed in other camp

studies (Maloney et al. 2008); this may have been due to participants treating Gidget as a

character upon which they could build their own ideas.

Parents were invited to come during the last 1.5 hours of the camp to see what their children

had been working on over the week. Campers used this opportunity to teach their parents how to

program using Gidget, and challenged them (and

their peers) to complete their levels (see Figure 8.3).

Throughout the four camps, we received

overwhelmingly positive feedback from the parents

about the camp activities. Many parents asked if

there were follow-up courses available immediately

or the following summer. Parents’ enthusiasm for

Gidget was mirrored by the campers themselves,

many asking if they could continue to play Gidget

from their homes. This sentiment is best illustrated

by Figure 8.4, which shows an unprompted doodle

by one of the participants on her exit survey stating

that she loves Gidget.

8.2.3. Summary

All the teams completed the Gidget game in 5 hours or less with no instruction outside of the

game, and minimal help from staff members. In this relatively short time allocated to level

design, campers were able to try out many ideas and share results with their peers at every stage

Figure 8.4. A camper’s unprompted
doodle expressing her affinity towards

Gidget.

�

! 91

of their progress. Despite the fact that the level designer had the constraints of a 2D world and

Gidget rules, our campers used it to not only program challenging puzzles, but to also tell

imaginative stories.

Overall, the camps were a great success with both parents and campers expressing their

affinity towards the game. We were able to successfully reach and two underrepresented groups

in computing and provide them with a positive experience with coding. However, our experience

with three camp withdrawals suggests that some people (especially adults/parents) may have

negative preconceptions of games used as educational tools. We hope with the ever-increasing

number of discretionary learning resource online, and positive experiences from games like

Gidget, these biases against educational games will decrease with time.

8.3. PUBLIC RELEASE

To give a wider audience access to the game, I released Gidget to the public, announcing it via

social media (Facebook and Twitter). This version of Gidget was a culmination of all the studies

described in the previous chapters with a few updates to fix minor bugs, address usability issues,

add new graphics/objects, and improve the account creation processes (see Figure 8.5-A). It also

gave visitors the option to play the game immediately and create an account later to save their

progress (see Figure 8.5-B). This was done to allow instant access to the game for those who

wanted to quickly see and interact with the game without the need for any kind of commitment.

Figure 8.5. Screenshots of the account creation prompt and instant access warning.

�

! 92

Players wanting to save their progress had to create an account. The account creation prompt

asked for: name, e-mail address, password, and age (see Figure 8.5-A). It also had two dropdown

menus that required the player to select their gender, and one to select either “yes” or “no” to the

following prompt, “Any coding experience?”. Once the player validated their e-mail address (by

clicking on a link provided by an automated e-mail message), they were able to login to the game

using their e-mail address and password.

8.3.1. Online Players

A total of 3,023 people have played the game

since its deployment (see Table 8.3). Among

these players, 844 individuals (27.9%) made

accounts to save their progress (called the

saved-account group). The logs indicates that

account holders are comprised of 54.8%

males and 45.2% females, with an overall

median age of 19 and a range from 6 to 65

years old (see Table 8.3). The game also

collected data for those who played the game without making accounts (called the no-account

group), but did not include the player-reported information such age and gender.

Visitors came from all over the world, with the most coming from the USA, Brazil, the

United Kingdom, Russia, and Canada (see Table 8.7 and Figure 8.6). The majority of players

came from the USA, making up 80.31% of the total visitors to the Gidget website. The states of

Illinois (26.76%), Washington (22.71%), and California (11.19%) represented 60.46% of the

total number of visitors from the USA (see Figure 8.7). Inspecting Figure 8.7 also reveals that

Gidget’s visitors are largely from urban/metropolitan areas.

8.3.2. Results & Discussion

Here, I compare the differences between the no-account and saved-account groups, and also look

for gender and age difference within the latter. For analysis, I use non-parametric Chi-Squared

Table 8.3. Player information from the  
public release.

total number of
players 3023

total accounts created 844 of 3023 = 27.9%

gender distribution male: 54.8%  
female: 45.2%

age  
(minimum, median, maximum)

overall: 6, 19, 65 years 
male: 6, 20, 62 years  

female: 7, 19, 65 years

! 93

Figure 8.6. People from all over the word have played Gidget.

�

Figure 8.7. Players mostly come from urban areas within the USA.

�

! 94

and Wilcoxon rank sums tests with α=0.01 confidence, as the data were not normally distributed.

8.3.2.1. Saved-account players complete more levels and play longer than no-account players

Table 8.4 describes the descriptive statistic for the no-account and saved-account groups. Players

in the saved-accounts group completed a median of 6 levels, ranging between 0 and 37 levels

(i.e., completing the game). They played for a median of 32.6 minutes, ranging between 1 minute

and 5.22 hours (see Table 8.4). In contrast, players in the no-account group completed a median

of 1 level, ranging between 0 and 30 levels. Their median time playing the game was 12.2

minutes, ranging from 1 minute to 4.94 hours (see Table 8.4). Nobody from the accounts group

completed the game. As seen in Figure 8.8, many people did not progress after completing the

first level. This was especially true for the no-account group players, where 57.3% of players

completed a maximum of 1 level (29.4% completed 0 levels; 27.9% completed 1 level). Whereas

only 23.2% of saved-account group players completed 0 (3.1%) or 1 (20.1%) levels.

There was a significant difference in the number of levels completed by account status

(W=1150975.5, Z=21.75, p<.01), where the saved-account group players completed significantly

more levels compared to those in the no-account group. Similarly, there was a significant

difference in the time spent playing the game (W=1027244, Z=15.41,p<.01), where saved-

account players played much longer than those in the no-account condition.

The results indicate that the saved-account group completed more levels and spent more

time on the game than the no-account group. The no-account group’s results may be an

indication that there are many (even experienced programmers) who are interested in puzzles or

Table 8.4. Summary statistics from the public release.

no-account (n=2179) saved accounts (n=844)

minimum levels completed 0 0

median levels completed 1 6

maximum levels completed 30 37

minimum play time 1 minute 1 minute

median play time 12.2 minutes 32.6 minutes

maximum play time 4.94 hours 5.22 hours

! 95

even coding, but ultimately decided that the game was not a fit for them. However, it is also

probable that these results are skewed, as someone could have started the game immediately,

completed several levels, played for some stretch of time, and then decided to make an account

to save their progress (the game did not keep track of who converted their no-account to a saved-

account). Cases like this may explain the no-account group’s low play time and levels completed,

especially compared to the saved-accounts group (see Table 8.4 and Figure 8.8). In either case, it

appears that allowing players to play the game without making an account immediately was a

good design choice since it allowed more people to try out the game and get some exposure to a

coding activity. However, we should update the game to collect more information about these

types of players so we can better understand how we might be able to have more them play

longer and have a positive experience with the game.

8.3.2.2. Saved-accounts: No difference by gender, but difference in levels completed by age

Next, I looked exclusively at the saved-account players, testing to see if there were any

differences in the number of levels completed or time played by either age or gender. There was

no significant difference in the number of levels completed by gender (W=68783, Z=-1.65,n.s.).

Similarly, there was no significant difference in the game play time by gender (W=73757.5,

Figure 8.8. Most players quit after the first level, but account holders (B) finish more levels.

�

! 96

Z=0.23,n.s.). However, a simple linear

regression to predict the number of levels

completed based on age was significant

(F(1,818)=35.68,p<.01.;R2=0.059), with a

younger age correlating with a higher

number of levels completed (see Figure 8.9).

Another simple linear regression showed no

significant correlation between the time

players spent playing the game and their age

(F(1,818)=0.64,n.s..;R2=0.001). These

results indicate that younger players

completed more levels than older players in

comparable amounts of time.

It was unsurprising that males and females performed similarly in level completion and play

time in the saved-account group. My observations from past studies (described in Chapters 4-7)

and summer camps also did not find any difference in male and female performance or behavior

with the game. This might be attributed to our principle of gender-inclusiveness (described in

Chaoter 3 and Table 3.1), where we designed the game to appeal to all genders.

Conversely, it was surprising that age was inversely related to the number of levels

completed, as none of my past studies (described in Chapters 4-7) found differences in Gidget

players by age. This may be partly explained by the large number of younger players compared

to older players (the median age of saved-account players was 19, with a range between 6-65

years; also see Figure 8.9), especially since the statistical coefficient is low. Although we

designed Gidget to be appealing to a wide audience (Table 3.1 lists related principles: Principle 2

– keeping the game engaging and entertaining, and Principle 7 – keeping the game gender-

inclusive), younger people may be more familiar with games than older individuals, and have

completed more levels because they found the game particularly entertaining. Also, since the

game was advertised through social media and word-of-mouth, certain age groups may have

been more likely to share the link to the game with their peer groups.

Figure 8.9. Relationship between saved-
account holders’ age and levels completed.

�

! 97

8.3.3. Summary

Over 3,000 people from all over the world have played Gidget since its release, with nearly 30%

making accounts to save their progress and play again later. Among those who indicated their

gender, 54.8% reported being male and 45.2% 54.8%. These numbers are slightly better than

recent figures reporting that 42% of online gamers are women (newzoo.com 2011), and a good

indication of the successful integration of our principle for gender-inclusiveness (see Table 3.1)

into the game.

We found that most people (72.1%) played without creating accounts, and 57.3% of these

players finished either 0 or 1 levels (see table 8.4). Overall, this group played for a median of

12.2 minutes and completed a median of 1 level, with nobody finishing the game. In contrast,

players with accounts (27.9% of all players) played for a median of 32.6 minutes, completed a

median of 6 levels, and had several people (2.6%) complete the game. The players’ age or gender

did not have any significant relationship to the amount of time they played. Similarly, the

players’ gender did not have a significant relationship to the number of levels they completed.

However, we found a inverse relationship with age and the number of levels a player completed,

where a younger age was correlated to more levels completed.

Overall, Gidget’s public launch was a success with thousands of people coming to play it.

We now know that a debugging game can be attractive to a wide audience from all over the

world, and that it can successfully engage a near even number of males and females.

Unfortunately, the overall number of levels completed is relatively low. This was different from

our experience in the summer camps where everyone completed the game playing it a few hours

per day. However, participants in our our past controlled experiments (described in chapter 4-7)

also performed similarly with level completion, with only a few finishing the game for each

study. Taken together, these observations indicate that the game itself is engaging, but needs to

do more to motivate people to come back and continue playing the game.

! 98

8.4. LIMITATIONS

The activities described in this chapter were primarily concerned with outreach and impact, so

the reported results are not necessarily meant to generalize. In particular, our summer camps

included a relatively small number of participants from a very specific group of underrepresented

individuals in technology (females and those living in rural areas), within a narrow age range

(13-19 years old). In addition, we did not actively advertise Gidget, only announcing it on social

media and relying word-of-mouth from our players. This may have attracted certain types of

people who are attracted to games, puzzles, or programming. In the future, I plan to work with

entities such as code.org to have a version of Gidget that will be approved to be listed on their

website. This will help attract millions of more people to play Gidget, especially during annual

events such as code.org’s annual Hour of Code event during CS Education Week (Beres 2014).

! 99

9. CONCLUSION AND FUTURE WORK

The main goal of this dissertation has been to investigate if and how an online debugging game

can engage a wide audience of novices while showing measurable learning outcomes. The

dissertation described a series of controlled experiments, summer camp outreach activities, and a

public launch of the Gidget game, to demonstrate that a debugging game can be effective in

engaging, teaching, and attracting a broad range of people.

More specifically on engagement, Chapter 4 showed that compiler/interpreter feedback

given by a personified, fallibly-cast character increases players’ engagement with the game.

Similarly, Chapter 5 demonstrated that the purposefulness of goals is directly related to the

objects players’ interact with in the game, and that players are more engaged when the goals

relate to animal characters. Finally, Chapter 6 established that assessments that are well-

integrated into the flow and storyline of a game can engage players and make them more

effective with their time on the game tasks.

In regards to learning, Chapter 7 showed that completing the Gidget game leads to similar

learning gains as finishing a Codecademy tutorial course, in approximately half the time.

Participants in these studies were able to demonstrate transfer from their learned language (i.e.,

the Gidget language or Python) to pseudo-code. They were also more engaged with the testing

material, spending more time on their post-exams compared to their pre-exams.

Finally, this dissertation demonstrated that a debugging game like Gidget can be appealing

to a wide range of people. Chapter 8 showed that teenagers from rural communities and females

participating in a summer camp using Gidget found the camp informative and entertaining.

Chapter 8 also described the success of Gidget attracting thousands of people from all over the

world to play the game since its public launch.

I have discussed the key findings, insights, and limitations of my studies within each chapter

of this dissertation. Next, I discuss some ideas for future research directions that can build on the

work described in this dissertation and address some of its limitations. Lastly, I restate the major

contributions of this dissertation, and close with some final remarks.

! 100

9.1. FUTURE DIRECTION

While Gidget is a great example of one approach to teaching a broad audience to code, the

research possibilities in this space are deep and broad. For example, I imagine that there is great

potential investigating how to 1) use social features to support learning and engagement, 2)

create and evaluate new pedagogies for teaching coding using player-generated data, and 3)

broaden participation in computer science, particularly for underrepresented groups.

I believe that social features will add a new and exciting dimension to online pedagogy that

is currently not available. The learning technologies to teach coding I have encountered so far are

largely solitary experiences. However, supporting social features related to collaboration,

instruction, and play can be very powerful additions. For example, collocated pair programming

and master-apprentice teaching have both been shown to greatly improve learning and

productivity. In Chapter 8, we saw evidence of this woking successfully in my summer camps,

where 68 participants, working in pairs, beat all of the Gidget levels and created 210 of their own

levels. We also saw in Chapter 8’s description of Gidget’s public launch that a relatively small

number of players completed the game. Adding social features to the game might be one way to

incentivize more players to come and continue playing the game to completion and creating their

own levels to share. New research should examine how we can we bring the positive benefits of

pair (or group) programming and peer instruction into a game, what would it look like, and how

would pairs interact, all while maintaining flow with the gameplay and continuing to keep

players engaged and learning.

New pedagogies for teaching are needed to attract and inspire the new generation of people

wanting to learn programming online. I am most interested in developing these new techniques

for teaching programming through games. Unlike other disciplines that use multiple ways of

teaching students the material, computer science largely relies solely on feedback of written code

to teach (Guzdial 2014). As seen in Chapter 6, I have had great success adding assessments into

Gidget – something that works well in formal classroom settings. New research can focus on

adapting, developing, and evaluating other pedagogical tools or technologies that can be used for

teaching computer science. These techniques might include different kinds of interactive

! 101

exercises, code reflection, code peer-review, and simulations. Along this thread, I can also

leverage the hundreds of thousands of code versions and user interaction data collected during

gameplay to provide new players with information or guidance that will help them learn new

concepts and succeed at the game.

Broadening participation in computer science is important because it can open up many new

opportunities for underrepresented groups. My work with Gidget is specifically designed to be

inclusive for both males and females, and my four summer camps described in Chapter 8.2

recruited only females (since males are already well represented in computer science) or those

living in rural areas. I have had thousands of people from all over the world play Gidget and

succeed through many or all of the levels. My analytics data from Chapter 8.3 shows that 45% of

the players (who provide gender information) are female, and that most people are coming from

urban areas. I want to do better. I want to reach more females, more people from rural areas, and

more people who have low literacy skills or are non-native English speakers. Although the

analytics I have for Gidget is a good start to understand who is playing the game and where they

are coming from, the research community still knows very little about the larger group of people

using these sites. I plan to leverage my professional relationships with the co-founders and

creators of other popular online computing education technologies including Codecademy (n.d.),

Lightbot (n.d.), and CodeSpells (Esper 2014), to provide the research community with more

insight into who are using these resources, so that we can develop new and better tools to

broaden participation.

While each of these three research strands can be worked on separately, combining the

results from all of them will help me reach my vision of teaching the world to code. Because my

research ultimately involves teaching, working on these will be synergistic with my teaching

goals and vice-versa. In addition, due to the interdisciplinary nature of my research and training,

following this research trajectory will create opportunities to collaborate with researchers in

other areas, such as computing education, learning sciences, computer-mediated communication,

computer supported cooperative work, new media, and education research.

! 102

9.2. SUMMARY OF CONTRIBUTIONS

The contributions I have made through this dissertation are broken down thematically as follows:

9.2.1. Guidelines & Technology

• A description of seven design principles that define the components needed to make an

educational game that effectively engages and teaches introductory programming

concepts to novices. (Chapter 3)

• An interactive system that embodies the seven design principles that constitute a

debugging game. (Chapter 3)

9.2.2. Study Results

• Empirical evidence that novice programmers are more engaged with an educational

game when compiler/interpreter feedback is personified. (Chapter 4)

• Empirical evidence that novice programmers are more engaged with an educational

game when the game goals are made more purposeful using specific types of data

elements. (Chapter 5)

• Empirical evidence that novice programmers are more engaged with an educational

game when assessments are added at the end of each subject module. (Chapter 6)

• Empirical evidence that novice programmers can effectively and measurably learn

introductory programming concepts using an educational game. (Chapter 7)

• Evidence that an educational programming game can attract a wide range of players.

(Chapter 8)

• Knowledge about who is attracted to play the game. (Chapter 8)

• Teenagers from underrepresented groups (females and those living in rural

communities) were deeply engaged through summer camps. They were able to

complete the game in approximately 5 hours and create their own expressive

levels with minimal outside help.

! 103

• People from all over the world are playing the game. In descending order, the

highest concentration of people come from urban/metropolitan areas of the

USA, Russia, Brazil, the United Kingdom, and Canada. In total, players who

made accounts consisted of 45.2% females (7-65 years old, median 19 years

old) and 54.8% males (6-62 years old, median 20 years old).

9.3. FINAL REMARKS

This dissertation has addressed and demonstrated the following thesis:

An online game can engage and measurably teach programming

concepts covered in a typical introductory computer science (CS1)

course to a wide range of learners.

I have provided a definition of an educational debugging game using seven design

principles and evidence that this kind of game can be a viable educational tool that can engage

novices and produce measurable learning outcomes in its players. My studies related to

engagement have shown that small changes can lead to major effects in players’ interactions with

the game. My studies about learning have shown that an educational game can be just as

effective (and even more efficient) at teaching novices introductory programming concepts as

popular online tutorial sites, and that players can demonstrate learning in a transfer task to a

language agnostic, pseudo-code exam. My work has also shown that programming can be

appealing to a wide audience when packaged appropriately, and that people from all over the

world are interested in learning how to code using an educational game.

There appears to be a countless number of educational tools, including games, coming

online every day. However, without proper research, data collection, analyses, and sharing of

information with other developers and researchers, we run the risk of creating and re-creating

tools that ultimately do not benefit intended audience. It is my hope that my research

demonstrates the benefit of designing technology from a human-centric process using controlled

experiments to gather data from real users and iteratively improving the technology for their use.

! 104

I also hope that the work and ideas presented in this dissertation is one small step in the right

direction to improve computing education for the masses, and that it shows that educational

games are a viable way to do so.

! 105

BIBLIOGRAPHY
1. Aleven, V., & Koedinger, K.R. (2002). An effective metacognitive strategy: Learning by

doing and explaining with a computer-based cognitive tutor. Cognitive Science, 26(2),
147-179.

2. Aleven, V., Myers, E., Easterday, M., & Ogan, A. (2010). Toward a framework for the
analysis and design of educational games. IEEE DIGITEL, 69-76.

3. Amazon Mechanical Turk. http://www.mturk.com

4. Andersen, E., Liu, Y. E., Snider, R., Szeto, R., Cooper, S., & Popović, Z. (2011). On the
harmfulness of secondary game objectives. ACM FDG, 30-37.

5. Answerdash. http://www.answerdash.com. Accessed: 2015-03-26.

6. Armoni, M., Meerbaum-Salant, O., & Ben-Ari, M. (2015). From scratch to “real”
programming. ACM TOCE, 14(4), 25.

7. Armstrong, S., Brown, S., & Thompson, G. (1998.) Motivating Students. Routledge.

8. Atlas, G.D., Taggart, T., & Goodell D.J. (2004). The effects of sensitivity to criticism on
motivation and performance in music students. British Journal of Music Education, 21(1),
81-87.

9. Barnes, D.J. (2002). Teaching introductory Java through LEGO MINDSTORMS models.
ACM SIGCSE Bulletin 34, 147-151.

10. Barnes, T., Richter, H., Powell, E., Chaffin, A., & Godwin, A. (2007). Game2Learn:
building CS1 learning games for retention. ACM SIGCSE Bulletin, 121–125.

11. Batt, S. (2009). Human attitudes towards animals in relation to species similarity to humans.
Bioscience Horizons, 2(2), 180–190.

12. Beckwith, L., Burnett, M., & Cook, C., (2002). Reasoning about Many-to-Many
Requirement Relationships in Spreadsheet Grids. IEEE VL/HCC, 149-157.

13. Begel, A. (1996). LogoBlocks: A Graphical Programming Language for Interacting with the
World. Electrical Engineering and Computer Science Department, MIT, Boston, MA.

14. Beres, D. (2014). Obama Writes His First Line Of Code. Retrieved 2015-02-08, from http://
www.huffingtonpost.com/ 2014/12/09/obama-code_n_6294036.html

15. Bjork, R.A. (1999). Assessing our own competence: heuristics and illusions. In Gopher, D.,
& Koriat, A., Attention and performance XVII: Cognitive regulation of performance,
435-459. Cambridge, MA: MIT Press.

16. Black, P., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in
education, 5(1), 7-74.

! 106

17. Blackwell, A.F. (2002). First steps in programming: A rationale for attention investment
models. IEEE HCC, 2-10.

18. Bonar, J., & Soloway, E. (1985). Preprogramming knowledge: A major source of
misconceptions in novice programmers. Human–Computer Interaction, 1(2), 133-161.

19. Bonate, P.L. (2000). Analysis of pretest-posttest designs. CRC Press.

20. Boustedt, J., Eckerdal, A., McCartney, R., Sanders, K., Thomas, L., & Zander C. (2011).
Students’ perceptions of the differences between formal and informal learning. ACM ICER,
61–68.

21. Bowman, R.F. (1982). A Pac-Man theory of motivation: tactical implications for classroom
instruction. Educational Technology, 22(9), 14-16.

22. Boyce, A., & Barnes, T. (2010). BeadLoom Game: Using Game Elements to Increase
Motivation and Learning. ACM FDG, 25-31.

23. Bradshaw, J.W.S., Paul, E.S. (2010). Could empathy for animals have been an adaptation in
the evolution of Homo sapiens? Animal Welfare, 19(1), 107-112.

24. Brandt, J., Guo, P.J., Lewenstein, J., Dontcheva, M., & Klemmer, S.R. (2009). Two studies
of opportunistic programming: interleaving web foraging, learning, and writing code. ACM
CHI, 1589-1598.

25. Bransford, J.D., Brown, A.L., & Cocking, R.R. (1999). How people learn: Brain, mind,
experience, and school. National Academy Press.

26. Braught, G., Eby, L.M., & Wahls, T. (2008). The effects of pair-programming on individual
programming skill. ACM SIGCSE, 200-204.

27. Breslow, L., Pritchard, D.E., DeBoer, J., Stump, G.S., Ho, A. D., & Seaton, D.T. (2013).
Studying learning in the worldwide classroom: Research into edX’s first MOOC. Research
& Practice in Assessment, 8(1), 13-25.

28. Bruckman, A. (1997). MOOSE Crossing: Construction, Community, and Learning in a
Networked Virtual World for Kids. MIT Media Lab. Boston, MA.

29. Bruckman, A., Biggers, M., Ericson, B., McKlin, T., Dimond, J., DiSalvo, B., Hewner, M.,
Ni, L., & Yardi, S. (2009). Georgia Computes!: Improving the Computing Education
Pipeline. ACM SIGCSE, 86-89.

30. Bureau of Labor Statistics (2012). 2010-2012 Report on Labor Across Industries. http://
www.bls.gov, Accessed: 2015-01-12.

31. Burnett, M., Beckwith, L., Wiedenbeck, S., Fleming, S.D., Cao, J., Park, T.H., Grigoreanu,
V., Rector, K. (2011). Gender pluralism in problem solving software. Interacting with
Computers, 23, 450-460.

! 107

32. Burnett, M., Churchill, E., Lee, M.J. (2015). SIG: Gender-Inclusive Software: What We
Know About Building It. ACM CHI, 857-860.

33. Butler, A.C., & Roediger, H.L. (2008). Feedback enhances the positive effects and reduces
the negative effects of multiplechoice testing. Memory & Cognition, 36(3), 604-616.

34. Campbell, J., & Mayer, R.E. (2009). Questioning as an instructional method: Does it affect
learning from lectures. Applied Cognitive Psychology, 23, 747-759.

35. Cao, J., Kwan, I., White, R., Fleming, S.D., Burnett, M., & Scaffidi, C. (2012). From
barriers to learning in the idea garden: An empirical study. IEEE VL/HCC, 59-66.

36. Cao, J., Kwan, I., Bahmani, F., Burnett, M., Fleming, S.D., Jordahl, J., Horvath, A., & Yang,
S. (2013). End-user programmers in trouble: Can the Idea Garden help them to help
themselves? IEEE VL/HCC, 151-158.

37. Carpenter, S.K., Pashler, H., & Vul, E. (2006). What types of learning are enhanced by a
cued recall test? Psychonomic Bulletin & Review, 13, 826-830.

38. Carter, L. (2006). Why students with an apparent aptitude for computer science don’t
choose to major in computer science. ACM SIGCSE Bulletin, 27–31.

39. Chaffin, A., & Barnes. T (2010). Lessons from a course on serious games research and
prototyping. ACM FDG, 32-39.

40. Charters, P., Lee, M.J., Ko, A.J., & Loksa, D. (2013). Challenging Stereotypes and
Changing Attitudes: The Effect of a Brief Programming Encounter on Adults' Attitudes
Toward Programming. ACM SIGCSE, 653-658.

41. Chavez, C.M., McGaugh, J.L., Weinberger, N.M. (2009). The basolateral amygdala
modulates specific sensory memory representations in the cerebral cortex. Neurobiology of
Learn Memory, 91, 382–392.

42. Chi, M.T., De Leeuw, N., Chiu, M.H., & LaVancher, C. (1994). Eliciting self-explanations
improves understanding. Cognitive Science, 18(3), 439-477.

43. Chumley-Jones, H.S., Dobbie, A., & Alford, C.L. (2002). Web-based learning: Sound
educational method or hype? A review of the evaluation literature. Academic medicine,
77(10), S86-S93.

44. Cliburn, D.C. (2006). The effectiveness of games as assignments in an introductory
programming course. Frontiers in Education Conference, 6–10.

45. Code.org. http://www.code.org. Accessed: 2013-02-02.

46. Codecademy. http://www.codecademy.com. Accessed: 2015-03-26.

47. Code Combat. http://www.codecombat.com. Accessed: 2015-03-26.

48. Code Hunt. http://www.codehunt.com. Accessed: 2015-03-26.

! 108

49. Code School. http://www.codeschool.com. Accessed: 2015-03-26.

50. Connolly, T.M., & Stansfield, M.H. (2006). Enhancing eLearning: Using Computer Games
to Teach Requirements Collection and Analysis. WG HCI & UE of the Austrian Computer
Society.

51. Cooper, S., Dann, W., & Pausch, R. (2000). Alice: a 3-D tool for introductory programming
concepts. Journal of Computing Sciences in Colleges, 15(5), 107-116.

52. Cordova, D.I., & Lepper, M.R. (1996). Intrinsic motivation and the process of learning:
Beneficial effects of contextualization, personalization, and choice. Journal of Educational
Psychology 88, 4, 715.

53. Corno, L., Mandinach, E.B. (2004). What we have learned about student engagement in the
past twenty years. Big Theories, 297–326.

54. Cross, J. (2006). Informal learning: rediscovering the natural pathways that inspire
innovation and performance. San Francisco, CA: Pfeiffer.

55. Csikszentmihalyi, M. (1990). Flow: The psychology of optical experience. New York, NY:
Harper Perrennial.

56. Dahotre, A., Zhang, Y., Scaffidi, C. (2010). A qualitative study of animation programming in
the wild. ACM-IEEE ESEM, 1-10.

57. Daniel, J. (2012). Making sense of MOOCs: Musings in a maze of myth, paradox and
possibility. Journal of Interactive Media in Education, 3.

58. Dann, W.P., Cooper, S., & Pausch, R. (2011). Learning to Program with Alice. Prentice Hall
Press.

59. Deitel, H., & Deitel, P. (2005). C++: How to program (5th ed.). Upper Saddle River, NJ:
Prentice Hall.

60. Dimitrov, D.M., & Rumrill, Jr, P.D. (2003). Pretest-posttest designs and measurement of
change. Work: A Journal of Prevention, Assessment and Rehabilitation, 20(2), 159-165.

61. Downs, JS., Holbrook, MB, Sheng, S., & Cranor, L.F. (2010). Are your participants gaming
the system?: screening mechanical turk workers. ACM CHI, 2399-2402.

62. Eagle, M., & Barnes, T. (2008). Wu's castle: teaching arrays and loops in a game. ACM
SIGCSE Bulletin, 40(3), 245-249.

63. Eagle, M., & Barnes, T. (2009). Experimental evaluation of an educational game for
improved learning in introductory computing. ACM SIGCSE Bulletin, 41(1), 321-325.

64. edX. https://www.edx.org. Accessed: 2015-03-26.

65. Ellis, A. (2005). Research On Educational Innovations. Eye On Education, Inc., Larchmont,
NY.

! 109

66. ESA (2011). Essential facts about the computer and video game industry. Entertainment
Software Association. Web. 21 Feb. 2012. <http://www.theesa.com/facts/pdfs/
ESA_EF_2011.pdf>

67. Esper, S., Foster, S. R., Griswold, W. G., Herrera, C., & Snyder, W. (2014). CodeSpells:
bridging educational language features with industry-standard languages. ACM Koli Calling
International Conference on Computing Education Research, 5-14.

68. Farthing, D.W. (1997). The three Ms of open learning: Medium, Material and Motivation.
Conference on the Teaching of Computing.

69. Feldgen, M., & Clua, O. (2004). Games as a motivation for freshman students learn
programming. Frontiers in Education, S1H–11.

70. Felleisen, M., Findler, R. B., Flatt, M., & Krishnamurthi, S. (2001). How to design
programs: An introduction to programming and computing. Cambridge, MA: MIT Press.

71. Fenton, J. and Beck, K. (1989). Playground: An Object Oriented Simulation System with
Agent Rules for Children of All Ages. ACM OOPSLA, 123-137.

72. Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy, L., Simon, B., Thomas, L. and
Zander, C., (2008) Debugging: finding, fixing, and flailing, a multi-institutional study of
novice debuggers. Computer Science Education. v18. 93-116.

73. Fogg, B. J., & Nass, C. (1997). How users reciprocate to computers: an experiment that
demonstrates behavior change. ACM CHI, 331-332.

74. Franklin, D., Conrad, P., Boe, B., et al. (2013). Assessment of computer science learning in
a scratch-based outreach program. ACM SIGCSE, 371-376.

75. Frayling, C. (1993). Research in art and design. Royal College of Art London.

76. Freeman, P., Aspray, W. (1999). The supply of information technology workers in the
United States. Computing Research Association.

77. Garris, R., Ahleer, R., & Driskell, J.E. (2002). Games, motivation, and learning: A research
and practice model. Simulation & Gaming 33, 4, 441–467.

78. Gee, J.P. (2003). What video games have to teach us about learning and literacy. Computers
in Entertainment 1, 20–20.

79. Gee, J.P. (2014). What video games have to teach us about learning and literacy.
Macmillan.

80. Gentile, D.A. (2009). Video Games Affect the Brain—for Better and Worse. The DANA
Foundation, Cerebrum. July 23, 2009.

81. Gidget. http://www.helpgidget.org. Accessed: 2014-09-12.

! 110

82. Goode, J., Estrella, R., & Margolis, J. (2006). Lost in translation: Gender and high school
computer science, In Women and Information Technology: Research on
Underrepresentation, MIT Press, 89-114.

83. Griffiths, M.D. (1997). Video games: the good news. Education and Health, 15:10–12.

84. Gross, P. and Kelleher, C., (2010). Non-programmers identifying functionality in unfamiliar
code: strategies and barriers. Journal of Visual Languages & Computing, 21, 5, 263-276.

85. Guzdial, M. (2003). A media computation course for non-majors. ACM SIGCSE Bulletin,
104–108.

86. Guzdial, M. (2014, 10/15). Teaching Computer Science Better to get Better Results [Web
log post]. Retrieved from http://computinged.wordpress.com/2014/10/15/we-need-to-fix-
the-computer-science-teaching-problem/

87. Hamari, J., Koivisto, J., & Sarsa, H. (2014). Does gamification work? – a literature review
of empirical studies on gamification. HICSS, 3025-3034.

88. Harel, I. (1991). Children Designers. Ablex Publishing, N.J.

89. Hays, R.T. (2005). The effectiveness of instructional games: A literature review and
discussion (Technical Report 2005-004). Naval air warfare center training systems division.
Orlando, FL.

90. Hsieh, G., Kraut, RE, & Hudson, SE. (2010). Why pay?: exploring how financial incentives
are used for question & answer. ACM CHI, 305-314.

91. Huotari, K., & Hamari, J. (2012). Defining Gamification – A Service Marketing
Perspective. ACM International Academic MindTrek Conference, 17-22.

92. Itin, C. M. (1999). Reasserting the Philosophy of Experiential Education as a Vehicle for
Change in the 21st Century. The Journal of Physical Education, 22(2), 91-98.

93. Ito, M., Baumer, S., Bittanti, M., boyd, d., Cody, R., Herr B., Horst, H.A., Lange, P.G.,
Mahendran, D., Martinez, K., Pascoe, C.J., Perkel, D., Robinson, L., Sims, C., and Tripp, L.
(2009). Hanging Out, Messing Around, Geeking Out: Living and Learning with New Media.
Cambridge: MIT Press.

94. Ivala, E., Gachago, D., Condy, J., & Chigona, A. (2013). Enhancing student engagement
with their studies: a digital storytelling approach. Creative Education, 4(10), 82.

95. Jeffries, R. (1982). A comparison of the debugging behavior of expert and novice
programmers. AERA Annual Meeting.

96. Jernigan, W., Horvath, A., Lee, M.J., Burnett, M., Cuilty, T., Kuttal, S.K., Peters, A., Kwan,
I., Bahmani, F., and Ko, A.J. (2015). It's the Principle(s) of the Thing! A Principled
Evaluation for a Principled Idea Garden. Unpublished manuscript.

! 111

97. Johnson, C.I., & Mayer, R.E. (2009). A testing effect with multimedia learning. Journal of
Educational Psychology, 101(3), 621-629.

98. Kapp, K.M. (2012). The gamification of learning and instruction: game-based methods and
strategies for training and education. San Francisco, CA: Pfeiffer.

99. Karpicke, J.D., & Roediger, H.L. (2007). Expanding retrieval promotes short-term retention,
but equally spaced retrieval enhances long-term retention. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 33, 704-719.

100. Karpicke, J.D., & Roediger, H.L. (2007). Repeated retrieval during learning is the key to
long-term retention. Journal of Memory and Language, 57, 151-162.

101. Kay, A. (1997). Etoys and Simstories. http://www.squeakland.org

102. Kearsley, G., & Shneiderman, B. (1998). Engagement theory: A framework for technology-
based teaching and learning. Educational technology, 38(5), 20-23.

103. Kehoe, J. (1995). Writing multiple-choice test items. Practical Assessment, Research &
Evaluation, 4(9), retrieved April 2013 from http://pareonline.net/getvn.asp?v=4&n=9

104. Kelleher, C. and Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of
programming environments and languages for novice programmers. ACM CSUR, 37(2),
83-13.

105. Kelleher, C., & Pausch, R. (2007). Using storytelling to motivate programming.
Communications of the ACM, 50(7), 58-64.

106. Kelleher, C., Pausch, R., & Kiesler, S. (2007). Storytelling Alice Motivates Middle School
Girls to Learn Computer Programming. ACM CHI, 1455-1464.

107. Keller, J.M. & Suzuki, K. (1988). Use of the ARCS Motivation Model in courseware design.
In: Instructional designs for microcomputer courseware. Lawrence Erlbaum, Hillsdale, NJ.

108. Kerr, J., Kelleher, C., Ellis, R. & Chou, M (2013). Setting the scene: scaffolding stories to
benefit middle school students learning to program. IEEE VL/HCC, 95-98.

109. Khan Academy. http://www.kahnacademy.com. Accessed: 2015-03-26.`

110. Kinnunen, P. & Simon, B. (2010). Experiencing Programming Assignments in CS1: The
Emotional Toll. ACM ICER, 77-86.

111. Kittur, A., Chi, E.H., & Suh, BW. (2008). Crowdsourcing user studies with Mechanical
Turk. ACM CHI, 453-456.

112. Kirriemuir, J., & McFarlane, A. (2004). Literature Review in Games and Learning. Report
8, NESTA, Futurelab, Bristol.

113. Klein, J., Moon, Y., Picard, R.W. (1999). This computer responds to user frustration. ACM
CHI, 242–243.

! 112

114. Ko, A. J., Myers, B.A., & Aung, H.H. (2004). Six learning barriers in end-user
programming systems. IEEE VL/HCC, 199-206.

115. Ko, A. J. (2009). Attitudes and self-efficacy in young adults' computing autobiographies.
IEEE VL/HCC, 67-74.

116. Kulesza, A. (2009). Approximate learning for structured prediction problems. UPenn WPE-
II Report.

117. Layman, L., Williams, L., Slaten, K. (2007). Note to self: make assignments meaningful,
ACM SIGCSE, 459-463.

118. Lee, M.J., Bahmani, F., Kwan, I., Laferte, J., Charters, P., Horvath, A., Luor, F., Cao, J.,
Law, C., Beswetherick, M., Long, S., Burnett, M., & Ko, A.J. (2014). Principles of a
Debugging-First Puzzle Game for Computing Education. IEEE VL/HCC, 57-64.

119. Lee, M.J. & Ko, A.J. (2011). Personifying Programming Tool Feedback Improves Novice
Programmers' Learning. ACM ICER, 109-116.

120. Lee, M.J., & Ko, A.J. (2012). Investigating the Role of Purposeful Goals on Novices'
Engagement in a Programming Game. IEEE VL/HCC, 163-166.

121. Lee, M.J., & Ko, A.J. (2015). Comparing the Effectiveness of Online Learning Approaches
on CS1 Learning Outcomes. ACM ICER, to appear.

122. Lee, M.J., Ko, A.J., & Kwan, I. (2013). In-Game Assessments Increase Novice
Programmers' Engagement and Level Completion Speed. ACM ICER, 153-160.

123. Lewis, J., & Loftus, W. (2005). Java software solutions (Java 5.0 version): Foundations of
program design (4th ed.). Boston, MA: Addison Wesley.

124. Light-Bot. http://armorgames.com/play/2205/light-bot. Accessed: 2015-03-26.

125. Linderbaum, B. (2006) The Development and Validation of the Feedback Orientation Scale.
Journal of Management, 1372-1405.

126. Lionet, F., & Lamoureux, Y., Klik and Play, Maxis, 1994.

127. Lister, R., Adams, E.S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney, et al.
(2004). A multi-national study of reading and tracing skills in novice programmers. ACM
SIGCSE Bulletin, 36(4), 119-150.

128. Logo Computer Systems, Inc., My Make Believe Castle, 1995.

129. Malone, T.W. (1981). What Makes Things Fun to Learn? A Study of Intrinsically Motivating
Computer Games. Pipeline.

130. Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The Scratch
Programming Language and Environment. ACM TOCE.

! 113

131. Maloney, J.H., Peppler, K., Kafai, Y., Resnick, M., & Rusk, N. (2008). Programming by
choice: Urban youth learning programming with scratch. ACM SIGCSE Bulletin, 40(1),
367-371.

132. Margolis, J. & Fisher, A. (2001). Unlocking the Clubhouse: Women in Computing. The MIT
Press.

133. McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y.B.D., Laxer,
C., Thomas, L., Utting, I. & Wilusz, T. (2001). A multi-national, multi-institutional study of
assessment of programming skills of first-year CS students. ACM SIGCSE Bulletin, 33(4),
125-180.

134. McDaniel, M.A., Anderson, J.L., Derbish, M.H., & Morrisette, N. (2007). Testing the
testing effect in the classroom. European Journal of Cognitive Psychology, 19(4-5),
494-513.

135. McDowell, C., Werner, L., Bullock, H., & Fernald, J. (2002). The effects of pair-
programming on performance in an introductory programming course. ACM SIGCSE, 38–
42.

136. McNamara, D., Jackson, G., Graesser, A. (2009) Intelligent tutoring and games. Artificial
Intelligence in Education, 1–10.

137. Mechanical Turk. http://www.mturk.com. Accessed: 2010-07-26.

138. Meyers-Levy, J. (1989). Gender differences in information processing: A selectivity
interpretation, In Cognitive and Affective Responses to Advertising, Lexington Books,
219-260.

139. MindStorms. http://www.mindstorms.lego.com

140. Minecraft. http://www.minecraft.net

141. Misa, T. (2010). Gender codes: Defining the problem, in Gender Codes: Why Women are
Leaving Computing, Wiley, 3-24.

142. Mislevy, R.J., Behrens, J.T., Dicerbo, K.E., Frezzo, D.C., & West, P. (2012). Three things
game designers need to know about assessment. Assessment in game-based learning, 59-81.

143. Murphy, L., Fitzgerald, S., Hanks, B., & McCauley, R. (2010) Pair debugging: a transactive
discourse analysis. ACM ICER, 51-58.

144. Murphy, L. and Thomas, L. (2008). Dangers of a fixed mindset: Implications of self-
theories research for computer science education. ITiCSE, 271-275.

145. Moghaddam, R.S., Ko, A.J., Loksa, D., & Lee, M.J. (2015). Effects of Social Information
on Engagement and Attitudes in Online Learning Environments. Unpublished manuscript.

146. Monroy-Hernández, A., & Resnick, M. (2008). Empowering kids to create and share
programmable media. Interactions, 15(2), 50-53.

! 114

147. Nass, C. (2000). Machines and Mindlessness: Social Responses to Computers. Journal of
Social Issues, 56, 81-103.

148. Nass, C., Fogg, B.J., & Moon, Y. (1996). Can computers be teammates? International
Journal of Human-Computer Studies, 45, 669-678.

149. NCWIT (2010). NCWIT Scorecard: A report on the status of women in information
technology. Nat’l Ctr. for Women & IT. Web. 30 Mar. 2013. <http://www.ncwit.org/pdf/
Scorecard2010.pdf>

150. NetMarket Analytics. Retrieved September 12, 2011, from http://www.netmarketshare.com

151. newzoo.com (2011). “High-level Game Facts from the US National Gamers Survey.”

152. NPD (2011). Kids & gaming 2011 report. NPD Group.

153. Oblinger, D., Oblinger, J. (2005). Educating the net generation. Educause.

154. Pane, J., & Myers, B. (2006). More natural programming languages and environments, In
End User Development, Springer, 31-50.

155. Pane, J. Myers, B.A., & Miller, L.B. (2002). Using HCI Techniques to Design a More
Usable Programming System. IEEE VL/HCC, 198-206.

156. Papastergiou, M. (2009). Digital Game-Based Learning in high school Computer Science
education: Impact on educational effectiveness and student motivation. Computers &
Education 52, 1, 1–12.

157. Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. Basic Books
New York, NY.

158. Papert, S., & Harel, I. (1991). Situating constructionism. Constructionism, 36, 1-11.

159. Pear, J.J. (2004). Enhanced feedback using computer-aided personalized system of
instruction. In W. Buskist, V. W. Hevern, B.K. Saville, & T. Zinn, (Eds.), Essays from
excellence in teaching (Chapter 11).

160. Poehner, M.E. (2007). Beyond the test: L2 dynamic assessment and the transcendence of
mediated learning. The Modern Language Journal, 91(3), 323-340.

161. Polya, G. (1971). How to Solve It: A New Aspect of Mathematical Method, Princeton Univ.
Press.

162. Prensky, M. (2003). Digital game-based learning. Computers in Entertainment, 1(1), 21-21.

163. Prensky, M. (2005). Computer games and learning: Digital game-based learning. Handbook
of computer game studies, 18, 97-122.

164. Prensky, M. (2006). Don’t Bother Me, Mom, I'm Learning!: How Computer and Video
Games Are Preparing Your Kids for 21st Century Success and How You Can Help. Saint
Paul, Paragon House.

! 115

165. Ram, A., & Leake, D.B. (1995). Goal-Driven Learning. MIT Press, Boston, MA.

166. Randel, J.M., Morris, B.A., Wetzel, C.D., & Whitehill, B.V. (1992). The effectiveness of
games for educational purposes: A review of recent research. Simulation & Gaming, 23(3),
261-276.

167. Reinecke, L., Trepte, S., & Behr, K.M. (2008). Why Girls Play. Results of a Qualitative
Interview Study with Female Video Game Players. Universitäts-und Landesbibliothek.

168. Resnick, M., Martin, F., Sargent, R., & Silverman, B. (1996). Programmable Bricks: Toys to
Think With. IBM Systems Journal, 35(3-4), 443-452.

169. Ricci, K.E., Salas, E., & Cannon-Bowers, J.A. (1996). Do computer-based games facilitate
knowledge acquisition and retention? Military Psychology, 8(4), 295–307.

170. Riggio, R. E. (2007). Reciprocal peer tutoring: Learning through dyadic teaching. In B. K.
Saville, T. E. Zinn, S. A. Meyers, & J. R. Stowell (Eds.), Essays from excellence in teaching,
(Chapter 10).

171. Rising, L. (1999). Patterns: A way to reuse expertise. IEEE Communications, 37(4), 34-36.

172. Roberts, T.A. (1991). Gender and the influence of evaluations on self-assessments in
achievement settings. Psychological Bulletin, 109(2), 297-308.

173. Ross, J., Irani, I., Silberman, M. Six, Zaldivar, A., & Tomlinson, B. (2010). Who are the
Crowdworkers?: Shifting Demographics in Amazon Mechanical Turk. ACM CHI,
2863-2872.

174. Rubio, M.A., Romero-Zaliz, R., Mañoso, C., & Angel, P. (2015). Closing the gender gap in
an introductory programming course. Computers & Education, 82, 409-420.

175. Ruf, A., Mühling, A., & Hubwieser, P. (2014). Scratch vs. Karel: impact on learning
outcomes and motivation. ACM WiPCSE, 50-59.

176. Ryokai, K., Lee, M.J., & Breitbart, J.M. (2009). Children's storytelling and programming
with robotic characters. ACM Creativity & Cognition, 19-28.

177. Sadler, D. R. (1989). Formative assessment and the design of instructional systems.
Instructional Science, 18(2), 119-144.

178. Scaffidi, C., & Chambers, C. (2012). Skill progression demonstrated by users in the Scratch
animation environment. International Journal of HCI, 28(6) 383-398.

179. Scaffidi, C., Shaw, M., and Myers, B.A. (2005). Estimating the Numbers of End Users and
End User Programmers. IEEE VL/HCC, 207-214.

180. Schifter, C., & Cipollone, M. (2013). Minecraft as a teaching tool: One case study. In
Society for Information Technology & Teacher Education International Conference, (1),
2951-2955.

! 116

181. Schön, D.A. (1983). The Reflective Practitioner: How Professionals Think in Action. Basic
Books, NY.

182. Scratch Online. http://scratch.mit.edu

183. Shute, V.J. (1993). A macroadaptive approach to tutoring. Journal of AI in Education, 4(1),
61-93.

184. Schute, V.J. (2011). Stealth Assessments in Computer-Based Games to Support Learning.
Computer games and instruction, 55(2), 503-524.

185. Shute, V.J. (2011). Stealth assessment in computer-based games to support learning.
Computer games and instruction, 55(2), 503-524.

186. Sheard, J., Carbone, A., Chinn, D., Laakso, M.J., Clear, T., et al. (2011). Exploring
programming assessment instruments: a classification scheme for examination questions.
ACM ICER, 33-38. ACM.

187. Short, D. (2012). Teaching scientific concepts using a virtual world—Minecraft. Teaching
Science-the Journal of the Australian Science Teachers Association, 58(3), 55.

188. Shute, V.J., Ventura, M., Bauer, M., & Zapata-Rivera, D. (2009). Melding the power of
serious games and embedded assessment to monitor and foster learning. Serious games:
Mechanisms and Effects, 295-321.

189. Shackelford, R. L. (1997). Introduction to computing and algorithms. Boston, MA: Addison
Wesley.

190. Sime, M., Green, T., & Guest, D. (1976). Scope marking in computer conditionals: A
psychological evaluation. International Journal of Man-Machine Studies, 9, 107–118.

191. Smith, D., Cypher, A., & Tesler, L. (2002). Programming by example: novice programming
comes of age. Communications of the ACM, 75-81.

192. Smith, T. (2007). Exams as learning experiences: One nutty idea after another. Beyond Tests
and Quizzes: Creative Assessments in the College Classroom, 115, 71.

193. Soflano, M., Connolly, T.M., & Hainey, T. (2015). An Application of Adaptive Games-
Based Learning based on Learning Style to Teach SQL. Computers & Education.

194. Soloway, E. (1986). Learning to program = learning to construct mechanisms and
explanations. Communications of the ACM, 29(9), 850-858.

195. Steffe, L.P., & Gale, J. E. (Eds.). (1995). Constructivism in education. Hillsdale, NJ:
Lawrence Erlbaum, 159.

196. Subrahmaniyan, N., Kissinger, C., Rector, K., Inman, D., Kaplan, J., Beckwith, L., &
Burnett, M. (2007). Explaining debugging strategies to end-user programmers. IEEE VL/
HCC, 127-136.

! 117

197. Summers, N. (n.d.) Codecademy surpasses 24 million unique users for its free online coding
courses. The Next Web. Retrieved 23 April 2014.

198. Sykes, E.R. (2007). Determining the effectiveness of the 3D Alice programming
environment at the computer science I level. Journal of Educational Computing Research,
36(2), 223-244.

199. Sweller, J. (2006). The worked example effect and human cognition. Learning and
Instruction, 16(2) 165–169.

200. Tanimoto, S., & Runyan, M. (1986). Play: an iconic programming system for children.
Visual Programming Environments, 367-377.

201. Tarkan, S., Sazawal, V., Druin, A., Golub, E., Bonsignore, E.M., Walsh, G., & Atrash, Z.
(2010). Toque: designing a cooking-based programming language for and with children.
ACM CHI, 2417-2426.

202. Tew, A.E. (2010). Assessing fundamental introductory computing concept knowledge in a
language independent manner. Georgia Institute of Technology PhD Dissertation.

203. Tew, A.E., & Guzdial, M. (2011). The FCS1: a language independent assessment of CS1
knowledge. ACM SIGCSE, 111-116.

204. Thompson, S.M. (2006). An Exploratory Study of Novice Programming Experiences and
Errors. Thesis., University of Victoria, Victoria.

205. Tsukamoto, H., Nagumo, H., Takemura, Y., & Matsumoto, K. (2008). Analyzing the
transition of learners’ motivation to learn programming. Frontiers in Education Conference,
S4B-6-S4B-11.

206. Umaschi, M. (1997). Soft toys with computer hearts: Building personal storytelling
environments. ACM CHI, 20-21.

207. UK DFE (2013). National Curriculum in England: Computing Programmes of Study. (Dept.
Education No. DFE-00171-2013). UK.

208. Vihavainen, A., Paksula, M., & Luukkainen, M. (2011). Extreme apprenticeship method in
teaching programming for beginners. ACM SIGCSE, 93-98.

209. Vrugt, A.J., Langereis, M.P., & Hoogstraten, J. (1997). Academic self-efficacy and
malleability of relevant capabilities as predictors of exam performance. Journal of
Experimental Education, 66(1), 61-72.

210. Webb, H.C., & Rosson, M. B. (2011). Exploring careers while learning Alice 3D: a summer
camp for middle school girls. ACM SIGCSE, 377-382.

211. Werner, L.L., Hanks, B., & McDowell, C. (2004). Pair-programming helps female computer
science students. ACM JERIC, 4(1).

! 118

212. Whitfort, T. (n.d.). Pseudo code guide. http://ironbark.bendigo.latrobe.edu.au/subjects/PE/
2005s1/ other_resources/pseudocode_ guide.html. Accessed: 2015-03-26.

213. Williamson, B. (2009). Computer games, schools, and young people: A report for educators
on using games for learning. Bristol: Futurelab.

214. Wilson, B.C., & Shrock, S. (2001). Contributing to success in an introductory computer
science course: a study of twelve factors. ACM SIGCSE Bulletin 33, 1, 184–188.

215. Yee, N. (2006). Motivations for play in online games. Cyber Psychology & Behavior, 9(6),
772-775.

216. Young, J. (2008). "Badges" earned online pose challenge to traditional college diplomas.
Chronicle of Higher Education.

217. Zelle, J. M. (2004). Python programming: An introduction to computer science. Wilsonville,
OR: Franklin Beedle.

218. Zimmerman, J., Forlizzi, J., & Evenson, S. (2007). Research through design as a method for
interaction design research in HCI. ACM CHI, 493–502.

219. Zorn, C., Wingrave, C.A., Charbonneau, E., & LaViola Jr, J.J. (2013). Exploring Minecraft
as a conduit for increasing interest in programming. FDG, 352-359.

! 119

APPENDIX
The appendix contains the following sections:

• Gidget Language Grammar

• Pseudo-code Tests

• Game Assets

• Gidget Game Screenshots

• Detailed Level Breakdown

! 120

• GIDGET LANGUAGE GRAMMAR

Gidget Language Grammar

_ indicates token

BLOCK :: _newline _in STATEMENT* _out

STATEMENT :: GOTO | GO | GRAB | DROP | IF | WHILE | FOREACH | ASSIGNMENT | FUNCTION | CALL | OBJECT | CREATE | REMOVE | ADD | EXPR

ERROR :: _token* _eol # For lines that don't parse. These have no effect, except for displaying an error message

OBJECT :: object _id (_id*) [BLOCK]

FUNCTION :: function _id (_id*) BLOCK

WHEN :: when EXPR BLOCK # Executed after each step of the world

 
Control

FOREACH :: for _id in EXPR BLOCK

WHILE :: while EXPR BLOCK

IF :: if EXPR BLOCK else (IF |
BLOCK)

DONE :: done # Done looping

RETURN :: return [EXPR] # Return a value to the caller

SAY :: say EXPR # Say something to a character (i.e., print output to screen)

SOUND :: sound EXPR # Play a sound (expects a string)

ENSURE :: ensure EXPR # Used in the goals to determine whether a program passes

 
Objects in the world

QUERY :: /_string/[s] # e.g., 'rock'. Finds all objects matching the string in the world and pushes a list of them onto the value stack.
We use the slash character (/) as the opening and closing delimiter based on novice programmers’
participatory design feedback saying separate opening and closing characters (e.g., { and }, or [and]) is
confusing, and that they would rather use the same character for both

CREATE :: create _id LIST # "Executes" the object's assignments and functions, creating an instance, giving it name and location

REMOVE :: remove EXPR # Removes the object referred to from the world

GOTO :: goto EXPR # Moves Gidget to the location of a specific object, optionally avoiding an object

GO :: (up|down|left|right) [EXPR] # Moves Gidget a specific direction by an optional amount

GRAB :: grab EXPR # Constrains an object's location to Gidget's location

DROP :: drop EXPR # Unconstrains an object's location from Gidget's location

 

Modifications

ASSIGNMENT :: set REF to EXPR

 

Expressions

EXPR :: OR

OR :: AND [or OR]

AND :: EQUAL [and AND]

EQUAL :: INEQUALITY [= EQUAL]

COMPARISO
N

:: ON [_inequality COMPARISON] # e.g., 5 > 5, 5 = 5

ON :: ADDITION [on ON] # /rock/ on the /pit/, returns list of objects at the location of the object

ADDITION :: MULT [_add ADD] # length + width

! 121

ADDITION :: MULT [_add ADD] # length + width

MULT :: PRIMARY [_multiply MULTIPLY] # length * width

PRIMARY :: # ON | (EXPR) | ITEM | NOT | QUERY | [-+] EXPR  
 true | false | _number | 
 _string | nothing | REF | LIS

LIST :: [EXPR? [, EXPR*]] # Comma separated list

ITEM :: (first|rest|last) ON # Retrieve the first or last item of the list

NOT :: not EXPR # Negate a boolean value

REF :: (_id | _id LIST) (: REF |
[EXPR])*

rock, gidget:arm(), gidget:goto(1, 2, 3), battery:component():energy, battery[2]

NOTES:

• The “world code,” “gidget code,” and “goals” all use the same language.
• The world code sets up each level’s starting conditions. It is not visible to the player; the only exception to this is in the Gidget Puzzle Designer.
• Gidget code is what players interact with in the game. This typically contains deliberate errors/bugs for players to fix. Gidget code controls the Gidget object.
• Goal code consists of one or more ensure statements that must all evaluate to true to pass the level.

• All objects are instances with properties.
• Properties can point to functions and values.
• All objects have the following reserved properties (default values are indicated within parentheses:

• energy (100), grabbed ([]), image (“default”), labeled (true), layer (1), name ({name of the object}), position ({position of the object that invoked creation})
• Gidget can't access certain pre-defined members (i.e. reserved properties) of other objects, but all other objects can.

• This is to limit cheating (e.g., Gidget being able to change its own energy or being able to change objects’ locations)
• Types are dynamically assigned and can be objects, booleans, numbers, strings, and lists.
• Functions declared in a Gidget program are properties of the "gidget" object.
• All variables are global except for those referred to in functions. Those use function-level scoping.
• Create and remove can be invoked.
• All loops are explicit. None of the constructs operate on multiple values.
• Gidget can only remove objects that occupy the same space. Other objects do not have this constraint.
• Structure is indicated by indentation.
• Function call semantics require Gidget to be at the location of the object.

Gidget Language Grammar

! 122

• PSEUDO-CODE TESTS

The following multiple-choice questions (written in pseudo-code) were used in the pre-tests and post-tests
that were described in Chapter 7. Questions (and answer choices) are grouped topically here for
readability, but were administered to participants in randomized order to minimize ordering effects. The
solution to each question is highlighted in green.

Pseudo-code questions; SET 1 – Basics
BASICS #1 - variables

x = 8
y = 5
z = 10
x = 2

What is the final value of x?

2

5

8

10

16

BASICS #2 - mathematical operators (+, -, *, /)

x = 3 * 2
y = 3 - 1
z = x + y + y

What is the final value of z?

2

6

8

10

14

BASICS #3 - relational operators (==, >, >=, <, <=, !=)

x = 3
y = 5
z = 7

Which of the following expressions is True?

x < y

x > y

x == y

z < y

x > z

! 123

Pseudo-code questions; SET 2 – Logical Operators (NOT, AND, OR)
LOGICAL OPERATORS #1 - NOT

x = True
y = False
z = NOT y

Which of the following expressions is True?

x == NOT True

x == y

y == z

y == NOT True

z == NOT True

LOGICAL OPERATORS #2 - AND

a = True
b = False

c = a AND b

What is the final value of c?

c == a

 c == b

a == b

b == True

a == False

LOGICAL OPERATORS #2 - OR

x = True
y = False

z = x OR y

What is the final value of z?

 z == x

 z == y

x == y

y == True

x == False

! 124

Pseudo-code questions; SET 3 – Selection Statements (IF, ELSE)
SELECTION STATEMENTS #1

number = 81

IF number >= 90 THEN
 element = ‘fire’
ELSE IF number >= 80 THEN
 element = ‘water’
ELSE IF number >= 70 THEN
 element = ‘metal’
ELSE IF number >= 60 THEN
 element = ‘earth’
ELSE
 element = ‘wood’
ENDIF

What is the final value of element?

fire

water

metal

earth

wood

SELECTION STATEMENTS #2

sales = 0
apples = 4

IF apples > 1 THEN
 sales = 2
ELSE
 sales = 3
ENDIF

What is the final value of sales?

0

1

2

3

4

SELECTION STATEMENTS #3

x = 3
y = 5
z = 7

IF (x + x) > 5 THEN
 answer = ‘apple’
ELSE IF (x + y) > 9 THEN
 answer = ‘orange’
ELSE
 answer = ‘banana’
ENDIF

IF (y + z) > 13 THEN
 answer = ‘watermelon’
ELSE
 answer = ‘strawberry’
ENDIF

What is the final value of answer?

apple

orange

watermelon

banana

strawberry

! 125

Pseudo-code questions; SET 4 – Arrays
ARRAY #1

sports = [‘basketball’, ‘baseball’],
‘volleyball’, ‘hockey’, ‘football’]

playingToday = sports[2]

What is the final value of playingToday?

basketball

baseball

volleyball

hockey

football

ARRAY #2

roster=[‘Angela’,’Amy’,‘Alice’]
roster[1] = ‘Anne’

What is the final value of roster?

[‘Angela’,’Anne’,‘Alice’]

[‘Angela’,’Amy’,‘Anne’]

[‘Anne’,’Amy’,‘Alice’]

[‘Angela’,’Anne’,’Amy’,’Alice’]

[‘Anne’,’Angela’,’Amy’,’Alice’]

ARRAY #3

list = [0,1,2,3,1]

myNumber = list[1] + list[3]

What is the final value of myNumber?

0

1

2

3

4

! 126

Pseudo-code questions; SET 5 – Indefinite Loops (WHILE)
INDEFINITE LOOP #1

jump = 1
count = 1

WHILE count < 4 DO
 jump = jump + 1
 count = count + 2
ENDWHILE

What is the final value of jump?

1

2

3

4

5

INDEFINITE LOOP #2

x = 3
y = 6
counter = 0

WHILE x < y DO
 counter = counter + 1
 x = x + 1
ENDWHILE

What is the final value of counter?

0

1

2

3

4

INDEFINITE LOOP #3

total = 0
x = 0
y = 8

WHILE y > 0 DO
 IF y > x THEN
 y = y - 2
 total = total + 1
 ENDIF
ENDWHILE

What is the final value of total?

0

1

2

3

4

! 127

Pseudo-code questions; SET 6 – Definite Loops (FOR)
DEFINITE LOOP #1

myCoins = 8

FOR counter = 0 to 2 BY 1 DO
 myCoins = myCoins - 2
ENDFOR

What is the final value of myCoins?

0

2

4

6

8

DEFINITE LOOP #2

x = 4

FOR y = 1 to 4 BY 2 DO
 IF y > 2 THEN
 x = x + 2
 ELSE
 x = x - 2
 ENDIF
ENDFOR

What is the final value of x?

0

2

4

6

8

DEFINITE LOOP #3

FOR x = 1 to 5 BY 1 DO
 xSquared = x * x
ENDFOR

What is the final value of xSquared?

1

4

9

16

25

! 128

Pseudo-code questions; SET 7 – Function Parameters
FUNCTION PARAMETERS #1

DEFINE getSize(num)
 IF num >= 70 AND num < 100 THEN
 size = ‘large’
 ELSE IF num >= 30 AND num < 70 THEN
 size = ‘medium’
 ELSE IF num >= 0 AND num < 30 THEN
 size = ‘small’
 ELSE IF num >= 100 THEN
 size = ‘x-large’
 ELSE
 size = ‘x-small’
 ENDIF

 PRINT size
ENDDEFINE

What is the output of getSize(100)?

x-small

small

medium

large

x-large

FUNCTION PARAMETERS #2

DEFINE doSomething(x, y)
 IF x > y THEN
 z = x
 ELSE IF x == y THEN
 z = x - y
 ELSE
 z = y
 ENDIF

 PRINT z
ENDDEFINE

What is the output of doSomething(5,2)?

2

3

5

25

52

FUNCTION PARAMETERS #3

DEFINE getColor(a, b, c)
 IF (a + 1) > 1 THEN
 color = ‘red’
 ELSE IF (a + b) > 1 THEN
 color = ‘orange’
 ELSE IF (b + c) > 1 THEN
 color = ‘yellow’
 ELSE IF (a + c) > 1 THEN
 color = ‘green’
 ELSE
 color = ‘blue’
 ENDIF

 PRINT color
ENDDEFINE

What is the output of getColor(0,1,2)?

red

orange

yellow

green

blue

! 129

Pseudo-code questions; SET 8 – Function Returns
FUNCTION RETURNS #1

DEFINE func1()
 RETURN ‘Mercury’
ENDDEFINE
DEFINE func2()
 RETURN ‘Venus’
ENDDEFINE
DEFINE func3()
 RETURN ‘Earth’
ENDDEFINE
DEFINE func4()
 RETURN ‘Mars’
ENDDEFINE
DEFINE func5()
 RETURN ‘Jupiter’
ENDDEFINE

planet = func1()
planet = func3()
planet = func5()
planet = func2()
planet = func4()

What is the final value of planet?

Mercury

Venus

Earth

Mars

Jupiter

FUNCTION RETURNS #2

DEFINE number()
 x = 4
 y = 3
 z = 2
 RETURN x
ENDDEFINE

a = 1
b = number() + 0
c = a + b - number()

What is the final value of c?

0

1

2

3

4

FUNCTION RETURN #3

DEFINE numbers()
 x = 2
 y = 1
 z = 0
 RETURN x + y - z
ENDDEFINE

x = 4
y = 3
z = numbers() + x + y

What is the final value of z?

0

6

7

10

14

! 130

• GIDGET GAME ASSETS (IMAGES + SOUND EFFECTS)

Objects & Characters (Page 1 of 6)  

apple bamboo basket bat battery beachball

beaver bee beetle bin bird block

blueprint boat boulder bucket bunny button

cage cake camera candy car carSide

! 131

Objects & Characters (Page 2 of 6)  

cat catCyborg cell chute container crab

crate cube cupcake diamond dog dogCyborg

dogHouse door door2 dragon droid elephant

 fence fire fish fly fox fridge

! 132

Objects & Characters (Page 3 of 6)  

frog fuzzball gate gate01 gate02 generator

ghost gidget gidgetBaby goat gold goop

goop2 goop3 goopFormula goopMonster goopRed goopSpace

hole husky icecream jar jellyfish key

! 133

Objects & Characters (Page 4 of 6)

kitten ladybug lifesaver lion map masterswitch

material medikit meteor monkey mouse note

oil orange otter owl pail palmtree

panda pebble penguin phonebooth piglet pipe

! 134

Objects & Characters (Page 5 of 6)  

pizza plug pod pod2 puddle pufferfish

puppy rabbit rainbow robot robotBig

rock rocket rope sapling scraps seashell

sharkFin ship shrub soap spider stone

�
rat

! 135

Objects & Characters (Page 6 of 6)

sushi teleporterA teleporterB tile tiger treasure

 tree turtle umbrella unicorn unknown vaultdoor

 wall wall1 wall2 whale world (hidden)

! 136

Ground Tiles (Page 1 of 2)  

brick chasm checkered cobblestone crack dirt

dirt2 dirtDark grass infectedDirt lava lavaCrack

metal planet plank polkadots roadCross roadHoriztonal

roadVertical sand sea snow space static

! 137

Ground Tiles (Page 2 of 2)  

tileDark tileLight tileBlack tileBlue tileGreen tileGray

tileOrange tilePink tilePurple tileRed tileWhite tileYellow

water wood yellowbrick

! 138

Extra Object Attributes (Page 1 of 1)  

cat cat.infected cat.stressed sushi sushi.infected

dog dog.infected dog.stressed

kitten kitten.infected kitten.stressed husky husky.uw

piglet piglet.infected piglet.infected beaver beaver.osu

! 139

Extra Gidget Attributes (Page 1 of 1)

Gidget’s Evolution

  

gidget gidget.cry gidget.happy gidget.sad

gidget.silly gidget.thinking gidget.worried
gidget.classic  

(hidden character)

*Original sketch by Ellen Ko; Prototype Gidgets by Amy Ko & Michael Lee; Finalized design by Fanny Luor.

! 140

Sounds Effects (Page 1 of 1)

analyze* block-F3 dog bark 3 kids cheering

bark block-G3 dramatic accent kitten

beep-A3 booming rumble drop* kitten meow

beep-B3 bounce electricity surge meow

beep-C3 brontosaurus wail electro beep accent 01 mystery accents 01

beep-C4 cartoon boing electro beep accent 02 mystery accents 02

beep-D3 cartoon chipmunk electro beep accent 03 pig

beep-E3 cartoon cymbal hit electro static accent 01 piglet oh dear

beep-F3 cartoon party horn electro static accent 02 robot beeps

beep-G3 cartoon timpani electro static accent 03 rooster call

bell-A3 cat energy down* scan*

bell-B3 chicken energy up* sheep

bell-C3 chimpanzee calls error* sitcom laughter 01

bell-C4 comedy whistle focus in* sitcom laughter 02

bell-D3 communication engaged gliss apreggios 01 slamming metal lid

bell-E3 communication static gliss apreggios 02 suspense accents 01

bell-F3 computer data 01 goal check failure* suspense accents 02

bell-G3 computer data 02 goal check success* telephone busy signal

bird chirp computer data 03 goal final failure* telephone dial done

bird chirp 2 computer data 04 goal final success* telephone dial done

block-A3 computer data 05 goat telephone no connection

block-B3 computer data 06 goto* telephone no service

block-C3 cow moo grab* telephone ringing 01

block-C4 dinosaur growl growling animal telephone ringing 02

block-D3 dog bark kids booing tuning laser beam

block-E3 dog bark 2

*these sounds effects were also used by the game for its default sounds.
all sound effects were provided by freesound.org.

! 141

• GIDGET GAME SCREENSHOTS

Landing Page & “About” Screen  

! 142

! 143

Gidget Game Levels  

! 144

! 145

! 146

! 147

! 148

! 149

! 150

! 151

! 152

! 153

! 154

! 155

! 156

! 157

! 158

! 159

! 160

! 161

! 162

Interactive Tutorial

! 163

! 164

! 165

! 166

! 167

! 168

! 169

Options Menu & Dictionary Interface

! 170

Gidget Puzzle Designer (Level Editor) Menus  

! 171

• GIDGET CURRICULUM – DETAILED LEVEL BREAKDOWN

• This section contains a detailed breakdown of each level.

• Each level is explained in two pages.

• The first page contains:

• The World Code – this is the code that the game initializes when the

level is loaded. It sets up the position of all the elements in the level. It

is inaccessible to the player during gameplay, but editable using the

level editor.

• Mission Text – this is the dialogue that Gidget says at the beginning of

each level. Each bullet point represents one speech bubble’s message,

requiring the player to click on the “next" button to proceed to the next

message.

• The second page (for regular levels) contains:

• Gidget Code – this is the intentionally broken code that the player must

fix to pass the level.

• Gidget Code (solution) – this is a solution to the level. There may be

other solutions to pass the level.

• Gidget Goals – these are the goals that the player must satisfy with the

Gidget Code to pass the level.

• The second page (for assessment levels) contains:

• Gidget Code – this is the code that the player must read to select the

right solution to the assessment.

• Assessment Question – this is the question that Gidget asks, and the

possible answer choices that the player can choose (bulleted).

• Solution Code & Responses – these are the various responses that

Gidget will use to respond to correct and/or incorrect answers.

Level 1. Let's get to the puppy!

World Code:
object puppy(row, column)
 set this:position to [row, column]
create puppy(1, 0)

Mission Text:

• Okay, let's get started! For each level,
I'll provide you with some starting code
in the top-left panel, but since I'm
damaged, I'll need you to help me sort
out my mistakes.

• Feel free to modify, delete, or reuse
any of the code I give you! There
should be clues inside to teach you
how to use my commands effectively!

• Make sure you always read the goals
of the level on the bottom-left panel
first, and then try running the code at
least once using the buttons below the
goals to see how the starting code
works.

• It looks like the goal of this level is to
move myself to the /puppy/! Use the
buttons on the bottom-left to see what
my code does, and click on the top-left
white panel to start editing!

172

Level 1. Let's get to the puppy!

Gidget Code (broken): Gidget Code (solution):

right left

Gidget Goals:

ensure /gidget/:position = /puppy/:position

173

Level 2. Let's get to the bird!

World Code:
object bird(row, column)
 set this:position to [row, column]
create bird(4, 4)

Mission Text:

• I'm getting better at this thanks to you!
My next goal is to get to that /bird/ over
there.

• I should be able to move more easily
by including an optional number literal
immediately after my movement
command.

174

Level 2. Let's get to the bird!

Gidget Code (broken): Gidget Code (solution):

up
right 5
down 4
left 3

right 3
down 3

Gidget Goals:

ensure /gidget/:position = /bird/:position

175

Level 3. Let's go grab the piglet!

World Code:
object piglet(row, column)
 set this:position to [row, column]
create piglet(1, 2)

Mission Text:

• I should be able to grab things and
transport them to other spaces, but it
will take more energy to move around
while carrying something!

• The goal for this level is to move the  
/piglet/ to that patch of /dirt/ at [3,1]!
Remember that in my world, the grid
system uses the row, then the column
like in a spreadsheet.

• I should use up/down/left/right to move
around, and the grab command to
pick up the /piglet/!

• Objects in the world like the /piglet/
and myself need to be enclosed in
slashes, / /, for me to understand what
they are!

176

Level 3. Let's go grab the piglet!

Gidget Code (broken): Gidget Code (solution):

left 2
up
grab /piglet/
left 2
up 2
right 6

left 2
up 3
grab /piglet/
down 2
left

Gidget Goals:

ensure /piglet/:position = [3,1]

177

Level 4. Let's drop things into the correct containers!

World Code:
object puppy(row, column)
 set this:position to [row, column]
object goop(row, column)
 set this:position to [row, column]
object bucket(row, column)
 set this:position to [row, column]
object basket(row, column)
 set this:position to [row, column]
create puppy(3, 1)
create goop(1, 3)
create bucket(1, 0)
create basket(4, 4)

Mission Text:

• Alright, I'll start cleaning up this mess
by putting things in the correct
containers!

• Remember, it takes more energy to
move around when I'm grabbing
something, so I might need to take an
efficient path before I run out!

• The goal of this level is to drop the /
puppy/ into the /basket/ and the /goop/
into the /bucket/. It might help to try
running my code before editing it to
see what happens!

178

Level 4. Let's drop things into the correct containers!

Gidget Code (broken): Gidget Code (solution):

left
up
drop /goop/
down 3
left 1
grab /puppy/
left 2
up 3
grab /goop/
right 4
drop /puppy/

left
up
grab /goop/
left 3
drop /goop/
down 2
right
grab /puppy/
right 3
down
drop /puppy/

Gidget Goals:

ensure /puppy/:position = /basket/:position
ensure /goop/:position = /bucket/:position

179

Level 5. Let's organize everything correctly!

World Code:
object puppy(row, column)
 set this:position to [row, column]
object kitten(row, column)
 set this:position to [row, column]
object piglet(row, column)
 set this:position to [row, column]
object goop(row, column)
 set this:position to [row, column]
object bucket(row, column)
 set this:position to [row, column]
object basket(row, column)
 set this:position to [row, column]
create puppy(5, 3)
create goop(4, 2)
create kitten(1, 5)
create piglet(3, 0)
create bucket(1, 0)
create basket(4, 4)

Mission Text:

• Wow, there are a lot of animals here!
The /goop/ is toxic, so I should clean
this place up quickly!

• Remember, it takes more energy to
move around when I'm grabbing
something, so I might need to take an
efficient path before I run out!

• The goal of this level is to drop the /
goop/ into the /bucket/ and the animals
into the /basket/.

180

Level 5. Let's organize everything correctly!

Gidget Code (broken): Gidget Code (solution):

right 2
up
grab /cat/
down
grab /goop/
down 2
drop /goop/
left 2
up
grab /piglet/
down 2
right 3
grab /dog/
up
right
drop /puppy/

right 2
up
grab /kitten/
down 2
left 5
grab /piglet/
down 2
right 3
grab /puppy/
up
right
drop
left 2
grab /goop/
up 3
left 2
drop /goop/

Gidget Goals:

ensure /goop/:position = /bucket/:position
ensure /puppy/:position = /basket/:position
ensure /kitten/:position = /basket/:position
ensure /piglet/:position = /basket/:position

181

Level 6. Where Will Gidget End Up?

World Code:
object puppy(row, column)
 set this:position to [row, column]

object goop(row, column)
 set this:position to [row, column]

object bucket(row, column)
 set this:position to [row, column]

object basket(row, column)
 set this:position to [row, column]

object bird(row, column)
 set this:position to [row, column]

create basket(3, 1)
create bucket(1, 3)
create goop(1, 0)
create puppy(4, 4)
create bird(3, 2)

Mission Text:

• Okay, I think I’m getting the hang of
this. I want to try most of this by
myself. Can you just help me by
verifying what will happen by choosing
from the options on the right?

Assessment Level
182

Level 6. Where Will Gidget End Up?

Gidget Code (assessment): Assessment Question:

down 2
grab /puppy/
up
left 3
drop /puppy/
up 2
left
grab /goop/
right 3
drop /goop/
down 2
left 2

After running the code (assuming I have
unlimited energy), I will eventually end up:

• On the final position of the the /puppy/.
• On the final position of the /bird/.
• On the final position of the /goop/.

Can you tell me how you arrived at your
answer? It will help me with my logic chip
repairs!

Solution Code & Responses:

correct:On the final position of the the /puppy/.:After
dropping off the /goop/ on the /
bucket/, I will move back on the /basket/ and
the /puppy/. Remember that number <span
class='dictionaryTerm'>literals after the up/
down/left/<span
class='keyword'>right commands are optional.

wrong:On the final position of the /bird/.:Actually, if
you look at my code carefully, I never interact with the /
bird/ at all!.
wrong:On the final position of the /goop/.:I'll
actually drop the /goop/ off the /
bucket/, and move several more steps after that.

Assessment Level
183

Level 7. Where Will the Goop End Up?

World Code:
object puppy(row, column)
 set this:position to [row, column]
object kitten(row, column)
 set this:position to [row, column]
object bird(row, column)
 set this:position to [row, column]
object piglet(row, column)
 set this:position to [row, column]

object goop(row, column)
 set this:position to [row, column]

object bucket(row, column)
 set this:position to [row, column]

object basket(row, column)
 set this:position to [row, column]

create puppy(5, 3)
create goop(4, 2)
create kitten(1, 5)
create piglet(3, 0)
create bird(1, 2)
create bucket(1, 0)
create basket(4, 4)

Mission Text:

• Hmm… I’m thinking I’m getting the
hang of this because of your help!

• I made some temporary adjustments
to my logic chip and I want to try this
level out myself in one shot!

• Can you help me determine where
the /goop/ will end up after running the
code? We only have one shot at this so
let’s try our best! Click on the tile to
choose your answer!

Assessment Level
184

Level 7. Where Will the Goop End Up?

Gidget Code (assessment): Assessment Question:

up 1
right
grab /kitten/
left 3
grab /bird/
left 2
down 2
grab /piglet/
right 2
down 1
grab /goop/
right
down
grab /puppy/
up 4
left 3
down 3
right 4

Where will the /goop/ be after I execute
the current code (assuming I have
unlimited energy)? Please click on the
grid, then press the button below to
check!

Can you tell me how you arrived at your
answer? It will help me with my logic chip
repairs!

Solution Code & Responses:

wrong:: I won't end up on this space.
wrong:1,0:I stop on the /bucket/, but I never dropped anything
on it.
wrong:1,2:This is the original position of the /bird/, but I
picked it up and moved it!
wrong:1,5:This is the original position of the /kitten/, but I
picked it up and moved it!
wrong:3,0:This is the original position of the /piglet/, but I
picked it up and moved it!
wrong:4,2:This is the original position of the /goop/, but I
picked it up and moved it!
wrong:5,3:This is the original position of the /puppy/, but I
picked it up and moved it!

correct:4,4:I picked up all the animals and the /goop/, but
never dropped anything. So I'll finally end up at the /basket/
with everything, including the /goop/!

Assessment Level
185

Level 8. Let's move more efficiently to each object!

World Code:
object kitten(row, column)
 set this:position to [row, column]
object piglet(row, column)
 set this:position to [row, column]
object goop(row, column)
 set this:position to [row, column]
object rock(row, column)
 set this:position to [row, column]
object basket(row, column)
 set this:position to [row, column]
object bucket(row, column)
 set this:position to [row, column]
create basket(2,2)
create bucket(4,4)
create kitten(4, 2)
create piglet(1, 1)
create goop(2, 3)
create rock(3, 0)

Mission Text:

• Oh no! The /goop/s are starting to
make the /grass/ sick. I should hurry to
the /goop/ factory before it spreads
even more!

• I just remembered that using the goto
command should be very helpful
moving to objects.

• Try running my starting code to see
how goto works! My goal is to get
everything into the correct containers,
but remember that I use more energy
as I carry more things.

186

Level 8. Let's move more efficiently to each object!

Gidget Code (broken): Gidget Code (solution):

goto /goop/
grab /goop/
left 4
down
drop /kitten/
goto /basket/
left
up 2
drop /rock/
drop /goop/

goto /goop/
grab /goop/
goto /rock/
grab /rock/
goto /bucket/
drop
goto /kitten/
grab /kitten/
goto /piglet/
grab /piglet/
goto /basket/
drop

Gidget Goals:

ensure /kitten/:position = /basket/:position
ensure /piglet/:position = /basket/:position
ensure /goop/:position = /bucket/:position
ensure /rock/:position = /bucket/:position

187

Level 9. Let's move around more efficiently to specific spots on the map!

World Code:
object bird(row, column)
 set this:position to [row, column]
object dog(row, column)
 set this:position to [row, column]
object goop(row, column)
 set this:position to [row, column]
object basket(row, column)
 set this:position to [row, column]
object bucket(row, column)
 set this:position to [row, column]
object rock(row, column)
 set this:position to [row, column]
create basket(5,5)
create bucket(1,3)
create bird(3, 4)
create dog(4, 1)
create goop(3, 2)
create rock(1, 5)

Mission Text:

• Great! Using goto is helpful, but I'll still
need to use the up/down/left/right
commands to move to specific
spaces!

• Make sure to check my goals before
starting the level. It looks like I have to
move certain things to specific spots
before running out of energy!

188

Level 9. Let's move around more efficiently to specific spots on the map!

Gidget Code (broken): Gidget Code (solution):

goto /bird/
grab /bird/
up 3
left 2
goto /dog/
grab /goop/
left 4
down
drop /goop/
goto /basket/
left
up 2
drop /dog/
drop /rock/

goto /basket/
grab /basket/
up 4
drop /basket/
goto /bucket/
grab /bucket/
right 2
down 2
drop /bucket/
goto /bird/
grab /bird/
goto /dog/
grab /dog/
goto /basket/
drop
goto /goop/
grab /goop/
goto /rock/
grab /rock/
goto /bucket/
drop

Gidget Goals:

ensure /basket/:position = [1,5]
ensure /bucket/:position = [3,5]
ensure /dog/:position = /basket/:position
ensure /bird/:position = /basket/:position
ensure /goop/:position = /bucket/:position
ensure /rock/:position = /bucket/:position

189

Level 10. Let's save the kitten twins!

World Code:
object basket(row, column)
 set this:position to [row, column]
object kitten(row, column)
 set this:position to [row, column]

create kitten(1, 1)
create kitten(3, 3)
create basket(3, 2)

Mission Text:

• Oh, there are two /kitten/s in this level!
I get really confused when I have to
interact with things with the same
name.

• To solve this problem, I'll need to add
an "s" to the end of the objects' name
to make a list. Then I can use the same
commands, with first and last.

190

Level 10. Let's save the kitten twins!

Gidget Code (broken): Gidget Code (solution):

goto first /kitten/s
grab first /kitten/
goto last /basket/s
grab last /kitten/s
goto first /basket/s

goto first /kitten/s
grab first /kitten/s
goto last /kitten/s
grab last /kitten/s
goto /basket/
drop

Gidget Goals:

ensure # /kitten/s on /basket/ = 2

191

Level 11. Let's organize two of a kind!

World Code:
object basket(row, column)
 set this:position to [row, column]
object cat(row, column)
 set this:position to [row, column]
object kitten(row, column)
 set this:position to [row, column]
object goop(row, column)
 set this:position to [row, column]
object bucket(row, column)
 set this:position to [row, column]

create cat(1, 4)
create cat(3, 3)
create basket(4, 2)
create goop(2, 1)
create goop(3, 2)
create bucket(1, 0)
create kitten(1, 2)

Mission Text:

• Ok, it looks like I'll have to move many
things to their proper places for this
level.

• Remember, to use lists, I have to add
an "s" to an object's name, and use
first and last to access specific list
items. After I'm done, move me to the
corner /cobblestone/ tile!

192

Level 11. Let's organize two of a kind!

Gidget Code (broken): Gidget Code (solution):

goto first /kitten/s
grab /kitten/
goto basket
drop /cat/
goto first /cat/s
grab first /cats/
goto last /cat/s
goto first /goop/s
goto last /goop/s
grab last /goop/s
goto /bucket/
drop last /goop/s
right 2
down 2

goto /kitten/
grab /kitten/
goto first /cat/s
grab first /cat/s
goto last /cat/s
grab last /cat/s
goto /basket/
drop
goto first /goop/s
grab first /goop/s
goto last /goop/s
grab last /goop/s
goto /bucket/
drop
right 4
down 3

Gidget Goals:

ensure gidget:position = [4,4]
ensure # /cat/s on /basket/ = 2
ensure # /kitten/s on /basket/ = 1
ensure # /goop/s on /bucket/ = 2

193

Level 12. Where Will the Kittens End Up?

World Code:
object puppy(row, column)
 set this:position to [row, column]
object kitten(row, column)
 set this:position to [row, column]
object bird(row, column)
 set this:position to [row, column]
object piglet(row, column)
 set this:position to [row, column]

object goop(row, column)
 set this:position to [row, column]

object bucket(row, column)
 set this:position to [row, column]

object basket(row, column)
 set this:position to [row, column]

create puppy(5, 2)
create goop(4, 3)
create goop(5, 0)
create kitten(1, 0)
create kitten(5, 3)
create piglet(3, 5)
create piglet(3, 1)
create bird(1, 3)
create bucket(1, 5)
create basket(4, 1)

Mission Text:

• I made some temporary adjustments
to my logic chip and I want to try this
level out myself in one shot!

• Can you help me determine where
the /kitten/s will end up after running
the code? We only have one shot at
this so let’s try our best! Click on the
tile to choose your answer!

Assessment Level
194

Level 12. Where Will the Kittens End Up?

Gidget Code (assessment): Assessment Question:

goto /bird/
grab /bird/
goto first /kitten/s
grab first /kitten/s
goto last /kitten/s
grab last /kitten/s
goto /puppy/
grab /puppy/
goto /basket/
drop /bird/
drop /puppy/
goto first /goop/s
grab first /goop/s
goto /bucket/
drop first /goop/s

Where will the /kitten/s be after I execute
the current code (assuming I have
unlimited energy)? Please click on the
grid, then press the button below to
check!

Can you tell me how you arrived at your
answer? It will help me with my logic chip
repairs!

Solution Code & Responses:

wrong:: I won't end up on this space.
wrong:3,1:I never interact with the /piglet/ on this
space.
wrong:3,5:I never interact with the /piglet/ on this
space.
wrong:4,3:I never interact with the /goop/ on this
space.
wrong:4,1:I only moved the /bird/ and <span
class='object'>/puppy/ here.

correct:1,5:I picked up all the animals except the /piglet/s</
span>, but only dropped off the single animals at the /basket/
. I brought the /kitten/s and the single <span
class='object'>/goop/ to the /bucket/!

Assessment Level
195

Level 13. Where Will the Birds End Up?

World Code:
object puppy(row, column)
 set this:position to [row, column]
object kitten(row, column)
 set this:position to [row, column]
object bird(row, column)
 set this:position to [row, column]
object piglet(row, column)
 set this:position to [row, column]

object goop(row, column)
 set this:position to [row, column]

object bucket(row, column)
 set this:position to [row, column]

object basket(row, column)
 set this:position to [row, column]

create puppy(5, 2)
create goop(4, 3)
create goop(5, 0)
create kitten(1, 0)
create kitten(5, 3)
create piglet(3, 5)
create piglet(3, 1)
create bird(1, 3)
create bucket(1, 5)
create basket(4, 1)

Mission Text:

• Okay, I think I’m getting the hang of
this. I want to try most of this by
myself. Can you just help me by
verifying what will happen by choosing
from the options on the right?

Assessment Level
196

Level 13. Where Will the Birds End Up?

Gidget Code (assessment): Assessment Question:

goto first /puppy/s
grab first /puppy/s
goto last /puppy/s
grab last /puppy/s
goto first /goop/s
grab first /goop/s
goto last /goop/s
grab last /goop/s
goto first /bird/s
grab first /birds/
goto last /bird/s
grab last /birds/
goto /basket/
drop first /puppy/s
drop last /puppy/s
drop first /bird/s
drop last /bird/s
goto /bucket/
drop first /goop/s
drop last /goop/s

After running the code (assuming I have
unlimited energy), the two /bird/s will
eventually end up:

• On their original positions.
• On the /basket/.
• On the /bucket/.
• On the /cobblestone/ tile at [0,4].

Can you tell me how you arrived at your
answer? It will help me with my logic chip
repairs!

Solution Code & Responses:

wrong:: I won't end up on this space.
wrong:3,1:I never interact with the /piglet/ on this
space.
wrong:3,5:I never interact with the /piglet/ on this
space.
wrong:4,3:I never interact with the /goop/ on this
space.
wrong:4,1:I only moved the /bird/ and <span
class='object'>/puppy/ here.

correct:1,5:I picked up all the animals except the /piglet/s</
span>, but only dropped off the single animals at the /basket/
. I brought the /kitten/s and the single <span
class='object'>/goop/ to the /bucket/!

Assessment Level
197

Level 14. The dog will help us!

World Code:
object boulder(row, column)
 set this:position to [row, column]
 set this:layer to 2
 set this:labeled to false
object goop(row, column)
 set this:position to [row, column]
object dog(row, column)
 say "Ask me for help!"
 set this:saidHello to false
 set this:position to [row, column]
 when (sayThis = "Please help me
Dog!") and (this:saidHello = false)
 say "I'm here to help!"
 set this:saidHello to true
 if not (/goop/:position = /
bucket/:position)
 goto /goop/
 grab /goop/
 goto /bucket/
 drop /goop/
 goto /basket/

object bucket(row, column)
 set this:position to [row, column]
object basket(row, column)
 set this:position to [row, column]

create boulder(4,0)
create boulder(4,1)
create boulder(4,2)
create boulder(4,3)
create boulder(4,4)
create boulder(4,5)
create basket(5,1)
create dog(5,0)
create goop(5,2)
create bucket(5,5)

Mission Text:

• Hmm, the /goop/s are even in this
mountainous area! I'm getting closer to
the factory, but I can't move /boulder/s,
so it'll be difficult to get to the /goop/s
now.

• It looks like one of my goals is to ask
the /dog/ for help. Maybe I can ask for
help by using a variable, which is used
to store data for use later. I can set
variables using the set command
followed by any name I want.

• I can use say followed by my variable
name to display what I have stored in
it. Let's try my code and ask the /dog/
for help! Check my goals first because
what I store in the variable has to be
exactly the same!

198

Level 14. The dog will help us!

Gidget Code (broken): Gidget Code (solution):

goto /dog/
set numBoulders to 6
say numBoulders
set sayThis to "Please Haelp me dogg"
say sayThis

set sayThis to "Please help me Dog!"

Gidget Goals:

ensure sayThis = "Please help me Dog!"
ensure /goop/:position = /bucket/:position
ensure /dog/:position = /basket/:position

199

Level 15. The piglet will help us!

World Code:
object bucket(row, column)
 set this:position to [row, column]
object boulder(row, column)
 set this:position to [row, column]
 set this:layer to 2
 set this:labeled to false
object goop(row, column)
 set this:position to [row, column]
object piglet(row, column)
 set this:position to [row, column]
 set this:rotation to -135
 set this:saidThanks to false
 say "Please help me! I can't get up!"
 when this:rotation = 0 and
this:saidThanks = false
 set this:saidThanks to true
 say "Thanks for helping me! I'll remove
a boulder for you!"
 set boulder to /boulder/s:first()
 if not (boulder = nothing)
 set boulder:layer to 1
 goto boulder
 remove boulder
 set /piglet/:scale to 1.5
 left 2
 up 2
 say "Yum! You can go through now!"
create goop(2, 4)
create piglet(3, 1)
create bucket(4, 0)
create boulder(0,3)
create boulder(1,3)
create boulder(2,3)
create boulder(3,3)
create boulder(4,3)

Mission Text:

• Other objects (and even me!) have
variables too! Their names and values
are displayed to the right for me, and
for any other object when you click on
it.

• Some variables are reserved, which
means we can't modify them. But we
can change 'rotation,' 'scale,' and
'transparency', or even add our own!

• Since we can't get past these /boulder/
s, maybe this /piglet/ can help us after
we turn it around! After it removes the  
/boulder/s, we can clean up the  
/goop/!

• Let's help the /piglet/ get back up!
Modify its rotation so that it's back to
normal (check my rotation value or the
goals for an example).

200

Level 15. The piglet will help us!

Gidget Code (broken): Gidget Code (solution):

set /piglet/:scale to 0.6
goto /goop/
grab /goop/
goto /bucket/
drop /goop/

set /piglet/:rotation to 0
goto /goop/
grab /goop/
goto /bucket/
drop /goop/

Gidget Goals:

ensure /piglet/:rotation = 0
ensure # /goop/s on /bucket/ = 1

201

Level 16. Read the note, pass the rat!

World Code:
object boulder(row, column)
 set this:position to [row, column]
 set this:layer to 2
 set this:labeled to false
object goop(row, column)
 set this:position to [row, column]
object bucket(row, column)
 set this:position to [row, column]
object note(row, column)
 set this:position to [row, column]
 set this:gaveInfo to false
 when /gidget/:position = this:position and
this:gaveInfo = false
 say "Use an array!
Arrays are lists of values, separated by a
comma. The rat wants you to set the password
variable to: [/goop/s, 2, /bucket/]"
 set this:gaveInfo to true
object rat(row, column)
 set this:position to [row, column]
 set this:gaveInfo to false
 when /gidget/:position = this:position and
this:gaveInfo = false
 set this:gaveInfo to true
 if not password = nothing and password =
[/goop/s, 2, /bucket/]
 say "Grr.. how did you you figure out how
to use arrays!?

I'll let you pass this time!"
 up 3
 left 2
 else
 say "You cannot pass without the
password! I'm going to take all your
energy!"
 set /gidget/:energy to 0
create goop(4,5)
create goop(1,6)
create rat(3,2)
create bucket(6,1)
create note(1,4)
create boulder(3,0)
create boulder(3,1)
create boulder(3,3)
create boulder(2,4)
create boulder(1,5)
create boulder(0,6)

Mission Text:

• Oh no, that mean looking /rat/ won't let
me pass without a password with
multiple values!

• I remember that there is a special kind
of variable called an array, which can
hold multiple values. For example, my
position (which you can see on the
right), is an array of two number
literals.

• For arrays, we start counting from "0"
and put square brackets around it. For
example, my position is [1,2]. So,  
/gidget/:position[0] would be 1.

• I'm pretty sure that my starting code is
correct, except for the password!
Maybe going to that /note/ over there
might give us a clue!

202

Level 16. Read the note, pass the rat!

Gidget Code (broken): Gidget Code (solution):

set password to ["first", "second", "third"]
say password[0]
goto first password[0]
grab first password[0]
say password[1]
goto last password[0]
grab last password[0]
say password[2]
goto password[2]
drop

goto /note/
set password to [/goop/s, 2, /bucket/]
goto first /goop/s
grab first /goop/s
goto last /goop/s
grab last /goop/s
goto /bucket/
drop

Gidget Goals:

ensure password = [/goop/s, 2, /bucket/]
ensure # /goop/s on /bucket/ = 2

203

Level 17. The dog will help us here!

World Code:
object chasm(row, col)
 set this:position to [row, col]
 set this:labeled to false
 when /gidget/:position = this:position
 set /gidget/:scale to 0
 set /gidget/:energy to 0
 say "Oh no Gidget, you fell into me and
lost all your energy!"
object rock(row, column)
 set this:position to [row, column]
object piglet(row, column)
 set this:position to [row, column]
object bird(row, column)
 set this:position to [row, column]
object basket(row, column)
 set this:position to [row, column]
object dog(row, column)
 set this:position to [row, column]
 set this:movedRock to false
 set this:movedBird to false
 set this:movedPiglet to false
 set this:movedChasm to false
 when moveThis = [5,0] and this:movedRock =
false
 say "Sorry Gidget, I can't reach the
rock!"
 set this:movedRock to true
 when moveThis = [3,4] and this:movedPiglet
= false
 say "Okay Gidget, I'll move the piglet to
the basket for you!"
 set this:movedPiglet to true
 goto /piglet/
 grab /piglet/
 goto /basket/
 drop
 when moveThis = [2,6] and this:movedBird =
false
 say "Okay Gidget, I'll move the bird to
the basket for you!"
 set this:movedBird to true
 goto /bird/
 grab /bird/
 goto /basket/
 drop
 when moveThis[1] = 2 and this:movedChasm =
false
 set this:movedChasm to true
 say "Don't be silly Gidget, I can't move
the chasm!"
create rock(5,0)
create basket(6,6)
create piglet(3,4)
create bird(2,6)
create chasm(0,2)
create chasm(1,2)
create chasm(2,2)
create chasm(3,2)
create chasm(4,2)
create chasm(5,2)
create chasm(6,2)
create dog(1,3)

Mission Text:

• Oh no, there appears to be a /chasm/
here. I can't cross it and will have to
find another way around, but I should
help these animals now!

• I'm detecting that the /dog/ over there
can help us! The /dog/ will listen for
changes in the moveThis array.

• Coordinates are actually just an array
of two number literal values. The first
number is the row and the second
number is the column.

• Once we assign moveThis with the
correct coordinates, the /dog/ will
move any object there for us! We can
keep reassigning moveThis with new
values until we're done!

204

Level 17. The dog will help us here!

Gidget Code (broken): Gidget Code (solution):

goto /rock/
say "I'm going to ask this helpful dog to
move things to the bucket by saying a
positions array."
set moveThis to [5,0]
say "Thanks for moving the thing at " +
moveThis + " to the basket!"
set moveThis to [1,2]
say "Thanks for moving the thing at " +
moveThis + " to the basket!"
up 2

set moveThis to [2,6]
set moveThis to [3,4]

Gidget Goals:

ensure moveThis = [2,6] or moveThis = [3,4]
ensure /bird/:position = /basket/:position
ensure /piglet/:position = /basket/:position

205

Level 18. What's the array's value?

World Code:
object puppy(row, column)
 set this:position to [row, column]

object goop(row, column)
 set this:position to [row, column]

object bucket(row, column)
 set this:position to [row, column]

object basket(row, column)
 set this:position to [row, column]

object bird(row, column)
 set this:position to [row, column]

create basket(3,1)
create bucket(1,3)
create goop(1,0)
create puppy(4,4)
create bird(3,2)

Mission Text:

• Alright, I still get confused with my
code sometimes, but I'm getting much
better thanks to you!

• I want to try most of this by myself.
Can you just help me by verifying what
will happen after we run the program
by choosing from the options on the
right?

Assessment Level
206

Level 18. What's the array's value?

Gidget Code (assessment): Assessment Question:

set a to /bird/:position
set b to /bucket/:position
set c to /goop/:position
set myArray to [a, b, c]
goto /goop/
grab /goop/
goto /bucket/
drop /goop/
goto /bird/
grab /bird/
up

I'm going to try remembering the objects'
positions. After running the code
(assuming I have unlimited energy), the
variable "myArray" will be equal to:

• [[3,2], [1,3], [1,0]]
• [[2,2], [1,3], [1,3]]
• [[3,2], [1,3], [1,3]]
• [[1,0], [1,3], [3,2]]
• nothing, because there is an error in

the code.

Can you tell me how you arrived at your
answer? It will help me with my logic chip
repairs!

Solution Code & Responses:

wrong:[[2,2], [1,3], [1,3]]:A variable's value won't
change unless it's directly modified. So moving the /goop/ to
the /bucket/ and the /bird/ up
won't change the values you stored earlier.
wrong:[[3,2], [1,3], [1,3]]:A variable's value won't
change unless it's directly modified. So moving the /goop/ to
the /bucket/ won't change the value you stored earlier.
wrong:[[1,0], [1,3], [3,2]]:When you assign an array
with values, it puts them in the same order you put them in. We put the <span
class='dictionaryTerm'>variable values in order, [a, b, c].
wrong:nothing, because there is an error in the code.:There were no errors. Remember that
we can set variables to other <span
class='dictionaryTerm'>variable's values at a given time, and that <span
class='keyword'>up can be used without a number.

correct:[[3,2], [1,3], [1,0]]:Variable's values won't
change unless they're directly modified. Moving objects won't affect the values you stored
earlier. So, myArray's value is the same as when we started, [a, b, c].

Assessment Level
207

Level 19. What Will Gidget Say?

World Code:
object puppy(row, column)
 set this:position to [row, column]
object basket(row, column)
 set this:position to [row, column]
object dog(row, column)
 set this:position to [row, column]
object kitten(row, column)
 set this:position to [row, column]
object cat(row, column)
 set this:position to [row, column]

create basket(4,2)

create dog(3,1)
create puppy(1,0)
create kitten(1,3)
create cat(3,3)

Mission Text:

• Alright, I’m getting the hang of this! I
want to try most of this by myself. Can
you just help me by verifying what will
happen by choosing from the options
on the right?

Assessment Level
208

Level 19. What Will Gidget Say?

Gidget Code (assessment): Assessment Question:

set myArray to [/puppy/, /dog/, /cat/]
goto myArray[1]
set myArray[1] to /kitten/
goto myArray[1]
grab myArray[1]
goto /basket/
drop myArray[1]
say "The " + myArray[2] + " isn't in the
basket yet."

I'm going to try remembering the objects'
positions. After running the code
(assuming I have unlimited energy), what
will my final "say" be at the end of the
code output?:

• "The /cat/ isn't in the /basket/ yet."
• "The /puppy/ isn't in the /basket/ yet."
• "The /dog/ isn't in the /basket/ yet."
• "The /kitten/ isn't in the /basket/ yet.”

Can you tell me how you arrived at your
answer? It will help me with my logic chip
repairs!

Solution Code & Responses:

wrong:"The /puppy/ isn't in the /basket/</
span> yet.":The value for myArray[0], which was /puppy/</
em> never changed.
wrong:"The /dog/ isn't in the /basket/</
span> yet.":/dog/ was replaced with <span
class='object'>/kitten/ while running the code because myArray[1] refers to the
middle (2nd) value.
wrong:"The /kitten/ isn't in the /basket/
 yet.":Since arrays start at [0], <span
class='object'>/kitten/ is stored in the second value of the <span
class='dictionaryTerm'>array, which is myArray[1].

correct:"The /cat/ isn't in the /basket/</
span> yet.":Since arrays start at [0], only the middle
value, [1], was changed from /dog/ to <span
class='object'>/kitten/. So myArray[2] is /cat/</
span>.

Assessment Level
209

Level 20. Press the button, open the gate!

World Code:
object boulder(row, column)
 set this:position to [row, column]
 set this:layer to 2
 set this:labeled to false
object piglet(row, column)
 set this:position to [row, column]
 function oink()
 say "Oink oink!"
object basket(row, column)
 set this:position to [row, column]
object fence(row, column)
 set this:position to [row, column]
 set this:layer to 2
 set this:labeled to false
object gate(row, column)
 set this:position to [row, column]
 set this:layer to 2
 set this:labeled to false
object button(row, column)
 set this:position to [row, column]
 function openGate()
 set /gate/:layer to 1
 set /gate/:transparency to 0
create boulder(4,1)
create boulder(3,2)
create boulder(1,5)
create piglet(1,2)
create basket(1,0)
create button(6,5)
create fence(5,0)
create fence(5,1)
create fence(5,2)
create gate(5,3)
create fence(5,4)
create fence(5,5)
create fence(5,6)

Mission Text:

• Oh no, there's almost no /grass/ here. We
must be getting closer to the leaking /goop/
factory!

• All that grabbing & dropping made me
remember a way to save time writing my
programs though... functions!

• Objects can have built-in functions that you
can see labeled when you click on them, or
you can write your own! Objects' functions
will have () at the end of their names.

• You can call these functions by stating the
object’s name, using a colon, then writing
the function name with parentheses like this:
/button/:openGate()

• Check out the example I gave you and
you'll notice code belonging to a function is
grouped together with indents.

• Let's figure out how to open the /gate/ with
the /button/, and give that /piglet/ some new
properties before we put it in the /basket/!

• Don't forget you can click on objects to see
their properties, and you should try running
my code first to see what happens!

210

Level 20. Press the button, open the gate!

Gidget Code (broken): Gidget Code (solution):

goto /button/
say "Let's click the button to see its
function name. It has to be exact!"
/button/:openFence()
function getPiglet()
 goto /piglet/
 set /piglet/:nickname to "wilbur"
 set /piglet/:age to 3
 grab /piglet/
getBird()
getThePiggy()
goto /basket/

goto /button/
/button/:openGate()
function getPiglet()
 goto /piglet/
 set /piglet/:nickname to "babe"
 set /piglet/:age to 3
 grab /piglet/
 goto /basket/
 drop /piglet/
getPiglet()

Gidget Goals:

ensure /piglet/:nickname = "babe"
ensure /piglet/:age = 3
ensure # /piglet/ on /basket/ = 1

211

Level 21. Flip the animals right-side-up!

World Code:
object kitten(row, column, angle)
 set this:saidThanks to false
 set this:position to [row, column]
 set this:rotation to angle
 when this:rotation = 0 and
this:saidThanks = false
 say "Thanks, mewwww!"
 set this:saidThanks to true
object bird(row, column, angle)
 set this:saidThanks to false
 set this:position to [row, column]
 set this:rotation to angle
 when this:rotation = 0 and
this:saidThanks = false
 say "Thanks, chirp chirp!"
 set this:saidThanks to true
object piglet(row, column, angle)
 set this:saidThanks to false
 set this:position to [row, column]
 set this:rotation to angle
 when this:rotation = 0 and
this:saidThanks = false
 say "Thanks, oink oink!"
 set this:saidThanks to true
object dog(row, column, angle)
 set this:saidThanks to false
 set this:position to [row, column]
 set this:rotation to angle
 when this:rotation = 0 and
this:saidThanks = false
 say "Thanks, bow wow!"
 set this:saidThanks to true
object goop(row, column)
 set this:position to [row, column]
object basket(row, column)
 set this:position to [row, column]
object bucket(row, column)
 set this:position to [row, column]
create basket(5,0)
create bucket(5,5)
create goop(3,3)
create kitten(4,2, -55)
create bird(3,5, 75)
create piglet(1,4, -120)
create dog(1,1, -85)

Mission Text:

• Oh, what's happening here?! It looks
like the animals are dizzy from the  
/goop/! We need to help them!

• We can use functions here to take care
of the tedious task more efficiently.

• Functions can be more useful by
passing values inside their
parentheses! Functions can also return
values back to whatever called it.

• The goal for this level is to get all the
animals right-side-up, and move
everything to their respective
containers.

• You can use keep using the same
function over-and-over! Try running my
code to see what happens!

212

Level 21. Flip the animals right-side-up!

Gidget Code (broken): Gidget Code (solution):

function transferThing(whichThing,
toWhere)
 goto whichThing
 grab whichThing
 set whichThing:scale to 1.4
 say whatIDid(whichThing)
 goto toWhere
 drop
function whatIDid(item)
 set sentence to "I grabbed the " + item
+ "!"
 return sentence
transferThing(/goop/, /bucket/)
transferThing()
transferObject(/bird/, /bucket/)
transferThing(/kitten/)

function transferThing(whichThing,
toWhere)
 goto whichThing
 grab whichThing
 set whichThing:rotation to 0
 say whatIDid(whichThing)
 goto toWhere
 drop
function whatIDid(item)
 set sentence to "I grabbed the " + item
+ "!"
 return sentence
transferThing(/goop/, /bucket/)
transferThing(/bird/, /basket/)
transferThing(/dog/, /basket/)
transferThing(/piglet/, /basket/)
transferThing(/kitten/, /basket/)

Gidget Goals:

ensure /goop/:position = /bucket/:position
ensure /dog/:rotation = 0 and /dog/:position = /basket/:position
ensure /bird/:rotation = 0 and /bird/:position = /basket/:position
ensure /kitten/:rotation = 0 and /kitten/:position = /basket/:position
ensure /piglet/:rotation = 0 and /piglet/:position = /basket/:position

213

Level 22. Let's plug the pipe with rocks!

World Code:
object kitten(row, column)
 set this:position to [row, column]
object bird(row, column)
 set this:position to [row, column]
object puppy(row, column)
 set this:position to [row, column]
object basket(row, column)
 set this:position to [row, column]
object goop(row, column)
 set this:position to [row, column]
object pipe(row,col)
 set this:position to [row,col]
 set this:labeled to false
 set this:layer to 2
create goop(4,3)
create goop(5,3)
create pipe(4,2)
create pipe(5,2)
create bird(2, 5)
create puppy(2, 5)
create kitten(2, 5)
create basket(2, 5)

Mission Text:

• Oh no! Those pipes are oozing  
/goop/s, but I don't have a /bucket/ to
store them, or a way to plug the pipes!

• Since I don't have a /bucket/, let's use
the remove command to get rid of all
the /goop/s from this level!

• I can also create /rock/s on each of the
/cobblestone/ spots to plug the pipes!
I can create new objects by declaring
them like functions (but using the
object command).

214

Level 22. Let's plug the pipe with rocks!

Gidget Code (broken): Gidget Code (solution):

object rock(saySomething)
 say saySomething
goto /goop/
remove /goop/
up 3
create rock("hello! i'm a rock!")
grab /rock/

object rock(saySomething)
 say saySomething
goto first /goop/s
remove first /goop/s
create rock("My first rock!")
goto last /goop/s
remove last /goop/s
create rock("My second rock!")

Gidget Goals:

ensure /rock/s:first():position = [4,3] or /rock/s:first():position = [5,3]
ensure /rock/s:last():position = [4,3] or /rock/s:last():position = [5,3]
ensure /goop/ = nothing

215

Level 23. Clean up the goop, plug the pipe, and plant the sapling!

World Code:
object cat(row, column)
 set this:position to [row, column]
object goop(row, column)
 set this:position to [row, column]
object pipe(row,col)
 set this:position to [row,col]
 set this:labeled to false
 set this:layer to 2
create pipe(4,1)
create goop(4,2)
create goop(3,1)
create goop(3,2)
create goop(2,3)
create goop(2,2)

Mission Text:

• Oh no! It looks like my /rock/s couldn't
hold the /goop/ back and one of the
pipes spilled again.

• We should set the variable "mass" of
the /rock/ to be "heavy" so that it
doesn't move again. We can do this by
using the this command to the object
declaration like I have in my starting
example code.

• The goals for this level are to put a  
/rock/ in the pipe again, remove all
the /goop/s, and create a /sapling/ to
take each of their places on any of the
ground spots.

216

Level 23. Clean up the goop, plug the pipe, and plant the sapling!

Gidget Code (broken): Gidget Code (solution):

object puppy(sayThis)
 say sayThis
 set this:age to 5
object kitten()
 say "meow"
 set this:fluffiness to 50
function removeGoop()
 goto /goop/
 remove /goop/
 create kitten()
removeGoop()
up
create puppy("woof woof")
removeGoop()
right

object rock()
 set this:mass to "heavy"
object sapling()
function removeGoop()
 goto /goop/
 remove /goop/
 create sapling()
removeGoop()
removeGoop()
removeGoop()
removeGoop()
removeGoop()
create rock()

Gidget Goals:

ensure /goop/ = nothing
ensure # /sapling/s = 5
ensure /rock/:position = [4, 2] and /rock/:mass = "heavy"

217

Level 24. Where Will The Cat End Up?

World Code:
object puppy(row, column)
 set this:position to [row, column]
object kitten(row, column)
 set this:position to [row, column]
object bird(row, column)
 set this:position to [row, column]
object piglet(row, column)
 set this:position to [row, column]

object goop(row, column)
 set this:position to [row, column]

object bucket(row, column)
 set this:position to [row, column]

object basket(row, column)
 set this:position to [row, column]

create puppy(5, 3)
create goop(4, 2)
create kitten(1, 5)
create piglet(3, 0)
create bird(1, 2)
create bucket(1, 0)
create basket(4, 4)

Mission Text:

• Great, functions and objects are
important, so I want to try using them
on my own!

• I made some temporary adjustments
to my logic chip and I want to try this
level out myself in one shot!

• Can you help me determine where
the /cat/ will end up after running the
code? We only have one shot at this so
let’s try our best! Click on the tile to
choose your answer!

Assessment Level
218

Level 24. Where Will The Cat End Up?

Gidget Code (assessment): Assessment Question:

object cat()
 say "meow"

function makeCat(num)
 goto /goop/
 up num
 right num
 down num - 1
 create cat()
 left num * num
 up num
makeCat(2)

Where will the /cat/ I create be located
after I execute the current code
(assuming I have unlimited energy)?
Please click on the grid, then press the
button below to check!

Can you tell me how you arrived at your
answer? It will help me with my logic chip
repairs!

Solution Code & Responses:

wrong::That /cat/ won't end up on
this space.
wrong:1,0:I will end up on this space, but that <span
class='object'>/cat/ won't.
wrong:3,0:I already created the /cat/</
span> earlier and moved away from this spot without it.

correct:3,4:I circle around, create the /
cat/, and continue on by myself without it. So, the
/cat/ remains in the same spot I
made it!

Assessment Level
219

Level 25. Where Will Gidget End Up?

World Code:
object puppy(row, column)
 set this:position to [row, column]

object goop(row, column)
 set this:position to [row, column]

object bucket(row, column)
 set this:position to [row, column]

object basket(row, column)
 set this:position to [row, column]

object bird(row, column)
 set this:position to [row, column]

create basket(3, 1)
create bucket(1, 3)
create goop(1, 0)
create puppy(4, 4)
create bird(3, 2)

Mission Text:

• Okay, I should get a little more practice
using functions and objects and I want
to try most of this by myself. Can you
just help me by verifying what will
happen by choosing from the options
on the right?

Assessment Level
220

Level 25. Where Will Gidget End Up?

Gidget Code (assessment): Assessment Question:

set x to [30, 10, 0]

object piglet(number)
 set this:weight to number

function shuffle(newNumber, myArray)
 set myArray[0] to myArray[0] + newNumber
 set myArray[1] to myArray[1] + myArray[2]
 set myArray[2] to myArray[2] * newNumber
 return myArray

set x to shuffle(x[1], x)
create piglet(x[1]+x[2])

After running the code (assuming I have
unlimited energy), the /piglet/'s weight will
be:

• The /piglet/'s weight is 10.
• The /piglet/'s weight is 30.
• The /piglet/'s weight is 20.
• There will be no /piglet/.

Can you tell me how you arrived at your
answer? It will help me with my logic chip
repairs!

Solution Code & Responses:

wrong:The /piglet/'s weight is <span
class='object'>30.:
wrong:The /piglet/'s weight is <span
class='object'>20.:
wrong:There will be no /piglet/.:I actually declared an
object named /piglet/, and
used create to make one, so a /
piglet/ will exist.

correct:The /piglet/'s weight is <span
class='object'>10.:The /piglet/'s weight depends
on x[1] and x[2]. If you
look carefully, the values of x[1] and <span
class='object'>x[2] remain the same, so /piglet/</
span>'s weight is 10+<span
class='object'>0=10.

Assessment Level
221

Level 26. True or False: Are the animals infected?

World Code:
object basket(row, column)
 set this:position to [row, column]
object sapling(row, column, status)
 set this:position to [row, column]
 set this:infected to status
object shrub(row, column, status)
 set this:position to [row, column]
 set this:infected to status
object rock(row, column, status)
 set this:position to [row, column]
 set this:infected to status
object bird(row, column, status)
 set this:position to [row, column]
 set this:infected to status
object dog(row, column, status)
 set this:position to [row, column]
 set this:infected to status
object dog(row, column, status)
 set this:position to [row, column]
 set this:infected to status
create basket(1,4)
create sapling(1,3,false)
create rock(1,0,true)
create bird(4,4,false)
create dog(3,1,false)
create shrub(3,2,true)

Mission Text:

• Alright, I'm at the inner ground of the
factory now, so we're almost there! But
yuck! The ground here has been
infected with the /goop/s!

• Oh no, other things are getting
infected by the /goop/ too! Let's put
the non-infected in the /basket/ to get
them out of here first!

• We can check the property of each
object for boolean values (which
means they are always either true or
false) and an if statement, which let's
us do something based on whether the
boolean is true or false!

222

Level 26. True or False: Are the animals infected?

Gidget Code (broken): Gidget Code (solution):

function checkForInfection(objectName)
 goto objectName
 if objectName:infected = true
 grab objectName
checkForInfection(/shrub/)
checkTheDog(/dog/)
checkForInfection(/sapling/)
checkForInfection(/rock/)
checkForInfection(/bird/)
goto /basket/

function checkForInfection(objectName)
 goto objectName
 if objectName:infected = false
 grab objectName
 goto /basket/
 drop objectName
checkForInfection(/sapling/)
checkForInfection(/bird/)
checkForInfection(/dog/)
checkForInfection(/shrub/)

Gidget Goals:

ensure /sapling/:infected = false and /sapling/:position = /basket/:position
ensure /bird/:infected = false and /bird/:position = /basket/:position
ensure /dog/:infected = false and /dog/:position = /basket/:position
ensure not /rock/:position = /basket/:position
ensure not /shrub/:position = /basket/:position

223

Level 27. Let's clean up some more!

World Code:
object basket(row, column)
 set this:position to [row, column]
object container(row, column)
 set this:position to [row, column]
object sapling(row, column, status)
 set this:position to [row, column]
 set this:infected to status
object shrub(row, column, status)
 set this:position to [row, column]
 set this:infected to status
object puppy(row, column, status)
 set this:position to [row, column]
 set this:infected to status
object piglet(row, column, status)
 set this:position to [row, column]
 set this:infected to status
object kitten(row, column, status)
 set this:position to [row, column]
 set this:infected to status
object dog(row, column, status)
 set this:position to [row, column]
 set this:infected to status
create basket(5,0)
create container(1,4)
create sapling(2,3,true)
create puppy(1,2,true)
create piglet(5,3,false)
create kitten(3,1,false)
create shrub(4,5,true)

Mission Text:

• Okay, now that we know we can
control what I do using if statements,
let's add an else statement, which is
used when the if is not true.

• This will make it much easier for me to
organize things!

• The goal of this level is to put the
uninfected things into the /basket/, and
the infected things into the /container/
(so we can disinfect them later)!

224

Level 27. Let's clean up some more!

Gidget Code (broken): Gidget Code (solution):

function organize(objectName)
 goto objectName
 grab objectName
 if objectName:infected = true
 goto /container/
 else
 goto /container/
 drop
organize(/sapling/)
organize(/puppy/)
organize()
organize("kitten")
organize(/shrub/)

function organize(objectName)
 goto objectName
 grab objectName
 if objectName:infected = true
 goto /container/
 else
 goto /basket/
 drop objectName
organize(/puppy/)
organize(/shrub/)
organize(/sapling/)
organize(/piglet/)
organize(/kitten/)

Gidget Goals:

ensure /puppy/:infected = true and /puppy/:position = /container/:position
ensure /shrub/:infected = true and /shrub/:position = /container/:position
ensure /sapling/:infected = true and /sapling/:position = /container/:position
ensure /piglet/:infected = false and /piglet/:position = /basket/:position
ensure /kitten/:infected = false and /kitten/:position = /basket/:position

225

Level 28. Are the animals infected or sick?

World Code:
object basket(row, column)
 set this:position to [row, column]

object container(row, column)
 set this:position to [row, column]
object piglet(row, column, inf, sck)
 set this:position to [row, column]
 set this:infected to inf
 set this:sick to sck
object bird(row, column, inf, sck)
 set this:position to [row, column]
 set this:infected to inf
 set this:sick to sck
object shrub(row, column, inf, sck)
 set this:position to [row, column]
 set this:infected to inf
 set this:sick to sck
object dog(row, column, inf, sck)
 set this:position to [row, column]
 set this:infected to inf
 set this:sick to sck
create basket(2,0)
create container(1,0)
create piglet(1,3,true,true)
create bird(4,4,true,false)
create dog(3,1,false,true)
create shrub(3,2,false,false)

Mission Text:

• Okay! I'm getting good at organizing
things! That's going to be very useful
for my cleanup duties!

• I can make even more fine-tuned
decisions by using the or and and
commands between two boolean
expressions.

• For an or to be true, either one (or
both) of the two boolean expressions
surrounding it has to be true.

• On the other hand, for an and to be
true, both of the boolean expressions
surrounding it must be true.

• Help me organize these animals into
the correct bins. Animals that are
infected and sick should go in the /
container/. Animals that are infected or
sick should go into the /basket/.

226

Level 28. Are the animals infected or sick?

Gidget Code (broken): Gidget Code (solution):

function organize(objectName)
 goto thingName
 if thingName:infected = true and
thingName:sick = true
 grab thingName
 goto /shrub/
 drop
 else
 if thingName:infected = true or
thingName:sick = true
 grab thingName
 goto /container/
 drop
organize(/shrub/)
organize(/shrub/)
organize(/piglet/)
organize(/bird/)
organize(/dog/)

function organize(thingName)
 goto thingName
 if thingName:infected = true and
thingName:sick = true
 grab thingName
 goto /container/
 drop thingName
 else
 if thingName:infected = true or
thingName:sick = true
 grab thingName
 goto /basket/
 drop thingName
organize(/piglet/)
organize(/bird/)
organize(/dog/)

Gidget Goals:

ensure /piglet/:position = /container/:position
ensure /piglet/:infected = true and /piglet/:sick = true
ensure /bird/:position = /basket/:position
ensure /bird/:infected = true or /bird/:sick = true
ensure /dog/:position = /basket/:position
ensure /dog/:infected = true or /dog/:sick = true

227

Level 29. Let's open the factory gates!

World Code:
object shrub(row, column, size)
 set this:position to [row, column]
 set this:scale to size
object sapling(row, column, size)
 set this:position to [row, column]
 set this:scale to size
object rock(row, column, size)
 set this:position to [row, column]
 set this:scale to size
object boulder(row, column, size)
 set this:position to [row, column]
 set this:scale to size
object goop(row, column, size)
 set this:position to [row, column]
 set this:scale to size
object bird(row, column)
 set this:position to [row, column]
object crack(row, column)
 set this:position to [row, column]
 set this:checkFlag to [false,false]
 when /sapling/:position = this:position and /
sapling/:scale < 1 and this:checkFlag[0] = false
 set this:checkFlag[0] to true
 remove /sapling/
 when /rock/:position = this:position and /
rock/:scale < 1 and this:checkFlag[1] = false
 set this:checkFlag[1] to true
 remove /rock/
 when this:checkFlag = [true, true]
 remove this
object hole(row, column)
 set this:position to [row, column]
 set this:checkFlag to [false,false]
 when /goop/:position = this:position and /
goop/:scale > 1 and this:checkFlag[0] = false
 set this:checkFlag[0] to true
 remove /goop/
 when /boulder/:position = this:position and /
boulder/:scale > 1 and this:checkFlag[1] = false
 set this:checkFlag[1] to true
 remove /boulder/
 when this:checkFlag = [true, true]
 remove this
create crack(3,2)
create hole(3,6)

object fence(row, column)
 set this:position to [row, column]
 set this:labeled to false
 set this:layer to 2
object gate(row, column)
 set this:position to [row, column]
 set this:labeled to false
 set this:layer to 2
 when /hole/ = nothing and /crack/ = nothing
 remove this
create bird(0,6)
create fence(2,0)
create fence(2,1)
create fence(2,2)
create fence(2,3)
create gate(2,4)
create fence(2,5)
create fence(2,6)
create fence(2,7)
create fence(2,8)
create sapling(5,2, .9)
create rock(4,5, .95)
create boulder(7,3, 1.1)
create goop(6,1, 1.2)

Mission Text:

• Oh! I can see the factory! Now I just
have to open the /gate/!

• I remember that mission control said
that I need to fill up the spaces next to
the /fence/ to get the /gate/ to open!

• We can use all the commands we've
used up till now. Another useful
command is not, which is used to flip a
boolean expression or value.

• Let's put all the larger things (scale >
1) into the /hole/, and all the smaller
things (scale < 1) into the /crack/.

228

Level 29. Let's open the factory gates!

Gidget Code (broken): Gidget Code (solution):

function dropSmall(thing)
 goto thing
 if not thing:scale > 1
 drop thing
 goto hole
 grab thing
function dropBig(thing)
 goto thing
 if thing > 1
 drop thing
 goto hole
 grab thing
dropSmall(/sapling/)
dropSmall(/boulder/)
dropSmall(/rock/)
dropBig(/boulder/)
dropBig(/sapling/)
dropBig(/rock/)
goto /bird/

function dropThing(thing)
 goto thing
 if not thing:scale > 1
 grab thing
 goto /crack/
 drop thing
 else
 grab thing
 goto /hole/
 drop thing
dropThing(/sapling/)
dropThing(/goop/)
dropThing(/rock/)
dropThing(/boulder/)
goto /bird/

Gidget Goals:

ensure /gidget/:position = /bird/:position and /gidget/:position = [0,6]

229

Level 30. Where Will Gidget End Up?

World Code:
object dog(row, column)
 set this:position to [row, column]
object cat(row, column)
 set this:position to [row, column]
object bird(row, column)
 set this:position to [row, column]
object piglet(row, column)
 set this:position to [row, column]

object goop(row, column)
 set this:position to [row, column]

object bucket(row, column)
 set this:position to [row, column]

object basket(row, column)
 set this:position to [row, column]

create dog(5, 3)
create goop(2, 3)
create cat(1, 5)
create piglet(2, 0)
create bird(1, 2)
create bucket(4, 0)
create basket(3, 2)

Mission Text:

• Great, I’m understanding how to use
booleans and if statements thanks to
you!

• I'm going to calibrate my logic chip by
using some booleans and need you to
help me in one shot before we
continue!

• Can you help me determine where I
will end up after running the code?
Since we only have one shot at this, I
hope you get it right! Click on the tile to
choose your answer!

230

Level 30. Where Will Gidget End Up?

Gidget Code (assessment): Assessment Question:

goto /cat/
if /cat/:position = [0,5]
 goto /bird/
else
 goto /piglet/
if not /dog/:position[1] = 3
 down 2
else
 right 3

Where will I be after I execute the current
code (assuming I have unlimited energy)?
Please click on the grid, then press the
button below to check!

Can you tell me how you arrived at your
answer? It will help me with my logic chip
repairs!

Solution Code & Responses:

wrong:: I won't end up on this space.
wrong:1,5:The /cat/'s position was not</
span> [0,5], so we went to the
/piglet/ (instead of the /bird/),
then right to the /goop/.
wrong:3,2:The /cat/'s position was not</
span> [0,5], so we went to the
/piglet/, then right to the <span
class='object'>/goop/.
wrong:4,0:Because of the not, we moved <span
class='keyword'>right 3 spaces instead of <span
class='keyword'>down from the /piglet/.

correct:2,3:Starting at the /cat/, the expression is <span
class='keyword'>not true, so I go to the <span
class='object'>/piglet/, then the expression is true
(but we flip it because of the not), so I go <span
class='keyword'>right 3 spaces.

231

Level 31. Where Will Gidget End Up?

World Code:
object puppy(row, column)
 set this:position to [row, column]

object goop(row, column)
 set this:position to [row, column]

object bucket(row, column)
 set this:position to [row, column]

object basket(row, column)
 set this:position to [row, column]

object bird(row, column)
 set this:position to [row, column]

object kitten(row, column)
 set this:position to [row, column]

object piglet(row, column)
 set this:position to [row, column]

object button(row, column)
 set this:position to [row, column]

create basket(3, 0)
create kitten(3,0)
create bucket(1, 3)
create goop(1, 3)
create puppy(4, 1)
create piglet(0, 2)
create bird(3, 2)
create button(4, 3)

Mission Text:

• Okay, I think I'm getting the hang of
this and I want to try most of this by
myself. I want to make sure my
understanding of booleans and if
statements are correct.

• Can you just help me by verifying what
will happen by choosing from the
options on the right?

232

Level 31. Where Will Gidget End Up?

Gidget Code (assessment): Assessment Question:

goto /piglet/
if /gidget/:position = /piglet/:position and
/goop/:position = /bucket/:position
 goto /bird/
else
 goto /button/

if /goop/:position = /bucket/:position or /
kitten/:position = /basket/:position
 up 3
else
 left 2

After running the code (assuming I have
unlimited energy), I will eventually end up
on the:

• /piglet/
• /puppy/
• /goop/ & /bucket/
• /kitten/ & /basket/

Can you tell me how you arrived at your
answer? It will help me with my logic chip
repairs!

Solution Code & Responses:
wrong:/puppy/:Since the first if statement (with an
and) is true, I go to the /bird/
 and not the /button/.
wrong:/goop/ & /bucket/:Since the first <span
class='keyword'>if statement (with an and) is true</
span>, I go to the /bird/ and not the <span
class='object'>/button/.
wrong:/kitten/ & /basket/:When using an <span
class='keyword'>or, only one of the boolean statements around it can
be true for the or to be true</
span>.

correct:/piglet/:The first if statement is <span
class='object'>true since both booleans around it are <span
class='object'>true for the and. The next <span
class='keyword'>if statement is false since both <span
class='dictionaryTerm'>booleans around it are true for the <span
class='keyword'>or (only one can be true for an <span
class='keyword'>or to be true). So we go to the /bird/
, then /piglet/.

233

Level 32. Let's remove all these nasty goops!

World Code:
object goop(row, column, size, angle)
 set this:position to [row, column]
 set this:scale to size
 set this:rotation to angle

create goop(0,0, 1, -45)
create goop(0,2, 1, -20)
create goop(0,3, 1, 0)
create goop(0,4, 1, 10)
create goop(1,0, 1, -20)
create goop(1,1, 1, 25)
create goop(1,2, 1, -5)
create goop(1,4, 1, 100)
create goop(2,0, 1, 7)
create goop(2,2, 1, 15)
create goop(2,3, 1, 180)
create goop(2,4, 1, 30)
create goop(3,1, 1, 30)
create goop(3,3, 1, 0)
create goop(3,4, 1, 10)
create goop(4,0, 1, 50)
create goop(4,2, 1, 15)
create goop(4,4, 1, 30)

Mission Text:

• Wow, there are so many /goop/s piled
up here at the entrance! No wonder
there's so many /goop/ outside too!

• It looks like it might take a long time to
clean all this up....Oh! I remember that
I could use a "looping" function called
a while to help me out!

• For a while, I just have to use that
command, followed by a boolean
expression. It will keep looping
(repeating) around the tabbed code
until that expression becomes false!

• The goal of this level is to remove all
the /goop/s! Try out my starting code
to see how it works!

234

Level 32. Let's remove all these nasty goops!

Gidget Code (broken): Gidget Code (solution):

while not /goop/ = nothing
 goto /goop/
 say "I'm at the goop"!
 right 2
 up 2
 left 2
 down 2
remove /gidget/

while not /goop/ = nothing
 goto /goop/
 remove /goop/

Gidget Goals:

ensure /goop/ = nothing

235

Level 33. Let's gather materials and clean up the goops!

World Code:
function
AllMaterialScaleGreaterThanOne()
 set myList to /material/s
 for num in myList
 if num:scale < 1
 return false
 return true
object material(row, column)
 set this:position to [row, column]
 set this:scale to 0.6
object container(row, column)
 set this:position to [row, column]
object bucket(row, column)
 set this:position to [row, column]
object goop(row, column, size)
 set this:position to [row, column]
 set this:scale to size
create material(7,7)
create material(2,3)
create material(4,5)
create material(5,0)

create container(2,5)
create bucket(5,1)
create goop(0,0, 1.2)
create goop(0,3, 1)
create goop(0,6, 0.7)
create goop(3,1, 0.8)
create goop(1,2, 1)
create goop(5,2, 0.9)
create goop(1,6, 1)
create goop(2,0, 1.5)
create goop(2,4, 1.3)
create goop(6,5, 1)
create goop(2,6, 0.9)
AllMaterialScaleGreaterThanOne()

Mission Text:

• It's a mess here too! How can there be
so many /goop/s? There must be a
major leak somewhere nearby! I'll use
my energy reserves to make sure I
have enough to pass this level.

• The while loop in the previous level
was very useful! There's another useful
repeating command called for, which
we can use to go through lists of
objects more easily.

• It looks like there is /material/ here that
I can start collecting to use for repairs
using for loops.

• The goals of this level are to get the  
/goop/s into the /bucket/ and enlarge
the /material/ before putting them into
the /container/. Try running my starting
code first to get an idea about how for
works!

236

Level 33. Let's gather materials and clean up the goops!

Gidget Code (broken): Gidget Code (solution):

set materialList to /material/s
for m in materialList
 goto m
 grab m
 goto /bucket/
set myGoops to /goop/s
for g in goopList
 goto g
 set g:scale to 1.5
 grab g
goto /bucket/

for m in /material/s
 goto m
 grab m
 set m:scale to 2
 goto /container/
 drop m
for g in /goop/s
 goto g
 grab g
 goto /bucket/
 drop g

Gidget Goals:

ensure # /material/s on /container/ = 4
ensure AllMaterialScaleGreaterThanOne()
ensure # /goop/s on /bucket/ = 11

237

Level 34. Let's shut down the goop factory!

World Code:
object goop(r,c,size)
 set this:position to [r,c]
 set this:scale to size
object bucket(r,c)
 set this:position to [r,c]
object basket(r,c)
 set this:position to [r,c]
object container(r,c)
 set this:position to [r,c]

object kitten(r,c,angle)
 set this:position to [r,c]
 set this:rotation to angle

object masterswitch(r,c)
 set this:position to [r,c]
 set this:activated to false
 set this:saidComment to false
 function press()
 set this:activated to true
 when this:activated = true and this:saidComment = false
 set this:saidComment to true
 say "masterswitch has been activated! Goop factory is now
shut down!"
object block(r,c)
 set this:position to [r,c]
 set this:layer to 2
 set this:labeled to false
object door(r,c)
 set this:position to [r,c]
 set this:layer to 2
 set this:labeled to false
 when # /goop/s on /bucket/ = 2 and # /goop/s on /container/
= 6
 say "Goops have been organized. Medium contamination risk.
Safe to open control room door."
 remove this
object vaultdoor(r,c)
 set this:position to [r,c]
 set this:layer to 2
 set this:labeled to false
 when # /kitten/s on /basket/ = 2
 say "All goops have been organized. No contamination risk.
Safe to open control vault room door."
 remove this
create block(4,0)
create block(4,1)
create block(4,2)
create block(4,3)
create block(4,4)
create block(0,4)
create block(1,4)
create block(3,4)
create block(5,4)
create block(6,4)
create block(8,4)
create block(5,0)
create block(6,0)
create block(7,0)
create block(8,0)
create goop(3,3,1.5)
create goop(0,0,0.7)
create goop(0,2,0.9)
create goop(1,3,0.9)
create goop(2,1,0.6)
create goop(2,2,0.8)
create goop(3,1,0.9)
create goop(2,0,1.6)
create block(5,2)
create door(7,4)
create vaultdoor(6,2)
create block(7,2)
create block(8,2)
create kitten(1,6,25)
create kitten(8,7,-120)
create masterswitch(8,1)
create container(3,5)
create bucket(1,5)
create basket(8,3)

Mission Text:

• Wow, we've finally made it to the  
/goop/ factory's control area! This is
the source of all the leaking and we
need to shut it down!

• The security system is trying to avoid  
/goop/ contamination in the other
rooms, so we'll have to do a few things
in sequence to open the brown /door/.

• The first /door/ should automatically
open once we've organized the /goop/
s by size. Small /goop/s (scale < 1)
should go into the /container/. Large  
/goop/s (scale > 1) should go into
the /bucket/.

• The /vaultdoor/ should open
automatically once we've rotated the  
/kitten/s back to 0, and moved them to
the /basket/!

• Once we're in the vault control room,
we need to use the /masterswitch/
button's built-in function to shut down
the factory!

238

Level 34. Let's shut down the goop factory!

Gidget Code (broken): Gidget Code (solution):

function workGoops(test)
 if test = "small"
 for g in /goop/s
 goto g
 if g:scale = 1
 grab g
 else
 for g in /goop/s
 goto g
 if g:scale > 1
 remove g
workGoops("small")
goto /bucket/
drop
doGoop("large")
goto /bucket/
drop
for k in /kitten/s
 goto k
 set k:scale to 1.6
 grab k
goto /bucket/
/masterswitch/:push()

function workGoops()
 for g in /goop/s
 goto g
 if g:scale < 1
 grab g
 goto /container/
 drop g
 else
 grab g
 goto /bucket/
 drop g
function workKittens()
 for k in /kitten/s
 goto k
 set k:rotation to 0
 grab k
 goto /basket/
 drop
workGoops()
workKittens()
goto /masterswitch/
/masterswitch/:press()

Gidget Goals:

ensure # /goop/s on /bucket/ = 2
ensure # /goop/s on /container/ = 6
ensure # /kitten/s on /basket/ = 2
ensure /kitten/s:first():rotation = 0 and /kitten/s:last():rotation = 0
ensure /masterswitch/:activated = true
ensure /gidget/:position = /masterswitch/:position and /gidget/:position = [8,1]

239

Level 35. Where Will Gidget End Up After a Victory Dance?

World Code:
object puppy(row, column)
 set this:position to [row, column]
object kitten(row, column)
 set this:position to [row, column]
object bird(row, column)
 set this:position to [row, column]
object piglet(row, column)
 set this:position to [row, column]

object basket(row, column)
 set this:position to [row, column]

create puppy(5, 3)
create kitten(3, 5)
create piglet(3, 0)
create bird(1, 2)
create basket(4, 4)

Mission Text:

• Hmm... I'm thinking I'm getting the
hang of this because of your help!

• I made some temporary adjustment to
my logic chip and I want to try this
level out myself in one shot!

• Can you help me determine where I
will end up after running the code? We
only have one shot at this so let's try
our best! Click on the tile to choose
your answer!

Assessment Level
240

Level 35. Where Will Gidget End Up After a Victory Dance?

Gidget Code (assessment): Assessment Question:

set loop1 to 2
set loop2 to 3
say "Yippe!"

while not loop1 = 0
 left 2
 down 2
 right 1
 up 2
 set loop1 to loop1 - 1
while loop2 > 1
 up 1
 down 2
 set loop2 to loop2 - 1

Where will I be after I execute the current
code (assuming I have unlimited energy)?
Please click on the grid, then press the
button below to check!

Can you tell me how you arrived at your
answer? It will help me with my logic chip
repairs!

Solution Code & Responses:

wrong:: I won't end up on this space.

correct:4,3:I loop around 2 times in the first loop,
then another 3 times in the second loop. The second
loop only happens 2 times because the <span
class='dictionaryTerm'>boolean is <span
class='object'>false when it checks <span
class='object'>1 ></
span> 1.

Assessment Level
241

Level 36. Where Will Gidget End Up After a Victory Dance?

World Code:
object sapling(row, column)
 set this:position to [row, column]

object basket(row, column)
 set this:position to [row, column]

object bird(row, column)
 set this:position to [row, column]

create basket(3, 1)
create bird(1, 3)

create sapling(2,2)
create sapling(1,1)
create sapling(4,3)

Mission Text:

• Okay, I think I'm getting the hang of
this. I'm so excited to see /sapling/s
already beginning to sprout so much
since we shut down the factory!

• I want to try counting the leaves mostly
by myself. Can you just help me by
verifying what will happen by choosing
from the options on the right?

Assessment Level
242

Level 36. Where Will Gidget End Up After a Victory Dance?

Gidget Code (assessment): Assessment Question:

set leaves to 0
set plants to /sapling/s
for s in plants
 if /bird/:position = [1,3]
 set leaves to leaves + 3
 else
 set leaves to leaves + 2
goto /bird/
grab /bird/
goto /basket/

After running the code (assuming I have
unlimited energy), the variable leaves will
be equal to:

• 9
• 0
• 8
• 7
• 6

Can you tell me how you arrived at your
answer? It will help me with my logic chip
repairs!

Solution Code & Responses:

wrong:8:I don't move the /bird/ until after the
loop, so it always adds 3 until the loop stops.
wrong:7:I don't move the /bird/ until after the
loop, so it always adds 3 until the loop stops.
wrong:6:I don't move the /bird/ until after the
loop, so it always adds 3 until the loop stops.

correct:9:The for loop executes 3 times (the number of saplings)
before it stops and I move the /bird/.
wrong:0:There wasn't an error with the loop, so the value changed from its
original of 0

Assessment Level
243

Level 37. Let's help Gidget run out of energy!

World Code:
object shrub(row, column)
 set this:position to [row, column]
object kitten(row, column)
 set this:position to [row, column]
object dog(row, column)
 set this:position to [row, column]
object basket(row, column)
 set this:position to [row, column]
create kitten(3,2)
create dog(2,4)
create basket(4,3)
create shrub(4,1)
create shrub(0,1)
create shrub(1,3)

Mission Text:

• Great! Thank you so much for helping
me shut down the factory and save all
the animals! I couldn't have done it
without your help!

• My logic chip is almost fully calibrated
now, and it needs to reboot. Since I
won't be able to use it while it's
rebooting, please help me solve this
last mission without any starting code!

• Now that my mission is complete, I
want to take these animals home with
me! I'm so excited, I have too much
energy! Please help me put them in
the /basket/, and get rid of my excess
energy!

• I should reduce my energy to less than
15 (but not all the way down to 0!), and
you can use any of the commands you
have mastered to get me there!

244

Level 37. Let's help Gidget run out of energy!

Gidget Code (broken): Gidget Code (solution):

goto /kitten/
grab /kitten/
goto /dog/
grab /dog/
goto /basket/
drop
while /gidget/:energy > 15
 goto /shrub/
 goto /basket/

Gidget Goals:

ensure /gidget/:energy < 15
ensure /kitten/:position = /basket/:position
ensure /dog/:position = /basket/:position

245

246

