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Abstract
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Stefania Druga

Chair of the Supervisory Committee:
Professor Amy J. Ko
Information School

Many families engage daily with artificial intelligence (Al) applications, from conversa-
tions with a voice assistant to mobile navigation searches. Unfortunately, existing intelligent
technologies in the home are prone to algorithmic bias and cyber-security attacks. To ensure
the new generations of children growing up with Al can develop a critical understanding of
AT technologies, we must explore parents’ roles in helping their children develop Al literacies
and identify how best to support families in engaging in creative learning activities with
and about Al while proposing recommendations for future family-centered Al literacies re-
sources. To guarantee that diverse families can realize their dignity and potential to develop
AT literacies, we must enable stakeholders (e.g., children, parents, technology designers) to

make informed, timely, and equitable action.

While AT technologies often perpetuate and exacerbate inequities in many contexts, they
could also support family learning goals if properly contextualized for use by stakeholders.
This work explores this idea in informing youth about how to train and program smart
games in self-directed learning experiences and informing curriculum & technology designers’
domain expertise with empirical evidence on family Al literacies practices. I investigate how
to design novel programming and Al learning interfaces for families to develop literacies for
creating and being creative with AI. This involves the development of Cognimates, a family

AT programming tool.



This dissertation demonstrates the following thesis: Family joint engagement in creative
AT literacy activities enables children to: (1) discover the core concepts of Al technologies
and the power they can bring, (2) foster critical reflection on the uses of Al in the home and

beyond, and (3) learn creative coding with Al as a way to enable self-expression.
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Chapter 1

INTRODUCTION

Figure 1.1: Image generated with DALL-E model using the prompt ”abstract art of parents
and kids learning with creative AI”

Al devices entered the lives of young people in 2013 with the launch of voice assistants,
which became part of their homes, giving birth to the first generation to grow up with Al
Nevertheless, the convenient smart devices became Trojan horses for a new set of paradigms
and dilemmas that educators and parents must resolve. In this context, there is an urgent
need and opportunity to prepare families to make meaningful use of Al technologies in the

home.



Before we move further, let’s define what I mean by Artificial Intelligence. In the context
of this dissertation, I define Al as any computer program that teaches computers human
abilities like walking, talking, thinking, and listening. In recent years, Al has made many
advances in replicating specific human abilities, such as speech or vision, primarily using
large data sets created through manual human classification and using that data to build
machine-learned prediction models. However, it is essential to note that these prediction
models perpetuate and amplify the values and biases encoded in their algorithms and data.
Therefore, educators, families, and communities must develop Al literacy to request and
defend their rights to algorithmic justice to avoid the risk of discriminating against or op-
pressing minoritized groups. I define AT literacy as the ability to read, author and analyze
with Al and in chapter 5 I dive deeper into each of these dimensions. In this context, I see
a unique opportunity to prepare families to understand different Al concepts and become

critical thinkers with and about Al

Moreover, the increasing use of large language models and ChatGPT technology in appli-
cations has the potential to impact families and children significantly. These applications will
offer Al-driven conversations and automated tasks that can support and help children learn
and provide parents with ways to monitor their children’s online activities. This technology
could also provide more accurate and timely feedback to parents about their children’s be-
havior. In addition, large language models and ChatGPT technology can be used to create
personalized experiences for children, such as providing them with tailored advice or recom-
mendations. However, it is crucial to consider the potential privacy and security implications

of using this technology and the potential for misuse or exploitation.

In order to adequately address the implications and risks associated with Al and large
language models such as ChatGPT, it is essential that families, educators, and parents gain
the skills and knowledge to assess the benefits and risks of adopting Al-driven applications.
Furthermore, it is necessary to create awareness and understanding of Al technology’s ethical
and legal implications and its use in our society. In order to ensure that families can make

informed decisions, we must provide resources and education to help them comprehend and



consider the potential risks and benefits of Al technology.

Additionally, it is essential to create a culture of dialogue and understanding around
the ethical and legal implications of Al technology, its use in society, and the potential
consequences of using Al without proper oversight. This dialogue should involve parents
and educators, create trust, and build relationships between families, educators, and the
technology industry.

Through collaboration between families, researchers, technology designers, and educa-
tors, we can empower families and children to make well-informed decisions about Artificial
Intelligence (AI) by increasing their awareness of the associated risks and benefits. It is
also necessary to create a culture of open dialogue and mutual understanding between the
technology industry, families, and educators to ensure trust and comfort in using Al tech-
nology. To facilitate this, it is essential to provide families and educators with resources and
education to make informed decisions about Al technology.

Several initiatives provide Al educational resources for youth [304, 98, 198]. However,
few resources currently help parents mediate Al technologies, despite growing parental con-
cerns about their children’s in-home use of Al. Pediatricians, policymakers, and parents’
associations struggle to provide family guidance for appropriate Al use, and their recom-
mendations are influenced by the affordances and limitations of existing commercial Al
products [282, 151, 325, 3]. Further, AI products such as voice assistants or smart mobile
apps are only sometimes developed for youth despite increasing usage [151]. These products
pose additional concerns in terms of (1) inclusivity for families of different ethnicities, family
structures, general technological literacies, and diverse socioeconomic backgrounds [27] and
(2) algorithmic fairness, or subtle ways Al technologies can amplify bias, sexism, racism,
and other forms of discrimination [60, 30].

By understanding the potential implications of algorithmic bias, families can begin to
think more critically about how AI technology is used in their homes and communities. It
is crucial to examine how AI models are developed, trained, and evaluated to ensure that

they are correctly calibrated and that potential biases are not perpetuated. Additionally,



families should ensure that Al technologies are not used to discriminate against certain
groups of people. Families should also be aware of the potential for Al technology to be used
maliciously, such as for surveillance or exploitation purposes. It is essential to understand
the implications of algorithmic bias and to take steps to ensure that Al technology is being
used responsibly and ethically. Finally, families should seek out opportunities to engage
with Al technology in a meaningful way, such as by participating in Al research projects or
engaging in dialogue with Al experts.

Prior studies have described the benefits of families jointly learning about technology or
engaging in technology co-design. For example, Barron et al. showed that parents could
play various supporting roles, such as collaborator and learning broker [41]. More recent
work by Michelson et al. emphasized the importance of balanced partnerships in family
technology co-design activities [212], and Yu et al. showed that parents primarily act as
spectators, scaffolders, and teachers when supporting children interact with coding kits [344].
Though these studies underline the importance of family engagement in children’s technology
learning, we need to be more open about best practices supporting joint family Al learning
and co-design.

To understand joint AI learning, I explore how families can best develop multiple Al
literacies in the home. Our work builds on the notion of multiple literacies [63], which em-
phasizes how negotiating multiple linguistic and cultural differences in our society is central
to the lives of young people and their families. For our purposes, A literacies include the
ability to read, work with, analyze and author with AI [103, 106, 98]. Our framing of multi-
ple Al literacies also borrows from Freire’s assertion that literacy is about the acquisition of
technical skills and the emancipation achieved through the literacy process [122].

For this research, I conducted a series of studies with families to understand the range
of Al literacies in families. I asked participants to share their experiences of using Al and
how they have developed an understanding of this technology. Additionally, I asked them
to discuss the challenges they have faced in learning and using Al in their homes. This

research revealed a range of Al literacies that families are developing and the challenges they



face in learning and using Al I discovered that families are finding ways to use Al in their
lives, from using it to perform tasks such as playing music and shopping to more complex
activities such as building robots and coding. I also found that families face challenges in
learning and using Al, particularly in understanding and making sense of the technology.
Finally, I identified a few key themes that emerged from our studies, such as the need for
more accessible and inclusive approaches to learning Al and the importance of developing
skills such as critical thinking and creativity when it comes to Al

This dissertation explores how to design learning experiences that enable stakeholders
(family members, technology & curriculum designers) to understand and use Al to support

meaningful and creative family learning experiences. I explore this within three domains:

e 1. Curriculum Design: Existing efforts in Al education for K12 fail to consider

families and developmental considerations for youth.

e 2. Family AI Literacies: How families co-design and jointly engage with Al learning

activities and applications.

e 3. Creative Coding with AI: How children and parents engage in collaborative

creative coding supported by an Al friend.

To build on these research findings, this dissertation will focus on developing a better
understanding of how families can develop Al literacies, how Al technologies can be used
in the home, and how AI technologies can be used to support meaningful family learning
experiences. First, I will examine the implications of Al technologies for family relationships
and the home environment and explore how AI technologies can foster creative, meaning-
ful, and equitable learning experiences for families. Additionally, I will investigate how we
can support families to work together and create Al-enabled learning experiences that are
inclusive and accessible to all and that promote ethical and responsible Al use. Finally, I
will explore best practices for family Al co-design and joint Al learning activities, aiming to

develop practical, meaningful, and equitable approaches.



This dissertation demonstrates the following thesis statement: Family joint engagement
in creative Al literacy activities enables children to: (1) discover the core concepts of Al
technologies and the power they can bring, (2) foster critical reflection on the uses of Al in

the home and beyond, and (3) learn creative coding with Al as a way to enable self-expression.



Chapter 2
FAMILIES AND CREATIVE AI LITERACIES

Figure 2.1: Kids and parents playing with Cozmo Robot in our Al Literacy workshop in
Berlin, Germany, 2019

This chapter presents relevant related work from the following categories: Parenting in
a new Media & Technology Ecology, Families Interactions and Learning about Al, Bias,
Power and Critical Understanding of AI, Role of Family Joint-Engagement in Al Literacies,
Support Tools for Creative Al Literacies.

2.1 Parenting in a New Media & Technology Ecology

Home technology and media environments reflect families’ values and aspirations and their
beliefs about the impact of new media and technology on their children’s learning and com-
munication. With the arrival of the first home computers, the influence of computing and

the media created with this new medium became intertwined with family life. This also



Guide to ChatGPT for Parents and Caregivers

Find out how the artificial intelligence (Al) tool works and how
to talk with kids about it.

Topics: ~ Learning School Technology

Figure 2.2: Examples of platforms for Media & Digital Literacy:(left) Tactical Tech Activity
from Digital Literacy for Youth Initiative [299]; (right) Common Sense Guide on ChatGPT
for Parents [108]

brought about parents’ anxiety about integrating new media in the home [280]. This anxiety
persists today as technology advances rapidly and parents either lack the knowledge to sup-
port their children or the information to make informed decisions (e.g., understanding what
data is collected by devices and how it is used [210]). Our previous work demonstrated how
parental attitudes and values shape children’s perception of and attribution of intelligence to
smart toys, and robots [101]. In this context, it is essential to understand families’ position

on technology adoption and to inform their decisions better.

With the rapid advancement of Al technologies and Large Language Models (LLMs)
applications, companies are cutting corners on trust and safety efforts, negatively affecting
young people’s digital ecosystems. This can be due to social media platforms having fewer
guardrails or Al chatbots needing to have filters for unsafe content. This lack of incentive to
protect users leaves parents and educators responsible for guiding kids to develop mindful
habits as digital citizens [318]. Organizations such as Common Sense Education [108] and
Tactical Tech [299] are providing dedicated curricula and activities for media and digital

literacy (see fig.2.2) to support parents and educators.

Despite the progress in digital literacy initiatives, there is still a need to focus specifically

on youth in the AI ecosystem. It is essential to consider the cultural differences that may



arise when working with international families [255]. Our previous research revealed that
family perceptions and attitudes towards Al devices vary greatly between countries [98]. For
instance, children and parents in Denmark and Germany are less trusting of smart toys and
devices than in the USA. More recent studies on machine learning education in the African

context confirms this [270].

A more recent series of international Al literacy workshops we organized in Berlin closed
with a big round of discussion with both children and parents. The topics covered in depth
included robots in everyday life, Al in the future, fantasies and concerns, and potential
applications. Many children and parents expressed concerns that such devices could take
the place of human contacts and friends, and they added that such developments would
contradict the basic purposes of technology. All such concerns notwithstanding, the parents
repeatedly emphasized that they felt schools were still giving too little attention to Al In
addition, some of the families expressed their desire to learn how to program and “teach”

the robots or the computer in their native language [28] (see Fig. 2.1).

In this thesis, I investigate how discourses and parenting approaches influence parents’
strategies to manage Al media use in the family. In the following section, I examine the

implications of bias, power, and critical understanding of Al in relation to family life.

2.2 Bias, Power and Critical Understanding of A1

Unlike humans, machines acquire intelligence through algorithmic techniques inspired by do-
mains such as statistics, mathematical optimization, and cognitive science and powered by
computer processing power and a large amount of data [190]. Al systems have great potential
to help children and families through improved online search quality, increased accessibility
via advances in digital voice assistants, and Al-supported learning [136, 262, 260]. However,
AT systems can also amplify bias, sexism, racism, and other forms of discrimination, partic-
ularly for those in marginalized communities [60, 30]. It is, therefore, essential to promote a

critical understanding of Al among children and families in this context.
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Figure 2.3: The poster made by B., an 11 years old girl, for describing her process of
determining how old the voice assistant is in our study on algorithmic bias [103]

Without Al literacy, families, particularly those from historically marginalized groups,
are at risk of being misled, scared, and missing out on potential learning opportunities
in the future [113, 127, 229]. In addition, many AI devices have proven to be easy to
compromise [313, 329, 26], and some companies designing voice assistants, for example,
engage in questionable practices [3]. Families and children need to work together to learn
about Al systems and to think critically about how this technology impacts their lives
98, 69, 200].

Previous studies on family engagement with digital technologies have highlighted the
importance of considering the variations between families and parenting styles [294, 74].
Therefore, to promote algorithmic justice in families, we need to consider how various families
can access these skills [339, 84].

Necessary technological infrastructure determines access to Al and Al literacy. For in-
stance, a 2019 Pew study shows that in the USA, data caps and speed limit access to
broadband [29]. AI systems often rely on large-scale technological infrastructures, so fam-
ilies without broadband may be left disengaged [253]. It is essential for minority groups
to be able to both “read” and “write” AI. Smart technologies do much of their computing
in the cloud, and without access to high-speed broadband, marginalized families may have

difficulty understanding and accessing Al systems [39]. Families must be able to engage with
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AT systems in their homes to develop a deeper understanding of AI. When designing Al edu-
cation tools and resources, designers should consider how lack of access to stable broadband
could lead to an Al literacy divide [314]. Research on families” comprehension of algorithmic
equity has focused on children’s views on Al and agent interactions. Reviews of the area
[197] revealed several studies that suggest children often overestimate agent knowledge [102]
and trust agents too easily [100, 146, 295, 333]. Skinner [285] observed that children linked
kindness with fairness in Al agents, using polite correspondence with people to defend the
fairness attribute. Coenraad [71] found that, without guidance, youth were aware of the
visible bad effects of technology, not just Al, and could give examples of this prejudice in
their lives. As educators and researchers intensify their efforts to teach children essential
computing literacies [50, 65, 221], the studies presented in chapters 4 and 5 of this thesis
provide a blueprint for how to leverage children’s understanding and backgrounds to create
a stronger moral understanding of the complexities of algorithmic fairness or lack thereof.
In our first study on the family AI Literacy framework, presented in Chapter 4, we
showed that after watching videos of algorithmic prejudice examples, children could relate
them to their own lives. They identified instances of unfair treatment from Al based on race,
ethnicity, age, and gender [103](see fig.2.3). In chapter 5, I identify the most common roles
parents play in helping their children develop a critical understanding of Al [92]. We also
explore how the home can become a ”third place” [142], where family members can engage
in reflection activities that allow them to view Al literacies through the lens of culture and

power [322]. This allows them to envision and imagine meaningful AT designs for the future.
2.3 Families Interactions and Learning about Al

Beneteau et al. demonstrated that parents play an essential role in helping their children
communicate better with voice assistants [47] or recognize the assumptions these assistants
make about children’s questions [45]. In our earlier work, we revealed that parental models
of machine intelligence also affect how children ascribe intelligence to machines [101] and

that children and parents can collaborate in Al learning activities [103]. Recently, Long
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Figure 2.4: Examples of family training a custom model with Teachable Machine in our
study [103]

et al. demonstrated that parents and children could learn more about how Al works by
co-designing interactive Al museum exhibits [197, 200].

Unequal access to Al technologies exacerbates digital divides, with only some children
learning how to interact with smart toys and devices [43, 85]. In addition, our prior research
has demonstrated that parental attitudes, socioeconomic status, and cultural differences
significantly impact how children attribute agency, intelligence, and socio-emotional traits
to smart devices [102, 89, 98].

Previous studies also show that youth can influence their parents’ digital media use
[72] and suggest the importance of parent and peer contexts for children’s moral reasoning
development [326]. As parents are still unfamiliar with some aspects of Al literacies, children
can share their knowledge and perspectives [316, 192, 100, 315]. Nevertheless, parental
guidance and scaffolding are still essential when considering the ethics of AI [238, 239] and
algorithmic bias [103, 30].

Other studies have shown that children often misunderstand agents or overestimate their
abilities. This may be due to a lack of understanding of how these agents work or because ar-
tifacts like toys and phones can talk, express emotions, and interact with youth in persuasive

and charismatic ways [337, 115, 243].
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In our study on machine intelligence perception, which we present in chapter 6, we show
that children’s perception of Al abilities changes after engaging in Al programming and
training activities [94].

We recognize the need for inclusive Al literacies to prepare the next generation for life
with AIl. Our approach builds on the theory of “multiple literacies” [63]. This theory has
been used to propose a transversal approach to computing education for youth [211], define
critical literacies in a digital age [286], conceptualize digital games literacies for youth [33],
and propose new computational literacies [319]. It has also been used to frame family literacy
as a third space [142] between home and school [231], and to observe family environments that
foster kids’ curiosity [173]. Our approach to AT literacies involves four practices: multimodal
and embodied situated practices, Al conceptual learning, critical framing of AI, and design
for future meaningful use.

We view the family and home as a third space [142] where children can develop Al
literacies [92]. Thus, we seek to investigate how to design family-centric learning activities
that create zones of possibilities [220] (see an example of activity in fig.2.4). This combines
family social contexts for learning, and their collective zone of proximal development [323].

We aim for our Al literacies interventions to teach new skills, such as training Al models,
programming smart games, and testing smart devices, and new practices, such as situated
reflection and re-design for meaningful family use. In the following sections, I will discuss

the benefits of family-joint engagement when engaging in Al literacies learning activities.
2.4 Role of Family Joint-Engagement in Al Literacies

Stevens et al. conducted a review of research on Joint-Media Engagement (JME), which
they define as ”spontaneous and designed experiences of people using media together” [291].
They designed activities for children and parents to work together and engage with various
forms of media. Their analysis focused on the six ideals of productive JME outlined in the
paper: (1) mutual engagement, (2) dialogic inquiry, (3) co-creation, (4) boundary-crossing,

(5) intention to develop, and (6) focus on content, not control [291]. This joint media
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1. Become an Al 2.Create a 3. Strengthen an

Agent Expert Pattern-Finder Al Al Agent with
Agent Data
5. Brainstorm 6. Plan Your Al 7.Become an
Your Al Invention Invention Expert for Your
Plan

Figure 2.5: example of curriculum modules created by Technovation for the international
Curiosity Machine Competition for families [300]

engagement framework serves as a guide for our analysis of family interactions in the studies

presented in this thesis.

AT is a unique form of media that elicits assumptions and interactions different from
traditional technological media forms, such as television. By engaging with it through the
Joint Media Engagement (JME) framework, we can explore how it intersects with established

JME parent-child dynamics and where it differs from or extends them.

Building on the third research case study presented by Stevens et al. [291], this thesis
researches ”ways that parents can be supported to engage in joint media engagement-creation
(JME-C), even when they do not have expertise.” It also carries out ”micro-interactional
studies to better theorize cognitive, relational, and affective components of JME-C.” The
JME-C framework is of particular interest, as exploring Al literacies applications in families
is challenging due to the unfamiliar mechanisms and opportunities of Al to most people

outside computer science.

For numerous reasons, the inter-generational structure of families is critical to under-
standing Al Literacies for youth. Prior work has found that parents, peers, and caregivers

can play a dynamic role in youth learning. They can act as facilitators or guides [41], learners,
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or lead youth to see themselves as experts [213, 91]. Families can also bridge formal learning
at school, and informal student-driven learning outside of school [219]. Other studies have
demonstrated that parental experience in technology fields significantly impacts how they
support their children’s learning [85].

Family-oriented programs, such as Family Creative Learning (FCL) [257, 256|, are im-
portant for families lacking ”preparatory privilege” [207] to get involved in their children’s
creative coding activities. In addition, studies on Al perception have found that programma-
bility is a key factor influencing youth understanding of the technology.

Research on family use and perception of coding revealed that parents’ main concern is
their limited programming knowledge [344]. Designers have explored text-free programming
platforms to support parents better, finding that families can create together successfully
(36, 133]. Further understanding AI programming in family contexts may uncover new
opportunities to link youth interests in Al with interest-driven programming [75], family
relationships [223], and formal computing education [38].

Our qualitative findings in chapter 6 offer new interpretations of prior research on program
understanding. Previous work has mainly focused on individual cognitive accounts (e.g., [174,
17]). However, our investigation from a constructionist [233] and social sense-making [81]
perspective reveals that children employ more than just cognitive strategies to understand
Al behavior. These assets include social strategies such as observing and discussing with
peers and introspective, egocentric strategies for inferring models of agent behavior.

Studies have shown that parental involvement in learning at home has a significant impact
on school performance [40, 49], and is critical for children’s future success. For example,
the AI Family Challenge (AIFC) was a 15-week program implemented with 3rd-8th grade
students (n = 7,500) and their families in under-resourced communities across 13 countries
(see curriculum example in fig.2.5). The program aimed to teach families how to develop
Al-based prototypes to solve problems in their communities. Pre- and post-surveys, as well
as interviews with participants in the US, Bolivia, and Cameroon [69], was conducted. After

the AIFC, 92% of parents reported that their child was more capable of explaining Al to
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others, and 89% believed their child could create an Al application. The findings suggest
the need to improve parent training materials, connect technical mentors to local sites,
and enhance the curriculum to make it more hands-on, engaging, and better illustrative of
machine learning concepts. A recent study on family mediation of preschool children’s digital
media practices at home revealed that family members are often unaware of how much they
are aiding children in developing competencies concerning media texts and devices [273]. To
address this, we aim to involve parents and children in joint Al literacies activities. This will
help clarify family members’ roles in supporting each other. Building on our findings from
workshops with groups of children engaging in collaborative sense-making of Al games on
different platforms such as Cognimates(chapter 6), we studied how kids and parents engage
in joint programming of rule-based games using the TileCode platform[90], or procedural
smart games on Cognimates with the support of an Al assistant (chapter 7). Our studies
on families developing Al literacies together at home, both with and without assistance,
aim to identify the language and scaffolding strategies that parents use to explain Al and
programming concepts to their children. This offers an opportunity to identify potential
future interventions that address this family’s joint engagement with Al literacies. In the
last section, I explore ways to support family Al literacy and how future AI assistants for
creative coding should be co-designed by children, parents, and researchers. This will ensure

that everyone has an equal opportunity to express their creativity.
2.5 Supports for Family Creative AI Literacies

Creativity is driven by imagination and play for youth and is both practical and conceptual.
What young people create today heavily depends on the tools and materials they have access
to and what they make with them. From Froebel gifts, [5] to LEGO Mindstorms [8] and
creative learning tools such as Scratch [206], notable efforts have been made to foster creative
learning and coding for youth as a counter-culture to the instructionist approach to education
that has been dominant since the industrial revolution. These initiatives flourished primarily

outside of traditional educational institutions, leveraging two critical aspects of creativity for
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Figure 1: A screenshot of the Gidget introductory programming game.
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Figure 2.6: Creativity Support Tools Examples: Gidget for programming [186] (left), Mosaic
for design [170] (right) and ShadowDraw for drawing [188] (bottom)

children: allowing them to tinker, construct, debug, test, and modify ideas and encouraging

them to collaborate in person or digital communities.

The success of these projects has also driven change in the way creative thinking and
coding are taught in schools, with more initiatives focused on project-based learning and
coding. Nevertheless, questions remain as to how best to balance structure and agency in
programming for youth [54].

As youth grow up with Al our framing, understanding, and intelligence development are
again under discussion, including the approach to creative thinking and coding. Recognizing
that every child is born with immense natural talents [126] and innate creative potential
[324], how can we design new learning opportunities and tools for creative thinking that

allow families to flourish in an era of constant technology consumption?

Although a growing body of work suggests that technology-enabled tools could effectively
scaffold parent-child activities, most have focused on supporting remote parent-child com-
munication. For example, numerous projects have analyzed how technology-enabled systems

can provide a virtual space for parents and children to interact [156, 293, 340]. Other studies
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have explored how to support remote parent-child activities, such as facilitating gameplay
[116, 150] or reading together [246]. Recent work on parent-child interactions in co-located
contexts has studied multi-touch tabletop applications [336], sensor-based exergames [268],
and technology-enhanced storytelling activities [302, 70]. Although this work informs design,
it speaks to something other than learning and Al literacies.

A recent systematic literature review study sheds light on the diversity of approaches to
designing Creative Support Technologies (CSTs) [124] (see examples in fig.2.6). The study
classification of CSTs found six significant categories of support in the creative process:
pre-ideation, idea generation, evaluation, implementation, iteration, and reflection (see Ta-
ble 9.1). As pointed out by Frich et al., much of CSTs are disconnected from the creators’
daily practices [124]. In the context of computing education, youth want their programming
learning to be authentic [275]. Authenticity in creative coding could involve providing the
proper media support, like in the case of the danceON project [240], and the opportunity to
work on microworlds with curated programming activities, such as fashion or music [307].

In the field of Human-Robot Interaction (HRI), several studies have shown that having
embodied agents, such as robots or connected toys, could lead to increased engagement and
learning effects for youth [235, 23]. In digital sketching [165] and game design [202], Karimi
and Lucas show different ways for creators to ask for help when interacting with Al-powered
CSTs. They provide slider controls where creators can vary the degree to which they want
the system to support them (i.e., visual similarity 10%). These two CSTs also control
the various aspects of the creative process support (i.e., visually vs. conceptually). These
examples suggest different ways in which children might work together with their CSTs and
engage in co-creativity with intelligent systems [164].

When looking into the world of CSTs for youth, we recognize several tensions around
providing support without locking in creators. Therefore, we identified opportunities for
designing CSTs that provide an optimal fit for creators’ skills and needs, integrate creators’
interests and media preferences, and make it easy for creators to ask for and receive help

from the system.
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Our current creativity support designs fail to support creative expression in the wild.
Nevertheless, we can still learn many valuable lessons from existing efforts in creativity
support. First, it is essential to acknowledge how little we know and the limitations of our
current understanding of creativity. A future agenda on creativity with and for families
will need to actively and genuinely respect and listen to children’s and parents’ voices in
co-designing new forms of creative coding in digital, physical, and mixed mediums. Third,
beyond the metaphor of "support,” we have an opportunity to embrace the metaphor of
"collaboration” that positions both family members and creativity support agents on equal
footing in the act of creative expression (with code and beyond) [79].

In our study on family creative coding supported by Al friends, presented in chapter 7,
we illustrate how family joint engagement enables children to learn creative coding with Al
as a way to enable self-expression and provide insights for the design of future Al systems

that support family joint-creative coding.
2.6 Summary Related Work

While prior work on parenting in a new media and technology ecology found that children
and parents like to learn about home technologies together [41] and joint family engagement
with media supports youth digital literacy, we have yet to discover how families can jointly
discover the core concepts of Al technologies and the power they can bring. Studies on
the bias, power, and critical understanding of AI have highlighted the disparate impact of
algorithmic injustice on minoritized communities [?, ?]. However, we have yet to discover
how families might foster critical reflection on the uses of Al in the home and beyond.
Scholars found that parents play an essential role in supporting children’s interaction with
AT [47] and can sometimes support their learning about Al [200]. However, we need a clearer
understanding of parents’ role when supporting children to engage in multiple forms of
creative Al literacies. Lastly, prior studies showed that families could positively impact youth
creative coding [344], and creative learning is important for families lacking the “preparatory

privilege” in computing [258]. In this context, we have yet to explore how families could learn



Al-supported creative coding.
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Chapter 3
LANDSCAPE OF AI LEARNING RESOURCES

Al & The Environment Al & COVID-19

Figure 3.1: Examples of Al curriculum focused on social impact from ai-4-all.org

Artificial Intelligence (AI) educational resources such as training tools, interactive demos,
and dedicated curriculum are increasingly popular among educators and learners. While
prior work has examined pedagogies for promoting Al literacy, it has yet to examine how
well technology resources support these pedagogies. To address this gap, we conducted

! investigating what

a systematic analysis of existing online resources for Al education
learning and teaching affordances these resources have to support Al education. We used
the Technological Pedagogical Content Knowledge (TPACK) framework to analyze a final
corpus of 50 Al resources (see fig. 3.1). We found that most resources support active learning,
have digital or physical dependencies, do not include all the five big ideas defined by AI4K12
guidelines, and do not offer built-in support for assessment or feedback. Teaching guides are

hard to find or require technical knowledge. Based on our findings, we propose that future

Al curricula move from singular activities and demos to more holistic designs that include

IThis study was done in collaboration with Nancy Otero and Amy J. Ko and was published in ITICSE
’22: ACM conference on Innovation and Technology in Computer Science Education 2022 [96]
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support, guidance, and flexibility for how Al technology, concepts, and pedagogy play out
in the classroom.

We conducted this study in order to discover how existing efforts in the space of Al educa-
tion for K12 |consider families and developmental needs for youth and uncover opportunities
to consider the needs of families for adapting and customizing existing curricula, demos, and
tools within their learning ecosystems. This study provided a baseline of comparison for the

family Creative Al literacies activities I present in subsequent chapters.
3.1 Study motivation and contributions

Modern computing is rapidly embracing artificial intelligence (Al) for it’s great promise
in improving our lives via advances in digital voice assistants, Al supported learning and
increased accessibility [136, 262, 260]. However, Al systems can also amplify bias, sexism,
racism, and other forms of discrimination, particularly for those in marginalized communities
[60, 30]. In this context, promoting both technical and sociotechnical literacy of Al in primary
and secondary education is critical [98, 199, 305, 247].

How to achieve this, however, is still an open question. Explorations of Al applications
in education are challenging since the mechanisms and opportunities of Al are unfamiliar
to most people outside of computer science. Al education is considered a vital part of
computational thinking [305, 80], and there are arguments to include AT literacy in the
primary and secondary education CS curricula [208, 238, 99]. Some works have begun to
systematize competencies and skills for AT literacy [199].

One part of achieving Al literacy is the creation of technology resources to facilitate
learning and teaching. For example, dedicated coding platforms such as Cognimates? and
Machine Learning for Kids® have emerged to enable Al learning. Organizations like AI4All*

have also created a free Al curriculum for secondary students. These technologies and their

2http://www.cognimates.me
3https://machinelearningforkids.co.uk

Yhttps://ai-4-all.org/
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designs matter [177] as they shape and constrain what content knowledge can be taught.
Educators must understand and appropriate Al resources to integrate them into their practice
[267].

Despite the proliferation of Al education, prior work has only begun to examine its efficacy
and appropriateness for primary and secondary teaching and learning. For example, studies
have recently found that whether data is personal can influence student learning [247], that
AT curriculum needs to be adapted to different cultural references and languages to become
more inclusive [99, 317], that children become more skeptical of machine intelligence if they
engage in active training and coding with AT [95], that carefully designed scaffolding is key
to learning and transfer of knowledge [148], that gaps in access to technological resources
and appropriate infrastructure, especially in the global south, can prevent learning from
happening at all [317], and that teaching machine learning differs from teaching computer
science as it is not “rule-based” [301].

While prior work has begun to reveal the pedagogies necessary for Al literacy, no prior
work has examined the technological resources necessary to support these pedagogies. Prior
studies have focused on more narrow aspects of machine learning learning ressources, either
by analyzing visual tools for teaching machine learning in K-12 [321] or by doing a systematic
review of research efforts on Al education[348]. For our analysis we choose to analyse how
existing Al resources support pedagogical efforts and teachers. Therefore, we asked: What
learning and teaching affordances do existing Al resources have for supporting teaching AI?
To answer this, we conducted a systematic analysis of 50 Al resources curated from the most
popular Al Education communities in North America: the AI4K12 repository®, the CSTA
repository®, the MIT Al Education repository”.

Building on the Technological Pedagogical Content Knowledge (TPACK) framework

[177], we formulated a series of questions and criteria to identify the extent to which current

Shttps://aidk12.org/resources/list-of-resources/
Shttps://www.csteachers.org/page/resources-for-virtual-teaching

Thttps://raise.mit.edu
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AT learning resources offer the support that educators might need. Overall, we found that
Al resources broadly do not consider educators’ needs to adapt and customize them for ped-
agogical use. In the rest of this paper, we elaborate on these findings in detail and discuss

implications for design.

3.2 Study procedure

To answer our question, we analyze a corpus of resources that could be used for Al learning.
This mirrored prior corpus of studies of learning technologies, such as those considering
coding tutorials [169] and programming environments for novice programmers more broadly
[167]. Our focus is on resources that explicitly engage AT concepts relevant to Al literacy,

including those not necessarily designed to be learning technologies.

3.2.1 Inclusion and Exclusion Criteria

To obtain a corpus of Al resources, we focused on curated lists of resources recommended
for primary and secondary educators in North America: the AI4K12 repository®, the CSTA
repository?, the MIT AI Education repository!’. From these lists we considered only: cur-

riculum materials, demos, list of links, online course, and software packages.

Based on these lists, the first two authors gathered an initial corpus of 100 resources. They
then identified a subset of resources that were still available and functional and removed all
duplicated entries, reducing the set to a total of 50 demos, interactive activities, tools, and
curricula. The final corpus of 50 Al Education resources together with our final analysis is

available here tinyurl.com/aiedk12.

8https://aidk12.org/resources/list-of-resources/
Yhttps://www.csteachers.org/page/resources-for-virtual-teaching

Ohttps:/ /raise.mit.edu
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3.2.2 Theoretical Framework

Since our research question focused specifically on teaching and learning concerns, we de-
veloped our framing based on theories that would make salient varying levels of support for
teaching and learning. Our primary frame was the Technological Pedagogical Content Knowl-
edge framework (TPACK) [177]. Building upon Shulman’s Pedagogical Content Knowledge
framework (PCK) [278], which posited the existence of knowledge of how to teach particular
content knowledge, TPACK makes a similar claim. TPACK analyzes the existence of teacher
knowledge of how to use technology (TK), how to use technology to teach (TPK), how tech-
nology and content influence and constrain each other (TCK), and how to use technology to

teach particular content (TPACK).

We specifically used the TPACK definition proposed by Cox for our investigation, which
synthesizes 89 other definitions. Her definition describes TPACK as five connected facets of
teacher knowledge: “(1) the use of appropriate technology (2) in a particular content area
(3) as part of a pedagogical strategy (4) within a given educational context (5) to develop
students’ knowledge of a particular topic or meet an educational objective or student need”
(p.65) [73]. Each facet describes what a teacher needs to know about technology to use it

for teaching and learning.

For the content knowledge dimension of our TPACK framework, we used the AI4K12
guidelines'!, which at the time of this writing defined five “big ideas” about artificial in-
telligence: 1) Perception: computers perceive the world with sensors, 2) Representation &
Reasoning: agents maintain representations of the world and use them for Reasoning, 3)
Learning: computers can learn from data, 4) Natural Interaction: intelligent agents require
many kinds of knowledge to interact naturally with humans, and 5) Social Impact: Al can
impact society in both positive and negative ways. These ideas provide structure for analyzing

the kinds of content knowledge that resources can feasibly help students learn.

Uhttps://aidk12.0org
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While the above TPACK framework is not necessarily theoretical, it derives from par-
ticular theoretical traditions that view teachers as pedagogical experts who develop content
and technological knowledge to facilitate student learning [264]. While we acknowledge other
more sociocultural [269] and sociopolitical teaching theories [121], our specific focus here is

on educators’ cognitive and pedagogical needs in their Al teaching practice.

3.2.3 Analysis

Our analysis built on the definition by Cox [73] by devising guiding analysis questions for
each of its five facets, leading to 20 questions that structured our systematic evaluation of
each resource. For example, one of our questions was “What types of pedagogical strategies
does the tool support?” with fixed potential answers (i.e., “interactive learning”, “direct in-
struction”, and “hybrid between direct instruction and interactive learning”). The complete
listing of these questions is available at tinyurl.com/aiedk12. Both first two authors collabo-
rated on answering these 20 questions for each resource, resulting in a large spreadsheet with
labels for each of the five facets of existing teacher support. Any disagreements in answering

the questions were discussed until consensus was reached.
3.3 Findings

Overall, there were many distinct genres of resources by various creators: 39% were cur-
riculum collections, 27% were single activities, 18% were demos, and 16% were tools. Only
20% were behind a paywall, though some of the more extended curricula offerings had a
prohibitive price (i.e., ReadyAl charged more than USD 2.5k, TeensinAl charged more than
2.5k€). In this section, we evaluate the different genres of existing Al resources concerning

how well they support teaching Al.

3.8.1 Communication of Intended Use

We considered the first facet of TPACK educators’ need to know what technology is “ap-

propriate” for a given student and learning goal. Therefore, we examined what kinds of
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Figure 3.2: Curiosity Machine offered clear guidance to teachers about appropriate use, in-
cluding: a) clear curriculum progression, b) learning goals, ¢) activity overview, d) materials
description, e) and teaching materials.

information educators might need to judge the appropriateness of analyzing resources. A
critical piece of information was the intended use of a resource, which illustrates the resource
designers’ assumptions about users’ prior knowledge and context. To analyze resources’ in-
tended use, we asked questions such as: “does the resource provide teaching guides?” and

“does it provide explanations of the Al concepts it demonstrates?”

Teaching guides were one way to articulate intended use. Overall, we found that 59%
of resources offered them. However, some teaching guides were minimal; for example, Zho-
rai'? provided brief descriptions of “moderator” and “student” roles without grounding Al
concepts and activities in existing curricular standards and practices. In contrast, platforms

such as AT4ALL and Curiosity Machine!? (shown in Figure 3.2) offered clear guidance for

2http:/ /zhorai.csail.mit.edu

Bhttps://www.curiositymachine.org
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educators across several pedagogical dimensions, including learning objectives, pedagogical
demonstrations, and materials required.

Another indicator of appropriate use was prior knowledge required to engage a resource.
For example, 36% of the resources required users to perform an initial setup before testing
or using the Al activity. Many of these setup requirements implicitly assumed particular
content knowledge (i.e., terminal use, version control knowledge), with no guidance on how
to acquire it. Similarly, while many resources were framed as learning materials—69% offered
some written explanations of Al concepts—many explanations were not on the main page
of the activity. Still, they were found in other locations like GitHub repositories, further
obscuring whether the resource was intended for teaching and learning.

Trends in the clarity of intended use were primarily shaped by the genre of the resources.
Demos, were often designed to emphasize one or more components of Al functionality, not
to teach a comprehensive understanding of AI. None of the demos had teaching guides,
only 50% of them explained the AI concepts they were addressing, and just 20% of them
allowed participants to change the demonstration’s output by modifying either the input
data or the parameters. For example, TensorFlow Neural Network Playground' (Figure
3.2¢) demonstrated how modifying different neural network parameters could lead to different
outcomes. This resource offered a separate blog post explaining neural networks but did not
integrate the explanation into the experience.

Activities were similar to demos, but often applied Al without a particular teaching
goal. Only 30% of activities included teaching guides, only 50% of them explained how a
part of AT works, and 62% allowed users to customize their creations. For example, Doodle
Bot!® was an activity for building a bot that uses speech commands to tell a bot what to
draw. The activity listed instructions for building the bot and training the Al model with
just one paragraph of Al explanation which mentions the pre-trained models used by the

system (i.e., “ml5.soundClassifier()”).

Yhttps://playground.tensorflow.org/
Bhttps://mitmedialab.github.io/doodlebot
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Tools gave even less direction for use. They offered platforms for creating new artifacts.
Just two of the tools had teaching guides, but 75% included explanations of how Al works.
Cognimates is an example of a tool that could be used to program interactive games using
Al by training models to recognize specific images or text. It provided explanations of what
algorithms were used to train the models.

Curricula were the clearest about their intended use offering explicit learning progres-
sions for learners. All curricula included teaching guides, Al explanations, and 63% of them
included a fixed progressive trajectory. For example, AppsForGood !¢ had 14 sequential
teaching sessions covering topics from what machine learning is to highlighting careers in
machine learning. Of the curricula, 84% used both active learning and direct instruction.
Al+Ethics curriculum included several activities that explored ethical questions and Al by
doing projects as well as slides that teachers can use to explain Al concepts such as supervised

machine learning.

3.3.2 Big Ideas Coverage

The second facet of TPACK is content-specificity: teachers’ knowledge of technology must
be linked to the specific content knowledge they are teaching. Therefore, we examined the
extent to which each resource covered the five AI4K12 big ideas [305].

Resources varied widely in their coverage. Most covered more than one big idea (88%),
and most (72%) covered Perception. Some, typically curricula, covered all five (24%). The
second most prevalent combination of coverage were resources that covered Perception, Rep-
resentation & Reason, and Learning (18%). These resources were creative tools that typically
allowed participants to input sound, images, or video, change the model’s parameter, and
get an output that showcases how a specific Al algorithm works. These resources typically
covered supervised learning and training (28%), neural networks (20%), GANs (12%), im-

age classification (8%), and word embeddings (4%). Social Impact was the least common,

Yhttps: //www.appsforgood.org/courses/machine-learning
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Figure 3.3: The Supervised Polygon activity creatively demonstrated unintended conse-
quences of machine perception.

present only 2% of resources, typically in full curriculum or specialized activities on that
topic.

Al big idea coverage varied by genre. For example, demos varied substantially in their
coverage: 80% covered Perception, none covered Social Impact, half of the demos covered
two ideas, and 30% had just one idea (Perception or Learning). One example was Pix2Pix
which was a website that modifies a picture in real time based on drawings made by the
learner!”. Half of the demos covered two ideas, for example Scrooby, a website that enables
participants train a cartoon based on movement perceived on the webcam. For one of the
demos, Art Climate Change!®, it was not clear which Al big idea was present. Half of the

demos had an explanation of the big ideas they covered.

17https:/ /www.tensorflow.org/tutorials/generative /pix2pix

Bhttps://experiments.withgoogle.com /cold-flux
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9 as shown in

Most activities focused on Perception. For example, Supervised Polygons!
Figure 3.3, creatively used data on polygons’ shapes (Perception) to illustrate Al concepts
with unintended consequences (Social Impact). Most (84%) also focused on Learning; for
example, PlushPal used data from the movement of a microbit to train a sound model. Half
(53%) explained concepts; for instance, in FarmBeats, learners could use Al to optimize their
farms and directly referenced AI4K12 big ideas.

Tools tended to cover at least three of the big ideas, most often Perception, Learning,
and Representation € Reasoning. For example, the Personal Image Classification from App
Inventor?®, where users could create, train, and test their image classifier and use it to create
a game. Most tools (75%) had an explanation of the big idea; for example, Wekinator?!
offered detailed descriptions of algorithms used to train models.

Curricula such as AI4ALL and CuriosityMachine (Figure 3.2) were the most compre-
hension, with 63% covered all the "big ideas”. Some curricula covered the ideas in narrow
ways, focusing on a particular technology. For example, Embeducation?? focused specifically
on word embeddings. Nearly all (90%) curriculum had explanations of at least one of the

five big ideas.

3.3.83 Pedagogical Strategies

The third facet of TPACK is how teacher knowledge of technologies is tied to particular
pedagogical strategies. To examine these resources from this perspective, we analyzed the
types of teaching methods resources engaged (active learning, direct instruction, or both)
and the extent to which a resource accounted for learner prior knowledge.

Overall, we found that all the resources use either exclusively active learning or integrate

active learning and direct instruction. FEvery resource had some interactive component,

Yhttps: //supervised-polygons.github.io
20https://appinventor.mit.edu/explore/resources/ai/personal-image-classifier
2 http: / /www.wekinator.org/

Zhttps:/ /embeducation.github.io



32

a, Overfitting

For example, a convolutional neural network that was trained on 10
pictures of dogs should correctly classify those 10 dogs. But, if the
network is overfitted, it will incorrectly classify any picture of a dog Dogs

that is not among those 10 it has already seen. ‘
=
Not recognized as a m u “
7 dog, because it Recognized as 4

wasn't in the original  a dog; in the
original set

o

COGNIMATES AllModels OpenSource Help translate this pag

What categories should your model have? @

Learning
data:
100%
Recognition
between
dogs and

x

Source

Source

Cats

el < B

Add Category

Source

Source

Figure 3.4: Examples of pedagogy integration from AI4All providing both direct instruction
a) and active learning using Cognimates.

whether support for creating projects, training a model, or changing the model’s parameters
and seeing the outcome. We did not find any resources that were designed for purely direct
instruction with no opportunity for practice or tinkering.

Despite this consistency in pedagogy, resource genres varied in their implementation.
Demos, for example, primarily focused on self-contained interactive activities with limited
opportunities for tinkering. Moreover, none offered any direct instruction, so it would be up
to teachers to integrate them into a broader pedagogical strategy. InferKit?3, for example,
was a demo that uses a neural network to generate text; it could support a range of ped-
agogical strategies involving active learning but offered no detailed guidance on how to do
SO.

Whereas demos offered unrestrained opportunities for tinkering, activities offered more
structured active learning experiences with lightweight guidance. For example, Doodle Bot
enabled participants to create a robot trained to draw based on speech commands, offering

direct step-by-step instruction in tutorial form. About half of these resources offered multiple

Zhttps://app.inferkit.com/demo
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activities, with 27% giving learners the option to choose their activity and 28% offering fixed
sequences of activities. For example, Code.org’s Al for Oceans structured multiple activities
around training a model to identify fish from garbage, unlocking activities as a learner makes
progress.

Tools offered the most learner agency but also offered little scaffolding. Most (62%)
gave learners the choice of what activity to do next. An example is RunwayML?*, a tool for
creating a video with Al. Its environment offered several opportunities to build knowledge
in arbitrary sequences of tutorials.

Whereas all of the other genres generally offered relatively little scaffolding, curricula of-
fered the most structure and pedagogical support. The majority (63%) had a fixed sequence
of activities. For example, STEM UK?® was a curriculum with four sequential challenges,
starting with an introduction of Al to later centering on the role of Al in making trans-
portation safer, cleaner, and better connected. However, 26% allowed learners to make some
choices in their progression. For example, Machine Learning for Kids?® lets learners select
activities based on project types, difficulty, and program environment. Most curricula (84%)
used both direct instruction and active learning methods. For example, Figure 3.4 shows
how AI4All combined direct instruction about overfitting with opportunities to tinker with

overfitting a model by training a dog classifier.

3.3.4 FEducational context

The fourth facet of TPACK is the particular educational context in which teacher knowledge
is bound. To address this in our analysis, we considered the kinds of educational contexts
the Al resources could support, asking: 1) what equipment they required, 2) if teachers
might need to prepare a particular technical setup to use the resource, 3) if the resources

were designed for a particular level, age, or grade, and 4) if the resources were accessible on

Zhttps: //app.runwayml.com/
Zhttps:/ /www.stem.org.uk /resources/collection /447030 /grand-challenges

Z6https://machinelearningforkids.co.uk
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Figure 3.5: Some resources offered unplugged activities requiring no device, including Al
Ethics and Calypso’s activity sheet.

a tangible or digital medium.

Overall, we found that 36% of the resources required some form of setup either because
of their use of hardware, specific technical requirements such as libraries, or the creation
of accounts. Most of the resources (62%) were digital-only, but 30% required a physical
component, such as an unplugged learning activity or hardware integration. Only 8% of the
resources were exclusively non-digital.

Only 59% of resources explicitly noted age or grade level. Of those 59%, most did not have
implicit assumptions about either educator or students’ prior Al and technical knowledge.
For example, Scroobly?”, ModelZoo®, and M15 Tool? required prior knowledge of both CS

and Al, despite being framed as learning resources.

2Thttps: //www.scroobly.com/
Zhttps://modelzoo.co/
Phttps://mlb.js
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Is this a fish?

Figure 3.6: The AI Ocean Activity failed to provide any feedback, even when the learner
mislabeled fish images.

Each genre had distinct context assumptions. Demos, for example, all required com-
puters with sufficient memory and compute power as some of the AI models they used were
RAM intensive, but none required a technical setup beyond a web browser. Of the activ-
ities, 58% required some additional technical setup, and 25% had instructions for age and
grade levels. Those that involved hardware, such as AIY kits for vision and sound *°, required
significant familiarity with hardware components and technical setup. More than half (57%)
of tools required a technical setup; all required computers or mobile apps. Fewer than half
(43%) offered specific instructions regarding the age and grade levels of users. Curricula
had the fewest technical requirements, with only 33% requiring configuration. However, all
but two curriculum resources required the use of computers; the exceptions, shown in Figure
3.5, included AI Ethics3! and Calypso®?, both of which involved activities that used paper
and writing utensils instead of computers. Most curricula (77%) had age- and grade-based

guidance, though several left the intended audience unstated.

30https:/ /aiyprojects.withgoogle.com /vision
3lhttps:/ /www.media.mit.edu/projects/ai-ethics-for-middle-school /

32https://calypso.software/
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3.3.5  Support for practice and assessment

The fifth and last facet of our TPACK analysis concerns how knowledge is deployed to develop
students’ knowledge. We, therefore, focused our analysis on how resources could support
teachers in facilitating practice and assessment, analyzing if each resource: 1) provided
support for practice and assessment, 2) provided opportunities for personalizing the learning
experience, and 3) supported collaborative learning. Overall, we found that 68% of the
resources supported practice and assessment, 64% provided opportunities for customizing
the learning experience by allowing teachers to either change the parameters of the resources

or change the training data. In total, 40% of the resources supported collaborative learning.

Demos offered the fewest support for practice and assessment: only 33% supported
repeated practice, only 22% allowed teachers to customize the configuration for learning,
and only 11% allowed collaborative learning. None offered explicit support for assessment.

Activities tended to support practice (58%), often by allowing users to engage more in
customizing either the input for the Al demo (i.e., record specific gestures like in the case
of Plushpal3?) or by customizing the output of the demo by changing how the demo output
is displayed (i.e., Teachable Machine, allowing users to choose animations, text or sound).
In total, 66% of activities supported the customization of the AI experience parameters,
58% had support for the practice, and 33% supported collaborative learning. Most activities
offered no form of feedback on learners’ actions; for example, the AT Oceans activity shown
in Figure 3.6 allowed learners to label fish however they wanted and offered no explanation
of how that might affect training.

Most tools (87%) offered substantial opportunities for practice. For example, iNatural-
ist3* was a tool that used Al to support citizen scientists in classifying organisms. It had a
path to practice adding IDs of an organism, comments, and observations before creating a

project. On this platform, participants could post as many projects as they want. Most of

33https:/ /www.plushpal.app/

34https://www.inaturalist.org/
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the tools (75%) also allowed participants to personalize and customize their creations. One
of the tools that do not allow it was Jukebox®, a neural net that generated music. Juke-
box let learners play with the creations of the model but unless participants could run the
model on their computer they could not create their music. Another tool, AI Playground3®,
allowed users to go more in-depth in modifying the Al parameters by controlling the number
of training cycles (epochs). In some cases, tools tried to scaffold practice with activity sheets.
Many sheets might be confusing because they introduced many new terms and references.
For example, the activity sheet from Calypso (shown in Figure 3.5b) was meant to support
users to learn how to program a robot but it could be difficult to grasp because it introduces
a new programming language together with a series of new icons and terms.

All of the curricula we could access had activities for participants to practice Al concepts.
For example, the Al and Machine Learning Module at Code.org®” taught Al concepts at
several different levels. Most curricula (89%) had the option to input customized data and
personalized the outcome of the activities. Another example in this group is AI Ethics. The
last module in this curricula is about YouTube re-design. Participants in this activity learn
how YouTube uses Al, select what features they want to re-design, and have the option to

present their mock-ups.

3.4 Discussion

Overall, our analysis found the following;:
e [ntended use. Most resources, even those not designed for teacher use, had guidance

that conveyed intended use. But the direction was often hard to find or required

obscure technical knowledge to find and comprehend.

35https://openai.com/blog/jukebox/
36https: / /theaiplayground.com/
3Thttps://studio.code.org/s/aiml-2021



38

Content. While most of the resources covered many of the AI4K12 big ideas, most did
not cover all five, in most cases overlooking Social Impact. Curricula were the most

likely to cover all five.

e Pedagogy. Most resources supported direct instruction and active learning combina-

tions, though few were responsive to learners’ prior knowledge.

e Fducational Context. Most resources had some form of device dependency, constrain-
ing the learning and IT contexts in which they were compatible. Demo hardware
requirements could be quite prohibitive for schools that do not have access to updated

computers [317].

e Student Learning. While most resources offered substantial opportunities for individual
and collaborative practice with Al concepts and skills, few offered assessment support

or learner feedback.

In some ways, these findings reflect prior work on other classes of CS educational tech-
nologies. For example, Kim and Ko’s evaluation of coding tutorials found a similar focus on
active learning, a similar lack of communication about intended audience and context use,
a lack of responsiveness to the student prior knowledge, and a disregard for formative and
summative assessment [169]. Our results also mirror Kelleher’s review of novice program-
ming environments, showing a bias toward tinkering over direct instruction [167]. Our results
also mirror the experience of educators who are currently designing their AI curriculum and
directly expressed the need for support to combine the various AI resources and create a
friendly learners interface [267, 317].

Our evaluation adds to these prior works in two ways. First, our results suggest that
Al learning resources repeat some of the same mistakes of non-AI CS educational resources.
Second, our results expand upon this, showing that many of the needs educators might

have in developing TPACK to use Al resources aren’t yet supported. Most resources do
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not clarify their assumptions about learner prior knowledge, required classroom resources
context, alignment with pedagogical strategies, or even intended use. Even many of the
curricula we analyzed were vague on these points. Some of the resources were consistent with
implications from recent studies (e.g., leveraging personal data to an extent [247|, embracing
emerging student skepticism about Al [99], and leveraging embodiment [316]). But most
resources did not meet basic pedagogical design principles, let alone offer the information
teachers need to develop TPACK appropriate for successfully using the resources.

These findings have several implications for research. Future work might explore creat-
ing design principles for CS educational technology designers and understanding the barriers
designers face in meeting those principles. In some cases, research is needed to achieve these
principles. We see an opportunity for educators and designers to develop a common language
based on a common set of guidelines, similar to the five big ideas [305]. For example, “fea-
tures” could be described as “observable detail of object”, “training” as “machines learning
from data”, and “model” as “application of what the machine has learned”.

In terms of practice, our results suggest that until resource designers are more explicit
about the various dimensions of TPACK in resource content, metadata, and design, teachers
will have to make complex judgment regarding what resources might be appropriate for
their students’ learning. The curricula in our corpus generally fared best from a TPACK
perspective (though not all were equal), with only two at the time of this writing—Curiosity
Machine and AI4ALL—offering a clear path to adoption for teachers. Perhaps with time,
resource designers and educators will find better ways of partnering, ensuring that all Al
education resources can empower teachers to better facilitate Al education for all.

Based on our findings in this study, I proposed that future Al curricula move from singular
activities and demos to more holistic designs that include support, guidance, and flexibility
for how AT technology, concepts, and pedagogy play out in different learning scenarios. More-
over, most of these Al learning resources need to consider the needs of families for adapting
and customizing existing curricula, demos, and tools within their learning ecosystems. This

motivated me to explore how future Al learning resources for K12 could consider families
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and the developmental needs of youth. In the next chapter, I will present how such resources

could be co-designed with kids and parents.
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Chapter 4

CO-DESIGN ACTIVITIES FOR AI LITERACIES WITH
FAMILIES

Figure 4.1: (Left) Examples of families engaging with the Smart Toys activity during our
co-design sessions;(Right) Examples of bias instances identified by children in the first and
second sessions.

Families” interactions with Al technologies have recently gained attention. However,
these technologies do not provide developmentally adaptable, and family-friendly interactions
(48, 102]. Therefore, I propose a framework to support family AT literacies, composed of four
main dimensions (4As): ask, adapt, author, and analyze. Families can use this framework
to develop a critical understanding of smart technologies and ensure algorithmic fairness .

We define our Al literacies dimensions based on prior work and through co-design and
Al learning sessions with families. This study reveals how children perceive algorithmic bias

differently from adults and how families engage in collaborative sense-making by probing,

IThis study was done in collaboration with Jason Yip, Michael Preston, and Devin Dillon and was
published in MIT Press Journal for Algorithmic Rights and Protections for Children 2021 [103]
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tricking, and authoring AI applications in playful ways. As a result, parents should be
included in future designs of Al education for children.

We discuss the implications of family Al literacies from the broader perspective of technol-
ogy development, public policy, and algorithmic justice. Finally, we argue that Al literacies
is a fundamental right for families and propose a series of learning activities and guidelines

to support and protect this right.
4.1 Study motivation and contributions

Without AT literacies, families, mainly from historically marginalized groups, risk falling
prey to misinformation, fear, and missing opportunities for future potential for learning
[113, 127, 229]. Families and children must work together to learn about Al systems and
to think critically about how this technology impacts their lives [98]. Prior research on
family engagement with digital technologies stressed the importance of considering variation
between families and parenting styles [294, 74]. Therefore, to support algorithmic justice in
families, we need to consider how many families can access these skills [339, 84].

Al literacies do not occur in a vacuum but are influenced by social, cultural, institutional,
and techno-infrastructural contexts. Therefore, we need to consider the ecological and situ-
ational issues surrounding families and how macro and micro-factors influence Al literacies
in the modern family. Therefore it is crucial to address the socio-ecological conditions that
influence how families may adopt Al literacies and to create guidelines that integrate human-
centered design into practice. An analysis of ecological systems [58] can explain how families
could succeed with Al literacies and unveil the broader implications of such an intervention.

A survey of 1,500 parents of elementary and middle school students, commissioned by
Iridescent [Technovation, 2018], found that 80% of parents in the United States believe Al
will replace the majority of jobs (not just low-skilled jobs), less than 20% understand where
and how AT technologies are currently used, 60% of low-income parents have no interest in
learning about AI. Furthermore, less than 25% of children from low-income families have

access to technology programs [69].
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Little knowledge exists on how parents or guardians learn with their children using tools

for Al literacies. To address this gap, we pose the following research questions:

e RQ1: How do children and parents from different countries and diverse socioeconomic

status (SES) perceive and interact with AI?

e RQ2: How can we best support parents to scaffold their children’s use of Al technologies

in the home?

e RQ3: How can we design future technologies to best support families’ Al literacies?

Our goal is to understand how to facilitate AT literacies in families. We investigate this from
two perspectives: an ecological evaluation of current Al systems and designing new systems
for AI literacies. Our research provides a conceptual and empirical understanding of how
families engage with Al literacies activities, which can inform the design of culturally-tailored
tools and resources.

We contribute new insights on family Al practices to address critical Al literacies needs in
families. Additionally, we develop a foundation to encourage innovations that take advantage
of family dynamics for Al literacies learning. Finally, we analyze and compare prior data
sets to propose a novel research-based family-facing framework for thinking with and about
AL

We begin by reviewing ecological systems as they pertain to supporting Al literacies [57].
Ecological systems theory refers to the multiple nested systems (i.e., exosystems, macrosys-
tems, mesosystem, microsystems) that influence people’s learning development. Through a
review of the literature, we consider how current technological systems support or not the
development of Al literacies. From our evaluation of ecological systems in Al literacies, we
develop a design framework for supporting critical understanding and use of Al for fami-
lies. This study proposes a framework which considers four dimensions of Al literacies (Ask,

Adapt, Author, and Analyze). We prototype and refine learning activities such as detecting
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bias, testing a voice assistant, coding a smart game, and drawing what is inside the smart

devices to explain how they work.

Through family co-design sessions, we found that children perceive bias in smart tech-
nologies differently than adults and care less about technological shortcomings and failures
as long as they have fun interacting with the devices. In addition, family members supported
each other in various collaborative sense-making practices during the sessions by building
on each other’s questions, suggesting repairs for communication breakdowns with the voice
assistants, coming up with new and creative ways to trick the Al devices, and explaining or

demonstrating newly discovered features.

We demonstrate how our framework supports the development of Al literacies through
play, balanced partnership, and joint-family engagement with Al learning activities. We
provide a set of guidelines for families and engage in a broader discussion that connects
the ecological systems theory with our Al literacies framework to draw implications for the

broader perspective of practice, program design, public policy, and algorithmic justice.

4.2 Study procedure

Through our analysis of the ecological perspective on the current state of AI understanding
for families and building on theories of parental mediation and joint-media engagement [294],
we propose a new framework for defining family Al literacies (see Table 4.1). To examine
our framework in action, we adhere to the standards and practices of Participatory Design
(P.D.), precisely the method of Cooperative Inquiry [104, 137]. Under Cooperative Inquiry in
P.D., adults and children work closely together as design partners, emphasizing relationship
building, co-facilitation, design-by-doing together, and idea generation [342].

Cooperative Inquiry works well for understanding Al systems and literacy because chil-
dren already work closely with adults and are more likely to express their perceptions around
childhood [335]. In addition, in design partnerships, there is a strong emphasis on relation-

ship building, which allows children to be more open to experimentation and open dialogue.
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Al literacies

Family Activity Al literacies Question
Dimension
Ask Interact fluently with an existing How do you make it do...?
S
AT application or technology Do you? Are you?

Modify or customize an Al
Adapt How do I modify it?

application to serve their needs

Author Create a new Al application How do I make a new one?

Analyze the data and the architecture
How does it work?

Analyze of their Al application and modify it
What if

to test different hypotheses

Table 4.1: The 4 A’s: Proposed Framework for Families Al literacies Dimensions

Our co-design sessions focused on designing and eliciting responses from children and
families around their perceptions of different aspects of Al systems. We conducted three
90-minute sessions from October to November 2019 with 8 - 11 children. We also worked
with families in co-design sessions in December 2019 to understand children’s engagement

with AT together with their parents.

4.2.1 Study participants

An inter-generational co-design group of adult design researchers (undergraduates, masters,
and doctoral students) and child participants (n = 11, ages 7 - 11) participated in the four
design sessions. The team is called KidsTeam UW (all names are initials). At the time
of the study, children typically participated from 1 - 4 years (2016 - 2019). In the fourth
session, three KidsTeam UW children and their families (e.g., parents and siblings) came on

a weekend co-design session to engage and discuss their perceptions of Al technologies.
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4.2.2  Design sessions

Each design session (child and families) at KidsTeam UW consisted of snack time (15 min-
utes), where the children gathered to eat, share, and develop relationships through play. In
Circle Time (15 minutes), we provided children with a ”question of the day” to make them
think about the design session. We also provided the instructions for engagement (verbal
facilitation and activity printouts). The majority of the time was spent designing together
(45 minutes), in which children engage in some design techniques with an adult partner(s)
[327]. Children break into smaller teams or remain together in a single design activity. Fi-
nally, the group comes back together in discussion time (15 minutes) to reflect on the design
experience. We organized the sessions in the following way to investigate how the family Al

literacies framework could be utilized as a series of design activities:

e Design Session 1 (October 2019): We showed the children different video clips of
“algorithmic bias.” Video clips included AI not being able to recognize darker skin
tones, voice assistants stuck in an infinite loop, and a very young child unable to get
an Alexa Echo device to start. We used Big Paper [328], a technique that allows

children to draw on large sheets of paper to reflect and consider what ”bias” means.

e Design Session 2 (October 2019): We provided children with different technology
activities with three kinds of Al devices: Anki Cozmo (Al toy robot), Alexa Echo voice
assistant, and Google Quickdraw (Al recognizes sketches). Each inter-generational
team went through the stations and documented what was ”surprising” about the

technology and if they could “trick” the AI system into doing something unexpected.

e Design Session 3 (November 2019): Using Big Paper, we asked children and adults

to draw out how they thought a voice assistant (Amazon Alexa) worked.

e Design Session 4 (December 2019): Finally, five KidsTeam UW families came to-

gether on a weekend morning workshop to engage in multiple Al technologies stations.
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Stations included Amazon Alexa, Google QuickDraw, and the Teachable Machine. One
station, in particular, used Cognimates [97] and BlockStudio [36] to show models of
how computers made decisions. Families spent, on average, 15 minutes per activity
trying out the different technologies and wrote down their ideas and reflections on the

technologies

4.2.3 Data Collection and Analysis

The first two authors used an inductive process to analyze the audio capture family Al inter-
action themes [66]. We began with memoing and open coding during the initial transcriptions
of the video files. Through memoing and open coding, we noticed emerging themes related
to family Al literacies practices and joint family engagement. We then began coding literacy
practices and joint engagement from transcripts of each of the five families, developing and
revising codes as we found additional examples of Al-joint engagement, reviewing a total of
17 hours of video capture. We continued this process until codes were stable (no new codes
were identified) and applicable to multiple families. Disagreements were discussed until con-
sensus was reached. Once the codes were stable, we reviewed transcripts from each of the
five families for Al literacies practices and joint family engagement again. We included Al
literacies practices from each participant in our corpus of 350 Al family-Al interactions, sys-
tematically going through each family’s transcript and pulling out each code (when present).
For our final analysis of the family’s Al interaction, a total of 180 Al interactions falling
under the broad themes of Al literacies practices were deeply analyzed by two researchers.
AT literacies practices were defined as interactions between family members and the vari-
ous Al technologies, as defined in table 4.1. We drew on the human-computer interaction
conversational analysis approach to analyze family interactions set in an informal learning

environment, focusing on the participants’ experiences.
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4.3 Findings: The 4A Framework In Action

4.8.1 Ask Dimension - identify Al bias

When we initially asked children to describe what bias means and give examples of bias, we
found ourselves at a crossroads as we realized none of our participants understood what this
term meant. However, we quickly noticed that children understood the notions of discrimi-
nation and preferential treatment and knew how to identify situations where technology was
treating unfairly specific groups of people.

“Bias? It means bias” - L. 7, years old boy. During the initial discussion in the
first study session, we tried to identify examples of bias that children could relate to, such as
cookies or pet preferences. For example, when talking about cat people versus dog people,
D., a nine years old girl, said, “Everything they own is a cat! cat’s food, cat’s wall, and
cat(...)”. We then asked the kids to describe dog people. A., an 8-year-old boy, answered:
“Everything is a dog! The house is shaped like a dog, bed shapes like a dog”. After the
children shared these two perspectives, we again discussed the concept of bias, referring to
the assumptions they made about cat and dog people.

Race and FEthnicity Bias. In the final discussion of the first session, children could
connect their daily life examples with the algorithmic justice videos they had just watched.
“It is about a camera lens that cannot detect people with dark skin,” said A. while referring
to other biased examples. We asked A. why he thinks the camera fails this way, and he
answered: “It could see this face, but it could not see that face(...) until she puts on the
mask.” B., an 11 years old girl, added, “it can only recognize white people.” These initial
observations from the video discussions were later reflected in the children’s drawings. When
drawing how the devices work (see fig. 4.2), some children depicted how smart assistants
separate people based on race. “Bias is making voice assistants horrible; they only see white
people,” - said A. in a later session while interacting with smart devices.

Age Bias When children watched the video of a little girl having trouble communicating

with a voice assistant because she could not pronounce the wake word correctly, they quickly
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noticed the age bias. “Alexa cannot understand baby’s command because she said Leza,”-
said M., a 7-year-old girl; she then added: “When I was young, I did not know how to
pronounce Google,” empathizing with the little girl in the video. Another boy, A., jumped
in, saying: “Maybe it could only hear different kinds of voices,” and shared that he does not
know Alexa well because “it only talks to his dad.” Other kids agreed that adults use voice
assistants more.

Gender bias After watching the video of the gender-neutral assistant and interacting
with the voice assistants we had in the space, M. asked: “Why do Al all sound like girls?”
She then concluded that “mini Alexa has a girl inside and home Alexa has a boy inside”
and said that the mini-Alexa is a copy of her: “I think she is just a copy of me!” While
many of the girls were not happy that all voice assistants have female voices, they recognized
that “the voice of a neutral gender voice assistant does not sound right” -B., 11 years old.
These findings are consistent with the UNESCO report on implications of gendering the
voice assistants, which shows that having female voices for voice assistants by default is a

way to reflect, reinforce, and spread gender bias [4].

4.8.2  Adapt Dimension - Trick the Al

In the second design session, we invited participants to engage directly with the smart
technologies and see if they could trick them. We wanted to provide the children with
concrete ways to test the device’s limitations and bias, and we learned from our prior studies
that children enjoy finding glitches and ways to make a program or a device fail [89]. Such
prompts not only give them a sense of agency but also provide valuable opportunities for
debugging and for them to test their hypotheses about how the technology works. During
our workshop, children imagined and tested various scenarios for tricking smart devices and
algorithmic prediction systems. For example, when playing with Anki’s social robot Cozmo,
they disguised themselves with makeup, masks, glasses, or other props so the robot could no
longer recognize them. They also decided to disguise other robots and make them look like

humans and see it would trick the robots’ computer vision algorithm (see fig. 4.3). Children
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Figure 4.2: Examples of bias instances identified by children in sessions 1 and 2.

also used this strategy in our prior Al literacies workshops for families in Germany, and it is

a fun activity that could easily be replicated at home.

When playing with the Quick Draw app, children were amazed at how quick and effi-
cient the program was in guessing their drawings, so they decided to deploy many different
strategies to confuse the program. They first tried to draw nonsensical drawings and see
if they would still get object predictions after they decided that multiple children should
try to draw on the same device at the same time so that the program would have a hard
time keeping up with their drawing speed. When interacting with Amazon’s voice assistant,
Alexa participants found various ways to probe if it is biased. In essence, they tried to speak
Spanish and see if the device would recognize a new language; they used different names for
calling the device “Lexa” to see if it could deal with more informal language, and they asked
“silly” questions to see if the device can engage in child play (i.e., “Call me princess”), they
also tried to see if it can sing songs from different locations such as the North Pole or the

Indian Ocean. Very often, children build on each other’s questions during the interaction and
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Figure 4.4: Examples of ways in which children were trying to trick the Al

help each other reformulate a question when needed. This finding is consistent with prior
work done in this field, where we learn how much peers or family members can help repair
communication breakdowns when interacting with voice assistants [100, 48]. While trying to
probe and trick the voice assistant, children voiced several privacy concerns: “Amazon can
hear everything users have said to their Alexas,” said A. he then added, “Alexa buys data,
takes data, and gives it to people who build Alexa.” D. was worried that “the tiny dots
on Alexa are tiny eyes where people can see users,” so she decided to cover the device with
post-its. From these examples, we see how children’s privacy concerns can vary widely based
on their naive theories [153], prior experiences with these technologies, and conversations

they had with or heard from their parents.
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Figure 4.5: Examples of children coding a game with BlockStudio

4.8.8  Author Dimension - design, code, teach the Al

The democratization of current Al technologies allows children to communicate with ma-
chines not only via code but also via natural language and computer vision technologies.
These new interfaces make it easier for a child to control and even “program” an agent via
voice, but it is harder for a child to debug when the machine does not behave the way he
expects. During our design sessions, children could individually discover a series of Al pro-
gramming applications and use them with their parents. Sometimes families would start by
playing with example games that would recognize their gestures or objects. We would then
ask them to make the games more or less intelligent. Other times families would come up
with their project ideas and start a program from scratch. We would ask the children to
explain specific concepts from their project. “What does the loop mean?” asked one of the
researchers. M. answered by drawing a circle in the air. We also asked both children and
parents to reflect on how they can make the technology suitable and meaningful for their
families. D.’s older sister said they could program the Sphero ball robot for “maybe dog

chasing.”
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In all the authoring activities, families tried to test their programs in various ways,
moving their bodies together, standing up, and sitting down. Meanwhile, one of the family
members was going back and forth to modify the code blocks or the parameters of the smart
games to see what would happen. Children and parents engaged in a balanced partnership,
especially when using the applications where it was straightforward for multiple people to
interact with the program (i.e., Quickdraw, Cognimates motion games, Teachable machine
vision training). Similar to prior studies, parents helped scaffold their children’s behavior
when interacting with robots or interactive devices together [64, 120].

When M. and her dad played with the Teachable Machine Platform (ref fig. 4.5), the
dad would always probe his daughter with helping questions. “So I put in 150 pictures, and
you put in 25, so that model knows me better because I put more pictures in it. The more
pictures I put in, the more the model will learn. How would you fix it?” asked M.’s dad. M.
replied, “add more,” and proceeded to add more pictures of herself. When she realized she
could not add more pictures after a model was trained, she would say, “No, we have to redo
it. Daddy goes first this time.” After training their model for a second time, M. and her
dad tried to trick it, and both faced the camera simultaneously to see which one would be
recognized. M. noted that the machine looked very similar, but she had a pink bow, and she
thinks that is why the machine could recognize her. She thought of another way of tricking
the machine into giving her pink bow to her dad.

We observed the same behavior when families interacted with voice assistants. All family
members helped each other to repair various communication breakdowns, similar to prior
studies [48]. For example, R.’s dad tried to get the voice assistant to act like a cat. He said
“meow” when talking to the device. “Oh, you have to say something,” replied R., his 11
years old son, then R. added, “if you wanna wake her up, you should say something like
Alexa.” The device turned blue, and R. said, “meow.” After, the voice assistant started to
mMeow.

From these examples, we see how children build on experiences and skills developed

in the prior study sessions for probing the technology as they are designing it, either by
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asking it questions, trying to trick their games, debugging collaboratively, or by teaching and
supporting each other. In this way, our Ask, Adapt, and Author framework dimensions
become intertwined in practice and serve as a support in helping families gain a more in-depth

understanding and control of Al technologies.

4.8.4  Analyze Dimension - How does it work? How do we make it better

The last step in our design sessions with families was critically analyzing the technologies
discussed, used, or created in all the other study sessions. This critical analysis was done as
part of a group discussion at the end of the study in which children, parents, and researchers
participated in a circle. The analysis was also done throughout the other sessions when we
asked participants to draw and explain how the devices work and what they have inside.
With these prompts, we aimed to discover the families’ mental models of Al technologies
and observe how these explanations draw on or influence their direct interaction with smart
devices. The purpose of Analyze discussion was also to elicit systematic reframing for
families to reflect on how they might make better use of Al systems in the future and think

about when and if they should use such technologies.

What is inside? In order to help uncover how children conceptualize smart devices,
we asked them to draw what is inside the device and explain how it works. Children resorted
to various representations and explanations: by saying there is a computer inside, a series of
apps, a robot, a phone, or a search engine. “There is a search engine inside the Alexa, but I

2

do not know what it looks like,” said L., a 10-year-old boy.

Y. and S., two 9-year-old girls, said that an army of people sits at their computers inside
the “Company of Alexa” and replies to all the questions after they research the answers
online. “There is a bunch of cords and a speaker inside the Alexa. It would connect to
a computer and link it to Amazon people. So, for example, if the question is what is the
weather, it [the person] would search the weather and type it up and let Alexa say it,” said

Y., a 9-year-old girl.
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Figure 4.6: Examples of drawings from children explaining what is inside the voice assistant

The most common analogy children made was that of the mobile apps they were familiar
with. Children imagined how the voice assistant would use different mobile apps depending
on the user’s question (see fig. 4.6). D., another 9-year-old girl, also imagined how the
different devices are linked to each other: “if Alexa does not know an answer, it asks other
Alexa before asking Amazon; once one Alexa gets the answers...every single Alexa in the
world will get that answers.” The younger children (6-7 years old) provided more vitalistic
explanations, consistent with prior studies [153]. “There is a brain inside Alexa, and there is
a part that connects to a computer with a speaker. The speaker will shout out the answer,”
said M., a 7-year-old girl. The older children (8-11 years old) had a very different expla-
nation, which was primarily related to other technologies or applications they are currently
using: “Alexa looks at every place it can search for an answer: Amazon, YouTube, Internet,
Weather, Map, any place” said A., an 8-year-old boy. “The database is a box with stuff in
it. The stuff is statements you tell Alexa,” added R., an 11-year-old boy.
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It is as simple as 2+2. During the design sessions, children tried to validate their
mental models by probing the different devices with questions. Children also tried to deter-
mine the age of the devices to determine how much they could trust them. When they asked
how old it was, children were disappointed by the answer Alexa gave: “it is as simple as

2

2+2.” They described this answer as “questionable,” as they would find it hard to believe a
voice assistant could possess so much information at age 4. B. said the assistant must be at
least 20 years old. When children find bugs or limitations in the device’s answers, they think
the errors happen because the device “relies too much on the internet.” Children requested
to know who programmed the voice assistant to understand why the device was lying about
its age. From this example, we see how our participants were able to draw on prior workshop

experiences and not only understand how the device behavior is linked to the way it was

programmed but also figure out what questions to ask in order to test the device.
4.4 Discussion

Today’s modern world is now governed by the decisions made through AI and algorithms.
While these tools show incredible promise in healthcare, education, and other fields, there
is also a need to support ways in which people (mainly from vulnerable and marginalized
populations) can carefully critique the ways Al could amplify racism, sexism, and other
forms of discrimination. For people to start considering algorithmic justice early, we must
find ways in which they develop forms of literacy around AI. We argue that Al justice and
AT literacies begin in early interactions, inquiries, and investigations in the family unit.
However, Al literacies are not a form of knowledge that can be taught in a didactic and
lecture-based form [89]. Instead, designers need to consider how to promote sense-making,
collaboration, questioning, and critical thinking. How to design future Al systems for families
tapping into the idea of ”children as scientists” and leveraging their curiosity and both the
explore/exploit paradigms? Prior work shows that children are developmentally primed for
this type of exploration [131], and we believe it is a missed opportunity to not provide Al

literacies opportunities through the design of future smart technologies and via parenting.
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Based on our prior research and the findings of this study, we propose a novel Al literacies
framework for designers and educators to consider to support critical understanding and use
of Al systems for families. Furthermore, we believe it is important to consider this design
framework in the context of our current analysis of nested ecological systems [58].

In Asking sessions, children and families can inquire and interact with AI agents through
various means, such as calling out with voice interactions, drawing, and playing. However,
embedded in these interactions with Asking is the notion of privacy policies that must be
transparent for families (exosystem). Families have several questions about privacy, tech-
nology, policies, and their children [346]. Therefore, how do we support families to ask and
interact with Al agents in a way that deems their information safe and confidential? De-
signers must also consider how at-home interactions happen between children and families
(microsystems). In this context, can families collaborate and ask Al agents? How do prior
relationships in families mediate how comfortable family members are to engage with Al at
home?

With Adaptation sessions, families are shifting and mitigating their perceptions and
engagements around Al to fit their contexts. However, in adapting to Al, there remain ques-
tions of negotiation and power [39]. Al systems cannot code switch and recognize children
and adults [48]. How are more substantial cultural capital and social contexts (macrosys-
tems) of families thought about with AI? For instance, bilingual families can switch and
merge languages (e.g., Spanglish). For AI voice assistants, this means having to adopt a
single language. Similarly, Al systems have difficulty recognizing different languages and ac-
cents (macrosystems). In this case, families who may have grown together in specific social
and cultural norms now face systems that cannot adapt to these larger macrosystems.

For the Author dimension, families need a chance to build and create to develop Al
literacies. We ask, though, who has a chance and opportunity to build? Even if designers
create authoring systems for Al engagement, this can solely depend on technology infras-
tructure at home (exosystems)[253]. Authoring may also mean learning how to build, which

may privilege individual families in communities, libraries, schools, and networks that can
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teach and build knowledge capacity.

Finally, under Analyze, the design of Al learning tools can be situated towards collab-
oration, and sense-making [237, 31]. However, this approach assumes that different family
units work together (microsystem). Therefore, how is a careful reflection on Al designed
to deal with real family constraints, like working families, families with limited time, and
families that always move (i.e., children living between households)? How might designers
create activities and technologies that support diverse families to generate and test various
hypotheses about how smart technologies work and engage in the systematic reframing of

how Al should work to support meaningful and inclusive family activities [79]?

While complex ecological systems need to be considered within design frameworks, there
are still takeaways for families with Al literacies and justice. Our study shows that with the
Ask, Adapt, Author, and Analyze dimensions, parental roles and relationships still matter
when families learn about Al together. Aarsand (2007) describes “asymmetrical relations”
between parents and children concerning assumptions about expertise with computers and
video games as both a challenge and an opportunity for joint engagement with these media.
The so-called “digital divide” through which children are considered to be experts with
digital media, while adults are positioned as novices, becomes a “resource for both children
and adults to enter and sustain participation in activities” [14]. Children can teach parents
about Al technologies, but it is also parents’ responsibility to teach children about the values

in their community that matter and how Al tools and systems align with these values [125].

4.4.1 Design Features that Encourage Al literacies for families

We can use our findings to examine the conditions and processes that our family Al literacies
framework could support. We use our findings to show how the Ask, Adapt, Author, and
Analyze dimensions can lead to a critical understanding of AT for families [89, 99] through a

balanced engagement with these new technologies [287, 294, 342].
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Mutual engagement (i.e., multiple family members should be equally motivated to
participate). Families in this study were able to participate in different ways, whether
they were asking several questions to voice assistants, playing and authoring together
with new Al systems, or trying to analyze how bias is introduced into smart technolo-

gies.

Dialogic inquiry (i.e., inspiring collaboration and meaning-making): Families can try
to analyze the Al system and figure out how it works. They can also determine how

the Al systems need to adapt to their families’ culture, rules, and background.

Co-creation (i.e., through co-usage, people create shared understanding): Parents
and children can come together to ask, adapt, author, and analyze Al systems in order

to find out what they all currently know and what they would like to know more about.

Boundary crossing (i.e., spans time and space): Families can consider how Al sys-
tems are pervasive in multiple technologies. Whether in Internet searches, YouTube
recommendation systems, and voice assistants of multiple forms, recognizing how per-

vasive Al is becoming on many platforms can shape how Al is crossing boundaries.

Intention to develop (i.e., gain experience and development): Families can consider
how they are adapting to Al systems. For instance, are the questions they are asking
voice assistants changing? Are families noticing when Al systems may be present?
Interestingly, families can develop as they understand how Al systems adapt to different

people and contexts.

Focus on content, not control (i.e., the interface does not distract from interac-
tion): With some Al systems, families can engage via multiple straightforward means
of engagement. Through asking voice assistants questions, seeing if Al systems can
recognize drawings and sketches, and engaging with computer vision models, many

different and simple mechanics allow families to question and critique Al systems.
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4.5 Conclusion

Our aim in designing is to ensure we support families in raising a generation of children
who are not just passive consumers of Al technologies but active creators and shapers of its
future. With our Al Literacies Framework, we aim to encourage and enable families to learn
how to develop a critical understanding of Al

We propose this framework from an ecological systems theory perspective and provide
examples of implications for supporting family Al literacies across various nested layers of our
society. As designers of technologies, we strive to support a diverse population of children and
adults and provide significant inspiration and guidance for future designs of more inclusive
human-machine interactions. We hope that democratizing access to Al literacies through
tinkering and play will enable families to decide when and how they wish to invite Al into
their homes and lives.

In the following chapter, I describe how the insights gained from our family co-design
sessions enabled us to create a new series of Al literacy activities for families to use at home.
These activities are designed to help families learn how to use Al technologies, comprehend
the implications of these technologies, and develop a critical understanding of the algorithms

that power them.
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Chapter 5

AI LITERACIES AT HOME: HOW DO CHILDREN AND
PARENTS LEARN ABOUT AI TOGETHER?

Figure 5.1: (left) A family laughs when they accidentally call Siri “Alexa” during the “Al
Bingo Game”. (right) A father suggests adding sign language support to their “Design AI”
project.

The previous chapter showed that families successfully engage in the co-design of Al
literacies. However, a question remains: what happens when children and parents learn
about Al together at home? To answer this question, together with my collaborators, I used
our prior co-design sessions with families [103] to create 11 learning activities for family Al
literacy !. First, we invited 15 families from all over the USA to participate in a 5-week in-
home study. Families spoke more than ten languages other than English and had a variety
of backgrounds and levels of exposure to smart devices. Each family got to learn more about
image classification, machine learning, and voice assistants, and they also got to design and

analyze their own Al assistants [91].

IThis study was done in collaboration with Fee Cristoph and Amy J. Ko and was published in CHI ’22:
ACM Conference on Computer-Human Interaction 2022 [92]
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We found that our learning activities enabled families with different perceptions, atti-
tudes, and knowledge about Al to engage in the following learning processes successfully:
exploring multi-modal and embodied situated practices with Al, developing Al conceptual
learning, engaging in critical framing of Al, and reflecting on future meaningful uses of Al
at home. In addition, embodied and tangible activities best-supported families to engage in
all these learning processes (in particular, the “Train AI” and the “Al BingoGame”). The

study materials are available at aiplayground.me.
5.1 Study motivation and contributions

As discussed in Chapter 1, several initiatives provide Al educational resources for youth
(304, 98, 199]. However, few resources currently exist to help parents mediate their chil-
dren’s in-home use of Al, despite growing parental concerns [282, 325, 3|. Furthermore, Al
products such as voice assistants or smart mobile apps are only sometimes developed for
youth, despite increasing usage [152]. These products raise additional inclusivity issues for
families of different ethnicities, familial structures, technological literacies, and socioeconomic
backgrounds [27].

Previous studies have described the benefits of families learning about technology together
or engaging in co-design. For example, Barron et al. showed that parents could play various
supporting roles, such as collaborator and learning broker [41]. More recently, Michelson
et al. emphasized the importance of balanced partnerships in family technology co-design
activities [212], and Yu et al. showed that parents primarily act as spectators, scaffolders,
and teachers when supporting children’s interactions with coding kits [344]. Although these
studies highlight the importance of family engagement in children’s technology learning,
there still needs to be more knowledge about best practices for joint family Al learning at
home.

To understand joint Al learning, we explore how families can best develop multiple Al
literacies in the home. Our work builds on the notion of multiple literacies [63], which

emphasizes how negotiating multiple linguistic and cultural differences is central to the lives
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of young people. By using the lens of multi-literacies, we aim to help families achieve two
goals for Al learning: (1) creating access to the language of Al technologies and the power
and community it can bring, and (2) fostering the critical engagement necessary to design
social futures and meaningful use of Al in the home. For our purposes, Al literacies include
the ability to read, work with, analyze, and author with AI [103, 106, 99]. Our framing of
multiple AT literacies also borrows from Freire’s assertion that literacy is about the acquisition
of technical skills and the emancipation achieved through the literacy process [122].

Parents have experienced learning designers, routinely improvising learning experiences
for their children. Suppose parents had a basic understanding of how AI works and valued
applications of Al for their families. In that case, they could translate and explain Al
terminology and concepts to their children and thereby guide meaningful adoption and use
of this technology in the home, as was the case for video games [283].

To understand how families of different ethnicities, structures, technology exposure levels,
and socioeconomic backgrounds interact with and learn about Al literacies, we pose the

following research questions:

e RQ1: How do children and parents learn about AI together?

e RQ2: How can we design learning supports for family Al literacies?

We conducted a 5-week longitudinal study of 15 families with varying prior knowledge about
technology and Al to answer these questions. We designed four learning sessions compris-
ing 11 learning activities based on the four dimensions for multiple literacies, a framework
proposed by the New London Group (NLG) [63] that we adapted to the field of AI learning
for families by building on prior work [199, 103]. In the fifth session, we gathered feedback
from families on the study learning activities.

We recorded and transcribed all study sessions to identify how family members supported
each other in developing multiple AI literacies when engaging in our learning activities.
Through thematic analysis of our codes, we identified eight parents’ roles in supporting chil-

dren’s Al literacies practices. We then showed how our different activities supported parental
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roles in each session and proposed design recommendations for future family-centered Al lit-
eracies resources.

Our findings provide a roadmap for understanding family learning pathways to early Al
literacies and contribute guidelines for supporting a constellation of family practices [255] and
interests. Situating family Al literacies within the larger context of critical computational
literacies [158, 175] and family as a third space for socio-critical literacy [142, 284], this paper
highlights the benefits of partnerships between children and parents when reflecting on how
to make use of Al for their family meaningfully. Finally, our study conceptualizes Al as a

socio-material knowledge with social and societal histories and consequences.
5.2 Study procedure

Our study consisted of five sessions: (1) an image classification session, (2) an object recogni-
tion session, (3) a voice assistants session, (4) unplugged Al learning and co-design activities
session, and (5) a reflection on study activities. The study took place online, and we used
a free video conference application to connect with the families and guide them through
the activities. In addition, detailed instruction playbooks, sent to each family one week be-
fore each study session, described the learning activity and provided links to tools, apps, or
printed documents they needed to use during the activity (detailed descriptions of all study

materials are included in the appendix).

5.2.1 Study Participants

We recruited 15 families for our study, consisting of 18 children and 16 parent participants.
We posted an announcement on several family forums, social media groups, and Slack chan-
nels to recruit. Forty-four families applied to participate in the study. Our inclusion criteria
for the study were to select families that were as diverse as possible along the following
dimensions: family structure, ethnicity, geographical location, socio-economical background,
children’s ages, and gender. We selected 15 families. Of the 15 chosen, only 11 attended

all the sessions. One family attended only one session, and three attended only two. The
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Family ID Parent(s) Language(s) Child(ren) and Age(s) Joint Time
F1 Mom (S.), Dad (J.) English, Spanish Son, 7 (G.) 2 hrs, 57 mins
F2 Mom (C.) English Son, 9 (Et.) & Son, 9 (E.) 2 hrs, 49 mins
F3 Mom (D.) English, Gujarati Son, 11 (R.) 2 hrs, 34 mins
F4 Dad (E.) English Daughter, 10 (Sh.) & Daughter, 6 (Sm.) 3 hrs, 21 mins
F5 Mom (K.) English Daughter, 9 (L.) 1 hr, 5 mins
F6 Mom (T.) English, Spanish Daughter, 10 (H.) 2 hrs, 44 mins
F7 Mom (G.) English, Chinese Son, 7 (R.) 1 hr, 9 mins
F8 Mom (L.) English Son, 9 (E.) 2 hrs, 14 mins
F9 Mom (J.) English, Spanish Daughter, 10 (C.) 2 hrs, 7 mins
F10 Mom (I.) English Som, 10 (S.) & Daughter, 8 (K.) 0 hrs, 29 mins
F11 Mom (R.) English Son, 11 (A.) 2 hrs, 25 mins
F12 Mom (N.) English, French Daughter, 9 (C.) 3 hrs, 19 mins
F13 Dad (N.) English, Hindi, Marathi Daughter, 7 (M.) 2 hrs, 56 mins
F14 Dad (N.) English, Hindi, Malayalam, Gujarati Daughter, 8 (M.) 3 hrs, 5 mins
F15 Dad (A.) English, Tagalog Daughter, 5 (L.) 1 hr, 49 mins

Table 5.1: List of families that participated in the study

families unable to attend sessions cited extraordinary family circumstances as the reason or

skipped sessions they deemed inappropriate for the young age of their child.

Children’s ages ranged from 5 to 11 years old, with an average age of 8.5 years old.
Ten children were female, and 8 were male. Of the 16 parents, 11 were female, and 5
were male. Of the 15 families, 5 were Asian American and Pacific Islander, 5 were White, 3
identified as multi-ethnic, and 2 were Hispanic or Latin. Families were located in 10 US states
distributed evenly across the country. In terms of languages spoken, 10 families reported
speaking languages other than English at home; these included 10 distinct languages and
dialects, such as Spanish, Chinese, Hindi, Tagalog, Gujarati, and Malayalam. Regarding
technology literacy, 6 parents had professional experience with technology design, 3 had
programming experience, and the remaining 7 had no programming experience. In addition,
families reported in-home use of a wide range of smart technologies: 15 used a computer and

smartphone, 9 used a voice assistant, five used coding kits, and 4 had robots.
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Activity Name Activity Description MSP ESP ACL CFA DFMU

Classification Game Sort a set of 12 images of marine life into groups and name each group. X X

Session 1 Anchor Game Select the most important part of each image from a set of 12 marine life images. X X
Reflection Reflect on how to use the image games to make something useful for society. X X
Object Recognition Identify home objects with an object recognition phone app.

Session 2 Train Al Train an interactive game to recognize different images and produce animations. X X
Prediction Game Predict how the Train AT game would recognize specific edge case image examples. X X

. Compare with Voice Assistant Compare answers to specific questions between a voice assistant and a family member. X X

Session 3 Draw What is Inside Draw what is inside a voice assistant and how it works. X X X
AT Bingo Game Complete a set of prompts by getting a voice assistant to say or do specific things. X

Session 4 Analyze AL Analyze different characteristics of voice assistant along continuums (i.e., friendly to unfriendly). X X
Design Al Design a custom Al device by selecting from a list of common AT toolkit features. X X

Table 5.2: Activities completed during the four sessions with corresponding Al literacies
dimensions: Multimodal Situated Practice (MSP), Embodied Situated Practice (ESP), Al
Conceptual Learning (ACL), Critical Framing of AI (CFA), Design Future Meaningful Use
(DFMU).

All parents and children older than age 7 signed digital consent forms reviewed by an
institutional review board agreeing to participate in our study explained to them by the first

author of this paper. A list of family demographics is presented in Table 5.1.

5.2.2  Study Sessions

Session 1: Image classification. In this initial activity, families learned how to classify
images of various marine objects (“Classification Game”). They then learned how to pick a
representative segment of each image (anchor) such that an algorithm could only guess what
the image was about by examining this smaller segment (“Anchor Game”). Both activities
were conducted on a dedicated digital platform we designed and built. After these activities,
families reflected on using them for good (“Reflection”).

Session 2: Object recognition. Each family got to experiment with and learn about
automatic object recognition in this activity. This session had 3 parts. The families (1) used
a free smartphone app that recognized objects in their house and tried to tag them (“Object
Recognition”), (2) trained their models for object recognition using a free public web app on
their computers (“Train AI"”), and (3) took a quiz that prompted them to guess what the

computer model would predict for similar-looking objects (“Prediction Game”).
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Session 3: Voice assistants. For the third session, families engaged with voice as-
sistants. This activity had 2 parts. (1) The families played a game with a voice assistant
of their choice, comparing the assistant’s answers with one of the family members’ answers
(“Compare with Voice Assistant”). If the families did not have a voice assistant, they were
instructed to use Siri or download the Alexa mobile app. (2) The participants were asked to
draw what is inside the voice assistant and how it works (“Draw What is Inside”).

Session 4: Unplugged AI games and co-design. This last interactive session con-
sisted of 3 parts. Family members (1) completed a set of prompts by getting their voice
assistant to say or do specific things (“Al Bingo Game”), (2) compared humans, robots,
and voice assistants on a printed scale that assessed dimensions of intelligence and socio-
emotional attributes (“Analyze AI”), and (3) designed their smart assistant using different
components from an Al toolkit we provided (“Design AI”).

Session 5: Reflection on study and learning activities. In this final session,
participants reflected on each activity. They were asked to describe how much fun they had
doing the activity, how easy it was to do it, and how much they learned. We also asked for
suggestions about improving the activity and describing what they liked the most. The first
author then prompted the families to reflect on whether and how they would change their
current uses of Al technologies and asked them to describe future Al learning activities they

would like to use.

5.2.8  Data Collection and Analysis

Our study produced video recordings of all online sessions with individual families that
participated in the study. A total of 35 hours of footage was collected from all sessions. The
average duration for a family session was 33 minutes (see details of sessions duration for each
family in Table 5.1).

For the qualitative analyses, the first and second author transcribed the videos and
noted comments on children’s body language and non-verbal interactions. The final corpus

included 1,704 pages of transcripts (368,159 words). Once all transcriptions were finished,
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the first two authors each reviewed half of the data independently, separately analyzing each
transcript using a combination of etic codes developed from our theoretical frameworks of
joint-media engagement [291]. Parental scaffolding [111], and emic codes that emerged from
the interviews themselves [216, 236]. In addition, we listed all joint-media and parental
technology scaffolding practices that we found in prior studies of families interacting with
home technologies, mobile tablets, or coding kits [41, 226, 343] and identified connections

with a series of themes that emerged from our study.

After a final coding frame was developed, all transcripts were independently coded by
the first two authors. To ensure the validity of the analysis, the two authors regularly
met to discuss and reach an agreement on any newly emerging codes, any discrepancies in
the analyses, and any refinement to the codes [172, 195]. Finally, the coding frame was
changed, and the transcripts were reread according to the new structure. This process was
used to develop categories, which were then conceptualized into broad themes after further
discussion. Towards the end of the study, no new themes emerged, which suggested that all

major themes had been identified [53].

Once the parental roles were identified, both authors looked at the transcripts for each
activity with each family and marked roles as present or not present. Together with the
second co-author, we discussed discrepancies until we reached an agreement. Each time a
role was present for pairing a family and activity, we counted it as an instance of that role.

We used the counted instances to address RQ2.

5.3 Findings: Al Literacies at Home

In this section, we summarize our perceptions of children’s experiences and then discuss our
results concerning RQ1 (how do children and parents learn together about AI) and RQ2

(how to design activities to support family Al literacies).
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5.8.1 RQ1: How do children and parents learn about Al together?

We now turn to a more granular analysis of families’ joint learning of Al literacies. Our
qualitative analysis revealed a clear set of roles parents play when supporting their children’s
development of Al literacies. The way parents took on these roles for the different study
activities varied. To illustrate this variation, we present examples of prominent parental roles

for each study session.

What were parents’ attitudes towards AI?

Our participant families reported varied use of technologies at home. All 15 of our families
reported using computers and smartphones daily. Of these 15 families, 13 reported using
mobile tablets, 11 reported using gaming devices, 9 used voice assistants, and 5 used coding
kits.

Convenience. Some families enjoyed using smart devices in their homes, sometimes re-
porting having multiple voice assistants in different rooms (F4) or using voice assistants to
control other connected appliances in their homes, such as smart lights (F11). However, some
families were concerned about privacy issues with voice assistants or other Al technologies.
For example, the father in F14 said he feels uncomfortable using Google Home, although
they own the device. Parents echoed these privacy concerns in F3, F8, F9, and F11, with
some parents recognizing that sometimes they do not know what information access they
consented to when setting up their smart devices.

Control. Parents from families F1, F2, and F11 expressed the desire for more personalized
answers from their voice assistants. However, they said they would like to control what

information the voice assistants and other Al applications get access to:

“I would like an app where you can add personal information. It would be nice if
they [AI devices] do not know unless you give them that information. Otherwise,

it seems creepy” — R., mom F11.
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These findings are consistent with recent studies showing that parents often need to be
made aware of the privacy settings of their smart devices [184, ?] or smart toys [210]. Prior
work has also found that parents would like to have more control of smart devices and decide
what information they choose to disclose or not [21].

Quality. Many families recognized the utility of voice assistants in providing answers
to factual questions (F1, F4, F9, F11, F12), and some described the voice assistants as
knowledgeable (F1, F11, F4) and confident (F6).

Accuracy. While recognizing a voice assistant’s abilities to answer factual questions,
some of the parents (F13, F14) encouraged their children to recognize what assumptions
the device is making before answering the questions, similar to parental roles observed by

Beneteau et al. [46]:

“You assume [talking to his daughter] that the egg that we are talking about is

from a chicken. Alexa had no such assumptions.” — N., dad F13.

Human element. In other cases, it was the children that would point out the device’s

limitations when it comes to answering questions that require human reasoning and opinions

(F3):

“Nowadays, Al is supposed to have intelligence, but it does not think like a brain
that can have opinions(...). Computers do not have opinions; they look at the

facts.” — R., son F4.

Families sometimes perceived the voice assistants as “chatty” (mom F2) and not good at
engaging in conversation (i.e., “I think we are more personal than Alexa,” said mom F1).
Parents’ recognition of the voice assistants as not always fit for engaging in conversations led
to them actively trying to scaffold the device’s conversations with children, either by helping
children reformulate their questions or by helping them make sense of the device’s answers.
This parental role is consistent with other studies that explored how parents mediate child

interaction with voice assistants [46, 47, 100].
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Transparency and Intelligence attribution. The level to which parents and children saw
the voice assistants as knowledgeable and trustworthy was influenced by how smart they
thought the devices were. We noticed that children and parents would influence each other
regarding intelligence attribution to the voice assistants.

Inclusive design. Several of the multilingual families complained that voice assistants had

trouble recognizing their voices or accents:

“Siri has trouble recognizing my voice, which annoys me.” — J., mom F9, who

speaks Spanish as a first language.

Cultural relevance. As our study population comprises diverse families of ethnicity and
spoken languages, several family members raised issues concerning the cultural relevance of
some of the interactions with the smart devices. For example, C. (mom F2) complained that
“some of her favorite songs are not there.”

We identified nine concerns parents considered necessary when evaluating Al technologies
at home: convenience, quality, accuracy, the human element, privacy, control of settings,
transparency, intelligence attribution, inclusive design, and cultural relevance. In addition,
we noticed that parents and children’s initial concerns would determine if, when, and how
they chose to engage with Al technologies at home.

These findings are consistent with a large scale pediatric study on parental attitudes to-
wards Al medical support for their children’s treatment which found that parental openness
was positively associated with quality, convenience, and cost, as well as faith in technology
and trust in health information systems [282]. Families with different perceptions and con-
cerns towards Al could still find important, value-affirming discussion material in our study
sessions. For example, F15’s dad was against voice assistants and would use the interac-
tions with Al to show his daughter their limitations. Meanwhile, F11’s mom, who embraced
smart devices in her home, would use the study sessions to geek out with her son about how

excellent the assistants are.
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How did families learn image classification together?

Figure 5.2: Example of the family engaging in the Anchor Game from the first session.

Fourteen families participated in this initial study session where they got to play two
games classifying and summarizing various ocean images and then reflect on their process.
Children primarily drove the activities during the image classification and image summarizing
and created rules for categorizing the corals. Their categories ranged from grouping corals by
color, size, or texture (i.e., “bumpy” vs. “sticky”) to creating stories about the corals (i.e.,
“with fish” or “no fish”). Parents acted primarily as collaborators (31 instances), mentors
(22 instances), mediators (17 instances), and teachers (17 instances) in this session (see Fig.
5.7a). There were also three families with older children where parents learned from their
children’s logic and image classification reasoning.

When acting as collaborators, parents would primarily support their children with scaf-
folding questions to help them identify unique features in the images. Parents would also
try to support children’s flexibility in changing their classification groups or image sections.
The collaborative aspect of the family interaction in this activity was particularly useful in

identifying and discussing various image classification and summarizing strategies.
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The more difficult pictures had several different corals or showed a zoomed-in version
of a coral. The images often caused children to pause and look to their parents for help.
This happened in 12 of the 14 families that participated in this activity. Complex images
also sometimes led families to consider renaming their image groupings or grouping images
differently; however, renaming of groups only happened in 6 of the 14 families, as children
were more reluctant to change their initial decisions. Sometimes the role of collaborator
would shift into the role of mentor for parents, as they would prompt children to reflect on

how a computer would make sense or be able to distinguish their examples.

Parents also played the critical role of mediator. This manifested when parents would help
children understand the instructions or the activity’s goal or help them recall the decisions
they made in previous activities. In addition, if the family had multiple children participating
in the study, the parents would help mediate the collaboration between the siblings.

Parents played the role of teacher in multiple ways throughout the 3 parts of his first
session activity. During the image classification and anchoring games, parents taught chil-
dren by providing cognitive or affective scaffolding [111]. For younger children, parents also
provided support with domain knowledge (i.e., “what is a coral?”) during the two games.
During the reflection activity, parents acted as teachers by helping children link the current
activity with other prior relevant experiences. Sometimes parents had to come up with elab-
orate stories and examples in order for children to understand how we could use applications

of computer vision technologies in order to make something good for the planet:

“ Maybe the computer can group it by where in the world it was taken. Kind of
like if we go to SeaWorld. Then we take pictures; then people are going to be like,
oh, where did you take this in SeaWorld?” — J., dad F1.

Other parents (F4, F13) also prompted their children to think about algorithmic bias and
consider what happens if the people who give examples of images to the computer make

mistakes.
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Parents also played the role of student in this activity. This either happened when
children were older and had prior programming experience (this was present in 4 families
participating in this first session) or when children would come up with scenarios for future
Al applications that parents had not considered, such as involving scientists and experts in

the process of crowd-sourcing image classification games.

“A computer would make mistakes because everything makes mistakes. Because
computers, they are just people programming something new.” — L., daughter

E'S.

Both children and parents proposed various ideas when thinking about future potential
applications for image classification and image anchor detection games. However, children
were more likely to propose fun things, such as recognizing different types of dogs (F11)
or recognizing children’s drawings (F13). Some of the older children went much further
in their reflections for future computer vision applications, imagining either how people
could collaborate in the future with machines by playing games or imagining how computers
could learn rules from the current image classification and image anchor detection games to

program themselves:

“So when you make a program, you create some rules. So for the anchors, you
could think of a rule that a computer could follow to know where to put the anchor

[-..] most likely where the most colors change.” — R., son F3.

How did families learn object recognition together?

Fourteen families participated in the second study session, which focused on object recogni-
tion. First, families looked for objects that would confuse a mobile recognition app (“Object
Recognition” activity). Then, they trained and tested Teachable Machine application with
three objects (“Train AI” activity). Finally, they predicted what the computer would choose

when trained on two objects and tested with a different type of object (“Prediction Game”
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Figure 5.3: Example of a father using hand-on-hand scaffolding to help his son position the
object correctly during the “Train AI” activity.

activity). Across all three activities in this session, parents acted primarily as collaborators
(37 instances), mentors (30 instances), cheerleaders (25 instances), teachers (20 instances),
and tinkerers (19 instances) (see Fig. 5.7b). There were also five instances of parents learning
from their children either how to do object recognition, discover niche terms related to their

children’s interests, or learn about their children’s past experiences with similar apps.

When acting as collaborators, parents would display their enthusiasm, actively make sug-
gestions, and help children with the tasks. One source of enthusiasm from both children and
parents was the act of “tricking the Al,” first introduced in the object recognition app testing
but carried into the Train Al activity by some families. Children and parents collaborated
at two main points during the prediction activity: (1) when determining what the computer
would predict, (2) when learning their initial prediction was incorrect. When the machine
defied their expectations, family members tried to determine why their prediction did not
work. In addition, parents and children sometimes collaborated to work through technical

challenges:
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“We should probably aim it at the ceiling, cause we have a bunch of pillows [in
the background].” — A., son F11, suggests how to fix the noisy background when
training the Al

In the “Train AI” activity, parents engaged as mentors when younger children would some-
times choose unusual objects to train their Al with (e.g., their pet), to which parents some-
times had to set ethical and safety boundaries (e.g., telling them they were not going to train
it on their dog).

When acting as teachers, parents provided explanations for (1) what the object recog-
nition application was doing, (2) what companies and other technologies supported object
recognition, and (3) how the computer’s behavior was similar to or different from the child’s.
When parents took on the tinkerer role, their interventions varied between the three activi-
ties. In the first activity, they would suggest different objects for the child to test with the
object recognition app. Then, they would point to objects, pass the child objects, or suggest
that a child looks for a certain kind of confusing object. In the “Train AI” activity, families
got to “fix” some recognition issues because they trained the Al. Parents would suggest dif-
ferent edge cases for the child to test their Al with by picking different objects with similar
shapes (F14), picking objects of the same color (F15) or rotating initial objects (F1) (see
Fig. 5.3).

Though the number of instances of parents taking on the student role was low (only five
instances), some children taught their parents how to use the Teachable Machine platform
(daughter F12), while others taught them specific terms or gave them new insights into their

previous experiences with object recognition applications (son F11).

How did families mediate learning with voice assistants?

Twelve families participated in the third study session, where they engaged in two activities
related to voice assistants. During the “Compare with Voice Assistant”, children or parents

answered the game questions. Families chose different assistants to compare themselves to
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Figure 5.4: Examples of families’ answers to the activity “Compare with Voice Assistant”
from session 3.

(see fig 5.4). If the families did not have a home voice assistant, they used Siri or the
Alexa app. In the first activity parents acted primarily as collaborators (11 instances) and
as mentors (11 instances). In the second part of this third session, for the ”Draw what is
inside the assistant” activity, parents acted primarily as mediators (6 instances), teachers
(5 instances) and mentors (4 instances) with only two parents (F4, F11) making a drawing.
The cumulative count of parent roles showed that they acted primarily as mentors and
as collaborators (15 instances for each), teachers (12 instances), mediators (11 instances),
cheerleader (7 instances), student (7 instances), observer (6 instances) (see Fig. 5.7-session
2). In some capacity, all parents acted as collaborators in this third session. Eleven parents
played with their children in the “Compare with Voice Assistant” activity by responding to

or asking questions.

In the first part of session three, parents and children collaborated to develop new ques-
tions to ask the voice assistant. For example, when family members wanted to give an

advantage to each other in the game against the voice assistant, they would ask personal
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Figure 5.5: Examples of children’s drawings from the “Draw What is Inside” activity: a.)
child F4 drew Alexa as a girl typing and connecting to databases, lights, Google, b.) child
F8 drew Alexa as parts of the phone’s circuitry, c.) child F14 drew Siri as a girl searching
the web and telling the answer to a computer.

questions such as “what is my favorite color ?” (F8), “who is your favorite ballerina?” (F12)
or “what is the most fun activity you do?” (F13). Other times family members would inquire
for facts related to their interest (i.e. “who is the best NBA player of all times?” (F2), “why
does the T-rex have tiny hands?”(F14)) or ask about trivia facts (i.e. “what is the black
hole in the middle of the Milky Way?”(F3), “when was memory foam invented?” (F1).

Parents primarily acted as mentors in the first part of this session when they guided their
children to reflect on what makes a human answer better than the voice assistant’s answers.
During the drawing activity, parents also acted as mentors by prompting their children to
think of specific examples or situations to help them plan their drawings. When mentoring,
parents also encouraged children to explain their Al understanding in more detail by asking

clarifying questions:

M: “Mmm, maybe the programmer could translate human into robots.” — M.,
daughter F14.
N:“I see. So it needs to have something that converts voice into words?[daughter

nods/ (...) — N., dad F14, responding.
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The above dialogue with her dad leads M.(F14) to draw her assistant Siri as a girl who
“secretly” searches the web to answer the questions. It then refers back to the “other
computer” that presents the person asking with an answer via voice (see Fig. 5.5¢). M.’s
drawing of Siri was very similar to S.’s drawing (F4), who drew Alexa as a girl typing and
connecting to databases, lights, Google (e.g., Fig. 5.5a). Other children and parents used
various metaphors to describe their vision for what is inside the voice assistant, such as
drawing different parts of the phone’s circuitry (e.g., Fig. 5.5b).

When acting as teachers, parents either explained specific domain knowledge concepts
(i.e. “what is pi?”) or directly explained to their children how certain functionalities of the
voice assistants work. Parents also played the role of student and learned from their children
knowledge and ways of reasoning about how the voice assistants work and how their children

would compare different voice assistants:

“If Alexa was smart enough, she could have seen (...) we don’t order any of
the pet products, which probably means that we don’t have pets.” — R., son F3

talking to his mom.

Examples of discussions on sensitive topics, such as race and religion, between children
and voice assistants, lead parents (F2, F4, F6, F12, F13, F14, F15) to recognize that these
devices are not always neutral [77, 128, 204, ?] and that it is critical for families to have
conversations about when to trust the voice assistant’s answers. Some families (F1, F2, F4,
F12) emphasized the importance of differentiating what questions are best suited to ask

family members and which ones are best to address to a voice assistant:

“Do we have a dog’ would be a question for the family, the pi question would be
for assistants [dad asks how do you differentiate] for family-related questions we

would ask the family.” — Sa.,daughter F4.

When trying to find future meaningful applications for voice assistants and Al, families
proposed a series of ideas: support with family learning by “having better support for home-

work” (son F2) or enabling more convenient image search (dad F14).
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How did families co-design future Als?

Twelve families participated in the fourth session. Across the activities for session four, the
“Al Bingo Game” was most engaging, and the “Design AI” activity was most collaborative.
Engagement and enjoyment for the bingo game varied and depended heavily on the quality of
the voice assistant’s responses, which sometimes were funny and appropriate. However, other
times were unrelated or not engaging. Engagement dropped off when families were subject
to a succession of interactions where the voice assistant needed help to provide answers or

understand participants.

The third “Design AI” activity prompted active discussions around privacy and Al ethics.
Family members shared their previous experiences and collaborated to understand how fea-
tures and hardware/software components connected and how they could build safeguards
into their designs. Parents were not always more privacy-minded than children but often
could explain to children which settings on their Al assistant led to certain behaviors, like

the assistant knowing their home address.

The most common roles observed in the fourth session’s activities were collaborator (33
instances), mentor (32 instances), teacher (26 instances), cheerleader (25 instances), and

tinkerer (18 instances).
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Figure 5.6: Examples of kids’ and parents’ drawings from the “Design AI” activity: a.) child
F13 designed a new portable/rechargeable Alexa with a hug and kiss kit, b) older child F4
designed an animal-like assistant with buttons to control all privacy features and a sensor to
detect smell, c¢) child F12 designed “Asha” to detect gestures and touch input, allowing for
non-verbal commands.
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As collaborators, parents engaged in back-and-forth conversation with their children and
gave suggestions relevant to the activity. For example, in the first activity, the bingo game,
the families’ collaboration involved asking the voice assistant different questions and sug-
gesting ways to accomplish a task. Active collaboration sometimes meant family members
would build off each other’s voice assistant interactions, as a group trying to narrow in on a
specific query that would get the desired response, such as “make Al tell a lie” (dad F4).

In the second “Analyze AI” activity, collaboration often took the form of parents and
children sharing their views of the Al and agreeing on how to rate the AI’s different char-
acteristics. In addition, they often drew on their previous experiences with Al when giving
justifications.

The third “Design AI” activity, where parents and children co-designed their ideal as-
sistant, had the most engaged and personal collaboration. When deciding which features
and behaviors to include in their Al, parents would offer suggestions, sometimes rebuffed by
children who thought their suggestions would create an Al that was “too creepy”. Often,
collaborations involved discussions of privacy concerns around Al and potential safeguards.
Parents scaffolded ethical conversations by offering help on how to design against a specific

concern:

“What if it was like a face that looked more like a robot face? Would that still be
creepy? [C. nods]” — N., mom F12, suggesting potential modifications to their
AT design.

Sometimes, children wanted more safeguards than parents, like in family F6, where the
daughter wanted no biometrics information recorded, but the mother was ok with using
those sensors. However, in these collaborations, children often made fun of the Al and had
lower technology expectations. In one case, the son of family F1 even made fun of Alexa’s
accent for pronouncing “La Cucaracha” without a Spanish accent.

During all three of session four’s activities, parents often took on the role of mentor.

For example, during the “Al Bingo Game”, parents primarily helped repair communication
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breakdowns with the assistant (asking children to repeat their query, slow down, or enunci-
ate), operate the assistant, and phrase or rephrase queries that the child wanted to pose. For
the “Design AI” activity, parents scaffolded conversations around ethics and helped children
connect certain behaviors they wanted their Als to have to the required sensors for these
behaviors. In some instances, they would nudge their children to consider designing the Al
for others or encourage them to think beyond the affordances of the Als they already know.

When parents acted as teachers, they taught their children various topics, ranging from
simple definitions of words to detailed explanations regarding the people and programming
that make voice assistants possible. Similarly, they gave detailed explanations about the
distinctions between (1) the people vs. a company that builds an Al, (2) lying vs. not
knowing something, and (3) common vs. uncommon Al queries and the expected behaviors
for common queries. In the “Analyze AI” activity, parents continued these explanations and
tied them to characteristics of the Al, like friendliness, truthfulness, and agency.

In the “Design AI” activity, discussions around privacy and ethics led parents to teach
children about current concerns around Al and specific design patterns that could mitigate

against them:

“You can make a password for her. You can say “flower” and then maybe she’ll
obey.” — M., daughter F13, adding a password to her Al

)

“But then it’s the same thing as ‘Alexa,” right? When you want to ask about

flowers, what do you do?” — N., dad F13, highlighting potential shortcomings.

Parents supported their children as cheerleaders during the three activities by expressing
excitement for the activities, consoling children when the voice assistant did not understand

them, and supporting children’s creativity.

5.83.2 RQ2: How can we design learning supports for family Al literacies?

In this section, we consider how our Al literacies resources supported various parental roles

for each activity and present families’ final evaluations of each study session.
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Support for parental roles

We counted instances of each parental role identified in RQ1 by marking whether or not a
role was present for each pairing of a family and an activity. Thus, there were a total of 142
possible instances for each existing pairing (three activities and 14 families in session one,
three activities and 14 families in session two, two activities and 11 families in session three,
and three activities and 12 families in session four, see Fig. 5.7).

For the first session, the cumulative count of parent roles showed that parents acted
primarily as collaborators (31 instances), followed by mentor (22 counts), then mediator and
teacher (both 17 counts) (see Fig. 5.7-session 1). The second session had the same top two
roles. Parents again acted primarily as collaborators (37 instances), followed by mentor (30
instances), and then cheerleader (25 instances), and teacher (20 instances) (see Fig. 5.7-
session 2). In the third session, mentor and collaborator tied for the most common role
(15 instances), followed by teacher (12 instances) and mediator (11 instances) (see Fig. 5.7-
session 3). During the fourth session, parents acted primarily as collaborators (33 instances),
mentors (32 instances), teachers (26 instances), and cheerleaders (25 instances) (see Fig. 5.7-
session 4). Roles that were not in these top roles all appeared most in the fourth session:
tinkerer (18 instances), student, and observer (both 14 instances) (see Fig. 5.7-session 4).
The two activities that had the most joint engagement, found by summing the instances of
collaborator and tinkerer were “Train AI” (23 instances of joint engagement roles) and the

“Al Bingo Game” (22 instances of joint engagement roles).

Sessions feedback

The 11 families that provided feedback for the study sessions described session one on image
classification as relatively easy but expressed varied opinions on fun and learning activity
levels. Overall, families described session two as more fun than session one (except for F15,
who had a very young child). Overall, families reported learning less but having more fun

in session two compared to session one. Finally, families scored session three interaction
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Figure 5.7: Radar charts presenting the distribution of parents’ roles for the different study
sessions and Al literacies activities.

with voice assistants with relatively high scores across learning, having fun, and ease of use.
They scored it slightly less fun than session two but said they learned more. Because the
final session consisted of many unplugged activities, most families described this session’s
activities as relatively easy to play. However, the scores assigned for fun and opportunities

for learning varied more from family to family.

What did families like the most? For the image classification session, all families
expressed that they appreciated the interactive nature of the activity and the ability to pick
the games’ pictures. Several families reported they enjoyed testing, breaking, and tricking

the object recognition applications and the voice assistants. Some families (F2, F6, F13)
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mentioned they liked the “Compare with Voice Assistant” competition aspect. From session
four, families said their favorite activity was the “Design AI”.

What improvements did families suggest? Families suggested expanding the
games collection of images to include images from Minecraft (F1), animal pictures (F8),
cities and ponds (F2), and “other crazy parts of the ocean” (F11). Families also suggested
that the game should be online and collaborative (F3) and that the game should suggest
more questions or explanations about the pictures (F13). Finally, when referring to the
“Compare with Voice Assistant” activity, some families (F6, F2, F11) suggested creating
more activities where family members could interact with multiple voice assistants and com-
pare their answers to different questions. For the “Design AI” activity, family F3 suggested
ways to bring the design to life virtually, and family F14 suggested that it would be fun to
design their Al toolkit parts.

5.4 Discussion

Our work contributes several new insights about Al literacies for families by addressing our
initial research questions:

RQ1: How do children and parents learn about Al together? Our qualitative results show
that parents mediate children’s learning by playing different roles ranging from Mentor to
Student. However, we observed balanced learning partnerships between family members,
primarily when parents play the Collaborator and the Tinkerer roles. Furthermore, while
children and parents collaborate in all our different AI literacies sessions, they primarily
tinkered together in the sessions that support hands-on interactive games (session two) and
unplugged learning activities (session four) (see Fig.5.7). While some of the roles we identify
are similar to parent roles present in other family technology learning activities [41, 344],
the Tinkerer and Student roles we found are unique to Al learning activities. As sometimes
parents and children in our study differed in their experiences, opinions, interpretations, and
imagined futures of Al behavior, the home became a transformative third space [141] for Al

literacies where the potential for an expanded form of learning [109] and the development of
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new knowledge was heightened.

RQ2: How can we design learning supports for family Al literacies? We found that
our designs of supports for Al literacies let families with different perceptions, attitudes,
and knowledge about Al engage in the following learning processes successfully: exploring
multi-modal and embodied situated practices with Al, developing Al conceptual learning,
engaging in critical framing of Al, and reflecting on future meaningful uses of Al at home.
Activities in sessions two and four best-supported families to engage in all these learning
processes (in particular, the “Train AI” and the “Al Bingo Game”). Activities in session one
best-supported Al conceptual learning and critical framing (in particular in the Reflection
activity). Activities in session three primarily supported AI conceptual learning (in the
“Draw AI” activity) and reflections on future meaningful use of voices assistants for families
(in the “Compare with Voice Assistant” activity). By designing activities that allowed
families to move in and across a repertoire of practices [255, 144], we supported multiple
forms of participation [143, 220] and created the potential for authentic interactions and
expansive learning [109].

Our results suggest that engaging families in joint Al literacy practices can lead families
to envision new ways to learn about these technologies. Moreover, introducing families to
the novelty of Al concepts and applications and the hidden potential risks of using these
technologies enabled parents and children to envision sites of possibility [220] and contradic-
tion with their individual and joint dispositions and repertoire of practices. Notably, newly
acquired practices and skills led some families to consider making meaningful use of Al de-
vices in their homes and re-design their interactions with them. These findings suggest that
family has the potential to act as a third space for learning, where both children and parents
can develop Al literacies by combining family social contexts for learning and their collective
zone of proximal development [323].

Limitations. One important limitation of our study is that half of the parents had
some professional technology experience (six parents had user-experience design backgrounds,

and three had programming experience). Some limitations in the study complicate the
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interpretation of our findings. First, it was impossible to systematically observe every family
interaction in every activity, especially with the study’s limitations online. Second, for the
interactions we could observe, observing a family interact during a study does not necessarily
indicate ground truth for their typical interactions outside of the study setting; for example,
it may be the case that parents were playing a less active role in some sessions because they
considered their children’s opinions to be more relevant to the study. Third, some families did
not participate in all four sessions, nor did our sites cover the many possible ways that culture,
community, and collaboration shaped participation. Finally, because our observations were
collected during study sessions and with a subset of each family, they may only hold a subset
of the interactions the family regularly uses when engaging with Al. For example, our data
do not include interactions involving grandparents or younger siblings or when the family
engages with their voice assistant during a mealtime conversation. Therefore, while our
results suggest that the families in our sessions demonstrated diverse roles and perceptions,

other populations could reveal new roles and different shifts in perceptions.

Parents’ and children’s roles. By using niche cultural references, speaking in dif-
ferent languages, or finding examples of confusing images, families used all the resources to
solve a given Al activity. Children and parents would build on responses they elicited from
the agents to identify increasingly narrow edge cases. We interpreted this to be similar to
practices observed in studies on Al understanding with the use of counterfactual examples
(7, 24]. As families learned new tricks, they used them in different activities (i.e., the prac-
tice of “tricking the AI” continued from session to session). Similar to other examples of
playful debugging [185], parents and children took great pride in finding a case that would
confuse or mislead the Al device or application and would share their discovery with their
family members. The Tinkerer and Collaborator roles facilitated joint engagement between
parents and children. Parents took on Mentor, Mediator, and Cheerleader roles to keep their
children engaged with the activities. Parents as Mentors provided scaffolding for children to
understand the activities and connect the activities to their understanding of Al. Teacher

and Student roles allowed parents and children to learn from one another, while the Observer
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role allowed parents to discover their child’s habits more passively. Parental collaboration,
mentoring, mediation, and emotional support have been found in prior studies on family use
of technology [41, 83, 56] and studies on families engaging with coding kits [344], or video-
games [227], however, the Tinkerer and Student roles we identified in this study appear to

be unique to family interactions with Al

As parents and children learn together to negotiate and reclaim agency from the smart
devices by breaking, fixing, and testing them when they tinker [16, 35], we see opportunities
to design family Al devices and applications that are more explicit about their functionality
and abilities [15, 110, 251]. Prior work shows that youth can influence their parents’ digital
media use [72] and suggests the importance of parent and peer contexts for children’s moral
reasoning development [326]. Our study also found that as parents are still unfamiliar with
some aspects of Al literacies, children step in and share their knowledge and perspectives
(316, 192, 100, 315]. However, parental guidance and scaffolding are still necessary when
reasoning about the ethics of AI [238, 239] and algorithmic bias [103, ?].

Embodiment and technologies’ maturity impact level of engagement. We
found that the learning activities that supported embodiment provided rich environments
for children and parents to build up egocentric speculations, extrapolating from their ideas
about performing a task or solving a problem to the AI’s behavior. This is consistent with
Papert’s findings on body synchronicity, where children project robot geometrical puzzles on
their own body to solve mathematics problems in Logo [234] and with Vartiainen et al. who
found that children reason about the relationship between their bodily expressions and the

output of an interactive image prediction tool [316].

Additionally, we found that training an Al model allowed families to test hypotheses and
even break the Al because they could fix it. When families had the opportunity to train
the Al they could build a more accurate picture of the Al’s behavior and capabilities. This
finding is consistent with prior work, which shows that learning how to train smart games

to support children to understand better machine intelligence [94].
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Importantly, we found that when breaking and fixing the AI, families must be provided
with conceptual and technical support to help them determine the cause of the Al’s erratic
behavior (e.g., hardware limitations, noisy data, limited bandwidth) so they have the op-
portunity to fix it and refine their understanding. Furthermore, when families encounter
technical difficulties, it is challenging to debug and engage in interactive learning activities.
This finding suggests the need for more mature Al applications and technologies that are

well-tested with families [48, 244].

Perceived utility impacts family use and mediation. How parents choose to
regulate their use of specific technologies is colored by perceived utility, which in turn results
from how well they understand the technology and can support what their kids do with it
[55]. Joint engagement with Al allows parents to do both at the same time. They gain
insight into their children’s habits with these smart agents, learn more about the capabilities
and limitations of the agents, and have the chance to engage in active mediation [298]. Our
observations of family Al perceptions expressed in our study were similar to Brito et al., who
found that families assign meaning and intelligence to smart technologies before using them
and that this process influences the decision to adopt them [56]. Especially in session four,
families who had already adopted voice assistants had more accurate or fun responses from

the assistants and were, therefore, more engaged in the activity.

Joint-Media Engagement for Al literacies. Our results also have implications for
prior work on children developing Al literacies. Prior work has revealed many challenges,
including the importance of family members understanding the role of data in shaping ma-
chine behavior [217]. Other studies with adults have explored methods of bridging these
comprehension gaps by helping people develop more robust mental models about Al (e.g.,
[180, 37, 265]). Our findings suggest that similar approaches may work for families, at least
when families are engaged in interactive learning activities that use Al applications. Our
qualitative findings of joint engagement of families’ AT literacies also suggest new interpre-
tations of prior research on child Al education. Whereas prior work has largely focused on

children’s experiential and cognitive accounts of AI understanding (e.g., how children make
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sense of machine intelligence or learn how machine learning works [94, 208]), our investi-
gation of Al literacies from a joint-media engagement lens [291] suggests that children and
parents support each other in significant ways to understand Al behavior. These supports
include social strategies for enacting scientific activities such as observation with family mem-
bers, discussing hypotheses with family members, and explaining and teaching other specific
domain or task-specific concepts for inferring models of Al behavior.

Gutidelines for designers and educators. Our findings have implications for both
designers of learning technologies and Al literacy resources for families. The embodied
interactive activities in session two and the unplugged activities in session four were the
ones that supported the most diverse set of parental roles and therefore resulted in families
learning about all the different AI literacies. This trend is consistent with recent studies
analyzing families co-designing interactive Al museum exhibits [199] and research on families
engaging in creative coding activities [257]. Designers and educators might therefore consider
methods for supporting more embodied and tangible supports for future Al learning [196,
239]. Another clear trend was that families used their experiences in generating training
data to make inferences about Al abilities. Designers and teachers might explore methods
for engaging families in reflecting on the relationship between the training data, the AIl’s use
of that data, and its resulting behavior. As our study population included a multilingual and
multi-ethnic group of participants, we found it was important to design reflection activities
that allowed families to approach Al literacies through the lens of culture and power [322] and
provided families with opportunities to envision and imagine meaningful future Al designs.
Designers and teachers might explore ways for critical reflections and Al speculative designs
that leverage a families’ culture, lived experiences and dreams, and diverse constellations of

practices [255, 143].
5.5 Conclusion

After a 5-week observational study in the home, we found that families with different per-

ceptions, attitudes, and knowledge about Al can successfully develop Al literacies in various
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joint-engagement roles. By increasing childrens’ and parents’ Al literacies, we would allow
them to use smart technologies and imagine, meaningfully design, and create future Al ap-
plications relevant to their lived experiences and community needs. This vision must be

attained if our children and their families are to live in a just and equitable society.
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Chapter 6
COGNIMATES: CODING AI GAMES WITH FRIENDS
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Figure 6.1: Cognimates platform preview of Rock Paper Scissors Game.

This study! explores how joint peer engagement in coding Al games enables children to
discover the core concepts of image and text classification and foster critical reflection on the
uses of Al by refining their sense-making hypotheses when testing their classification models
and smart games. It builds on the findings from chapter 3, highlighting the need to design
learning activities responsive to learners’ prior knowledge. I designed a study where children
can train models with their data and examples. It also builds on findings from chapters
4 and 5 that show that embodied and interactive learning activities are most conducive to
children’s extended engagement. In this study, groups of children program collaboratively
interactive smart games that allow them to train and test custom classification models for

detecting body gestures or text messages.

!This study was done in collaboration with Amy J. Ko and was published in IDC ’21: ACM Conference
on Interaction Design for Children 2021 [93].
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A few initiatives today aim to introduce children to Al, such as programming using pre-
trained models [160], incorporating Al classifiers into athletic practice [350], or exploring how
object recognition works by building custom prediction models [208]. In addition, linking
statistical inference to personal data has been highlighted to help children understand how
data is used in Al [205, 78]. This is based on the idea that familiarizing children with data’s

origins and meaning will make it easier for them to comprehend Al [145, 178, 68, 247].

Coding and programming apps have also been found to help children develop their com-
putational thinking skills, including Al literacies concepts [232, 289, 331]. This can enable
them to reason and communicate in a digital world. Furthermore, students are coding to
learn to code and create games, stories, and animations to share [159]. This has given rise to
programming communities, and challenges regarding a more critical computer science educa-
tion [159, 176]. Moreover, students are programming more than just stationary screens—they

are programming toys, tools, and textiles.

A systematic review has established that Al studies benefit children cognitively, intellec-
tually, and socially [171]. In addition, it recommends using project-based learning in group

projects, which can assist in developing critical thinking, problem-solving, and cooperation

skills [201].

This study builds on this prior work by allowing groups of children to train their prediction
models with meaningful examples of text or images. They can then use these custom models
in a familiar visual coding environment to program their smart programs. [ wanted to
explore whether youth would change their perception of machine intelligence in the process
[94]. T discovered that children would use the scientific method collaboratively while training,
coding, and testing their smart programs. I also observed that children became more skeptical
of the specific abilities of smart devices as they shifted their attribution of agency from the
devices to the people who program them. These shifts in perception happened through

individual interactions with agents and debates with peers.
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6.1 Study motivation and contributions

Many children are spending more time engaging with artificial intelligence. This engagement
with what we will call smart agents is likely to increase, as there is significant growth in
smart toys and more than 50% of North American households alone are expected to have a

dedicated voice-assistant by 2022 [290].

Researchers have begun to examine children’s experiences with these agents. For example,
smart toys might influence children’s perception and attribution of intelligence, their moral
choices, or their behavior through play [100, 333, 320]. Prior work has shown that children
see agents as friendly and truthful, and older children (7-10 years old) especially consider the
agents to be more intelligent than themselves [100]. However, what may seem initially to be
a playful interaction between a child and the smart agents can trigger events of significant
consequence, such as children being spied on after their connected toys were hacked [228].
Many of these devices have proven to be easy to compromise [313, 329, 26|, and some

companies designing these technologies utilize questionable practices [203, 241].

The unequal access to smart agents in the home also amplifies digital divides, with only
some children learning to make sense of how smart toys and devices function [43, 85]. Prior
work has demonstrated that parental attitudes, socio-economic status, and cultural differ-
ences play a significant role in how children attribute agency, intelligence, and socio-emotional
traits to the agents [101, 98]. Other studies have shown that children often misunderstand
agents and tend to overestimate their abilities, either because children do not understand
how these agents work, or because artifacts like toys and phones can talk, express emotions,
and engage with youth in ways other humans would: with persuasive and charismatic modes
of engagement [337, 115, 243]. In this context, we recognize the need for inclusive Artificial
Intelligence (AI) literacy efforts to prepare a generation of children growing up with AI. We

define Al literacies as the ability to critically decide if, when, and how to use smart devices.

Explorations of Al literacies applications in education are challenging since the mecha-

nisms and opportunities of Al are unfamiliar to most people outside computer science. Al
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literacies is also considered a vital part of computational thinking [304, 80] and there are
arguments to include Al literacies as part of the CS curricula in K12 level [208, 238, 98|.
In parallel, several studies explored how youth can learn more about Al by interacting with
pre-trained models [316, 160] or training their models [350, 208]. Vartiainen et. al found that
young children (3-9 years old) reason about the relationship between their bodily expressions
and the output of an interactive image prediction tool and engage in an emergent process
of teaching and learning from the machine [316]. Kahn et al. found that high schoolers in
developing countries enjoy to created block-based programs using pre-trained Al models but
do not always understand how these models work [160]. Zimmermann et al. showed that
youth with no programming experience can incorporate Al classifiers into athletic practice
by building models of their physical activity on a mobile app [350]. However, none of these
prior studies explored how children changed their perception of Al abilities after engaging
in Al programming and training activities.

In this study, we plan to address this gap by focusing on one specific aspect of AI lit-
eracies: when learning to program smart agents, how do children’s perceptions of smart
agents’ intelligence change? Britto et al. observed that families are assigning meaning and
intelligence to smart technologies even before starting to use them and this process bears
weight on the decision to adopt them or not [56]. Turkle notes how smart toys in particular
have changed the way children evaluate the “liveliness” of a machine. Rather than assessing
machines solely based on intelligence, children have now begun to also inquire whether their
smart toys can feel and convey emotions [310, 308].

Prior work on general programming suggests some possible changes. For example, Scaife
and Duuren found evidence that the “programmability” of technology can shift children’s
theories of intelligence about computers away from the device and toward the programmers
of the device [271, 105]. While these studies were investigating traditional programming,
in our study we investigate if similar phenomena can be observed when children are using
Al-based training and programming.

We focus our study on two research questions:
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Figure 6.2: Cognimates study findings summary: Children (7 to 12 years old) engage in
the scientific method when training & coding smart programs and become more skeptical of
certain abilities of smart devices.

e RQ1: How do children make sense of machine intelligence when training and coding

smart programs?

e RQ2: How do children’s perception of machine intelligence change before and after

building smart programs?

To answer these questions, we ran a 4-week study in both public and private after-school
programs and community centers with 52 children (7 to 12 years old), observing children’s
sense-making and measuring their shifts in machine intelligence perception (see Fig. 6.2).
Our investigation makes three contributions to the understanding of AT literacies in children.
First, we provide empirical evidence of how children engage in sense-making practices when
training and coding smart programs. Second, we present how children’s perceptions of
machine intelligence change after participating in the study. Finally, we discuss how the

theoretical model of sense-making is relevant to developing Al literacies in children.
6.2 Study procedure

To understand how children make sense of machine-intelligence when training and coding

smart programs and how their perception of machine intelligence changes, we structured



97

our study in the following order: perception game, observations of children in 3 learning
activities, perception game, analyze pre/post perception game responses and observations to
understand changes in children’s perception of machine-intelligence. Fig. 6.3 overviews the

study design.

RQ2: Measure Perception Changes -
Q\?»

i
Lanl

Agents Perception Al Learning : Perception
Interaction Game Activities Game
Phase 1 - 1 session Phase 2 - 3 sessions Phase 3 - 1 session

Figure 6.3: Study Overview

6.2.1 Study participants

We specifically chose many different locations for our study workshops to include a diverse
population of students. The workshops took place in the following locations in Massachusetts,
USA: an after-school program in a Spanish-English bilingual public school with mostly chil-
dren of immigrant families (Public After-School Program), a non-profit community the center
housed in a former church (Church Community Center); an after-school program in a private
school in Cambridge (Private After-School Program), a private STEM center in Lexington
(STEAM Community Center). In total, we had 52 children of ages 7-12 years old, with 16
girls and 36 boys, 28 younger children (7-9 years old) and 24 older children (10-12 years old).
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6.2.2 Study Sessions

Our study comprised of three sessions: 1) initial encounters with agents and perception game

(pre), 2) programming and training Al and 3) perception game (post).

Session 1: Initial Encounters. The goal of our first phase was to introduce children
to smart agents and programming, while establishing a baseline of children’s perceptions
of machine intelligence. We started by introducing to children three different embodied
intelligent agents: Jibo robot, Anki’s Cozmo robot and Amazon’s Alexa home assistant.
First, the researchers would demonstrate the vocal commands for activating each agent (e.g.
“Hey Jibo” or “Alexa”) and some of its capabilities. Then the children were left to explore on
their own. After the initial play and interaction, children were also encouraged to program
the agents using the existing commercial coding apps developed for each agent. At the end
of the session children answered questions about the agents intelligence and abilities as part

of the Pre-Perception game (described shortly).

Session 2: Programming AI. Next, we introduced children to the Cognimates Al
platform (described shortly) where they could learn how to train, code and test a series of
smart programs. To guide this introduction, we created the set of learning activities with

starter coding projects.

Session 3: Post-Perception Game. In this final session, we repeated the Percep-
tion Game from Phase 1, gathering a post-measure of children’s perceptions of machine
intelligence had changed, supporting our second research question. Because not all children
attended the final session, not all the children completed the perception game. Additionally,
in the case of the public after-school program, we were not able to collect any data because
of cancellations due to snow. When we did meet the children again a few days later, we only
conducted interviews and had a final discussion about what they learned, which concluded

with a certificate of participation award.
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6.2.8 Study Materials: AI Platform, Learning Activities & Perception Game

In this section we will present the Cognimates Al platform we used in the study, the learning
activities we used to guide instruction and the perception game we used to measure children’s

shift in perceptions.

Cognimates Al platform.

For this study, we needed a platform that would allow children to both train, test and program
with their custom Al models. There are many professional Al training tools we could have
adopted, but because our study was focused on changes in perception of intelligence, and the
children in the study had no prior exposure to programming Al, the tools needed to be highly
scaffolded for learning. Therefore, we built a platform that integrated the model training,
programming, and testing into a single platform, giving learners multiple views of the same
training data. This followed the Bifocal Modeling (BM) framework [51], which suggests that
representing the same science experiment data in different examples synchronously helps

children more quickly abstract and infer information about this data.
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Figure 6.4: Prediction program for a custom image classification model that can recognize
Narwhals and Unicorns

Our Cognimates Al platform had two main components: the TeachAl page and the
Codelab. The Teach AI page (Fig. 6.4.1) provided children with opportunities to train

machine learning models with their own data. The Codelab (Fig. 6.4.2) was the section
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of the platform where children could write interactive programs using a rich collection of
visual blocks, building up AI behaviors to gather user input, classify it, and respond. On
the Teach AI Page children could train their own classifiers by providing examples of images
and text. For example, a child would train an ideal model, e.g., for distinguishing unicorns
from narwhals (see Fig.6.4.1).

Fig.6.4 portrays a case where a child created a game that would use her custom image
classification model “Unicorns vs Narwhals” to detect if her drawings were a narwhal or
an unicorn, and also report the confidence score in top corner left (Fig. 6.4.3). A character
would display the model prediction for each drawing (bottom corner left). In this example, we
see the importance of providing children with access to the model confidence scores. While
both predictions in this example are correct the confidence scores are very low (0.000036
confidence for the ”"Narwhal” prediction, and 0.00001 for the “Unicorn” prediction). This
feedback was important for children so they could improve their models and include more
data in their training set. Such experiences also allowed children to become more skeptical
of predictions they get not only in their game but also in the real world and understand
what goes behind the scenes of the image prediction. Children could add new data to their
models either directly from their coding projects by using the dedicated blocks (see 2 in Fig.
6.4) or by using the Teach Al page (see 1 in Fig. 6.4).

Learning Activities

During the study, all children completed 3 main learning activities: the "Make me Happy
Program” using text training, the ”Rock Paper Scissors Program” using image training and
the ”Smart Home Program” using text and speech training. The children were allowed to
choose if they want to do the activities together or individually and were provided printout
materials to support the activities. The printout materials would provide children with
prompts to lead them to decide what data to include in their training and with code examples
that could be used during the programming stage. Researchers would also walk around when

children engaged in these learning activities and prompt students with understanding probing
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questions (i.e. ”why do you think it does that?”, ”how would you fix it?”). After the children
finished the 3 learning guides they were encouraged to play and modify other smart programs

on Cognimates Al platform.

Think of some Funny sentences. the teddy bear was stuffed
Think of some Serious sentences ’@
That was funny!
5 i :
i chiddexample ! lchiid 3 example
. [ 4éd erampie ] : N [ Ade ezampie ] .
Tesssnssnssnnnnnns Tesssssnsnnsnsnnnn -
1. Train, Test & Export Text Model 2. Code model to detect your speech 3. Test & refine program

Figure 6.5: “Make me Happy Program”- Text Training Learning Activity

“Make me Happy Program”. We started with very simple text training activities
like ”Make me Happy Program”. In this activity, the students had to teach the computer
through the Cognimates “Teach AI” platform how to recognize funny messages or serious
messages. Once the model was trained with their examples the students could use it in a
pre-coded starter project which would make a character on the screen or one of the robots
react to their messages. If the message they gave was classified as “funny” based on the
model they trained, the character or robot would be “happy”. If the message was classified
as “serious”, the character or robot would be “thinking”. The “Teach AI” text models would
require them at least 2 categories (e.g. “funny” and “serious”) and five examples of text for
each category. The text could be one word or an entire phrase. On average the text models
would take 2-3 minutes to train.

“Rock Paper Scissors Program.”

After learning about text training, we introduced
children to image training in the “Rock Paper Scissors (RPS) Program.” In this activity,
the students had to teach the computer how to recognize images of hands showing “rock”,
“paper” or “scissors.” Once the model was trained with their examples, the students could

use it in a coding project to test the RPS program with the computer via the webcam.
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Figure 6.6: “Rock Paper Scissors Program”- Image Training Learning Activity
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 Tum e s o0

3. Test & refine program

Figure 6.7: “Smart Home Program”- Text & Speech Training Learning Activity

Once they finished coding the program they would test it together with their friends. If the

program would fail to recognize some of their hand gestures they would retrain the model

to include the new gesture images.

“Smart Home Program.” In this activity, the children had to teach the computer
how to recognize different commands for turning the lights on and off. They first trained a
text model to recognize different types of commands for “lights on” and “light off”. Once
the model was trained with their examples the children could use it in a coding project in
order to control internet connected lights via voice commands.

Other smart programs. After children completed the 3 main learning activities pre-

sented above, they were encouraged to test and modify other smart programs. The most
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popular projects were the Jellyfish game, where a jellyfish floats only if you tell it happy
messages (using Speech and Sentiment analysis blocks), the Good boy program where a dog
reacts with sounds and animations to how you talk to it (using Speech and Text classifier
blocks). Children often wanted to modify the projects to make both the characters more

expressive and to add new types of messages the characters could react to.

Perception Game

To answer RQ2 about children’s shift in perceptions, we used an Al Perception questionnaire
adapted from Bartneck et al. [42]. This is an existing instrument that has been frequently
used to measure children’s anthropomorphism, animacy, perceptions of likeability, percep-
tions of intelligence, and perception of safety of robots. The original instrument examines
perceptions across 24 items. Because 24 items was too numerous for our age group, we
adapted the items to specifically focus on a subset of 5 characteristics: it understands me,
it 1s smarter than me, it will remember me, it tells the truth, it is friendly, and it likes me;
we also reduced the levels to just three: the two endpoints of each the scale (yes and no)
and a maybe. Finally, rather than presenting the instrument as a survey, we presented as a
“Perception Game”, to more effectively engage younger children. In our game, there were
a series of printed statements who share a belief about a smart agent. Before asking the
questions, the researchers gave an example of how to respond. We conducted the game sep-
arately for each of three agents: Alexa, Cozmo, and Jibo. The children were asked to place
a sticker closer to the statement with which they most agreed. At the end of the questions
researchers wrote the child’s name next to their sticker and take a picture in order to be able

to later identify the answers.

6.2.4 Theories of Sense-Making

There are many ways to study how children might come to comprehend the behavior of smart
agents. Prior work on program understanding has often focused on cognitive approaches,

providing learners with interactive representations of program behavior (e.g., [174]). The
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machine learning, AI, and HCI communities have followed similar trends in pursuing ex-
plainable AI, aiming to invent representations that help people reason accurately about Al
behavior [17].

In this work, we take a different theoretical stance, instead approaching children’s Al
literacies through the lens of sense-making. Within this frame, we define sense-making as a
process by which people encounter situations or contexts that are unfamiliar, and then need
to process and understand in order to move forward [81]. People form new knowledge from
engaging in complex and information rich situations in which they may not always have
expertise. The learning sciences further consider how learners make sense of quantitative
change in complex systems [332], how learners reason with large sets of data [263], and what

role argumentation plays in knowledge formation [272].

6.2.5 Data Collection and Analysis

Our study resulted in pre- and post- perception game data as well as video recordings of
all sessions at all sites. For the qualitative analyses, the first author and a team of five
undergraduate students transcribed the videos and also noted comments on children’s body
language and non-verbal interactions. The final corpus included 100 pages of transcripts
(34,300 words). Once all the transcriptions were finished, the authors each reviewed half of
the data independently, looking for ways of explaining the three phases of the study. In this
process, the authors separately analyzed each transcript using a combination of etic codes
developed from our theoretical frameworks and emic codes that emerged from the interviews
themselves [216, 236]. We listed all the the sense-making practices [330] that were found in
prior studies with kids and science or math learning [332] and identified connections with a
series of themes that emerged from our study. After a final coding frame was developed, all
the transcripts were coded by the first author. If new codes emerged, both authors discussed
discrepancies in the analyses until they reached agreement. The coding frame was changed
and the transcripts were reread according to the new structure. The final list of codes, their

definitions and presence across the different study sites is presented in fig.6.8. This process
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was used to develop categories, which were then conceptualised into broad themes after
further discussion. Towards the end of the study no new themes emerged, which suggested

that major themes had been identified [53].

Study locations
Code Definition A B C D
Social fudgement  Child analyzed the agent’s social behavior & inferred intelligence fromit x x x x
Initial Funds of Knowledge Child is using prior experiences to form theories about behavior X X X X
Hvpotheses Egocentric Extrapolating from a child’s behavior to the agent’s behavior X X
P Observational Objective details of what the agent is doing without social inferences X X X X
Agency Child would question if the device had agency or not X X
Test Edge Cases Testing via edge cases to understand the limits of the agent’s intelligence X X
. Common Cases Testing via common cases to reveal deeper understanding X X X X
Assumptions ; . .
Agency Testing to see if the agent is autonomous or not X X X X
Post-test Behavior ~ Used test results to build more complex models of agent’s behavior X X X X
Refined . . . e 7 .
Hvpotheses Social Intelligence ~ Used judgements of social intelligence to refine models behavior X X
YP Programmability =~ New hypotheses of machine intelligence referencing programming X X X X
Al Training New hypotheses of machine intelligence referencing Al training X X

Figure 6.8: List of codes used for transcripts analysis from the different study sites: A -
after-school program in a public school, B - non-profit community center, C - after-school
program in a private school, D - private STEM center.

6.3 Findings: Youth Coding AI Games

In this section, we present an overall summary of our perceptions of children’s experiences,
then discuss our results to RQ1 (how children made sense of agent behavior) and RQ2 (how

children’s experiences programming Al impacted their perceptions of agents).

6.3.1 RQ1: How do children make sense of machine intelligence when training smart pro-

grams?

Within the rich experiences described in the previous section, we now turn to a more granular
analysis of children’s collaborative sense-making of agent behavior. Overall, our qualitative
analysis revealed a clear pattern of behavior: children engaged in a scientific process of
initially formulating hypotheses about a smart object behavior, then they came up with

scenarios for testing the hypotheses via interaction with the device or with peers, and finally
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they refined their understanding of the technology either by affirming their initial hypotheses
or coming up with new ones. What varied were the tactics that children used to conduct
these empirical investigations. To illustrate this variation, we present several tactics that

emerged from our inductive analysis.

What type of hypotheses did children propose?

One major source of variation was how children generated hypotheses to investigate.
Social Judgement Hypotheses. Based on our analysis, some hypotheses appeared
to be formed by a social judgement of intelligence, where the children analyzed the agent’s
social behavior and inferred intelligence from it. They would make these hypotheses while
interacting with the devices for explaining why they perform an action or not (e.g., “she did
not listen” for explaining why Alexa won’t play a song). They would also anthropomorphize
the devices when they would hypothesize if they are friendly or trustworthy during the initial

AT perception game as seen in the following examples:

“He just seems like he’s in something else right now” — B., age 12, referring to a
Cozmo robot. “I think he cares about me because when I ask him something, he
listens instead of just not even caring about what he says” — C., age 7, referring to
Jibo robot. “Well, sometimes I ask a question and she says she doesn’t know and
I’'m not completely sure if she’s actually telling the truth” — A., age 7, referring
to Alexa. ”She has more of a human personality but she still like doesn’t have

emotions and the friendliness part”-Si. age 10, referring to Alexa.

Funds of Knowledge Hypotheses. Our analysis showed that some hypotheses seemed
to emerge from funds of knowledge, using prior experiences to form theories about the agent’s
behavior. This practice is consistent with children’s sense making practices in other domains
like agent simulations in physics [332] or mathematics [279]. Children referenced not only
personal past experiences in interacting with computers or other similar Al agents but also

examples and stories they heard about in the media or from their friends and parents.
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“Uh, maybe they coded something on the computer to tell it, like, tell the computer
what to do. Sort of like the computer’s brain, computer is the brain” — C., age
6.5, referring to a Cozmo robot. “She will remember you because I'm pretty sure
just like Siri you can tell her your name, to like ask her to remember you, like
who you are. Because you can tell them your name” — E., age 8, referring to

Alexa.

"You have to say what text is bad and what text is happy or maybe backhanded,
and over time, it’ll be able to recognize it without you telling. And, um, I remem-
ber seeing a video on the Avengers about why there were such split rates, and uh,
the people made a bot” -Ch., age 7, referring to the text training for sentiment

analysis.

FEgocentric Hypotheses. In our examination we saw that some hypotheses seemed to
emerge from egocentric speculations, extrapolating from the children’s ideas about how they
would perform a task or solve a problem to the agent’s behavior. This was consistent with
Papert’s findings on body syntonicity, where children project robot geometrical puzzles on

their own body to solve a differential mathematics problem in Logo [234].

“Well, I've seen lots of pictures and even if ['ve never seen what, like, a train
that has purple stripes, I would just know it’s a train by the way it looks, not by
its color” — So., age 8, referring to custom image model trained to recognize
trains. “I think they learn kind of the same and kind of different, because when
we learn stuff, we can forget it, but then we can look for it in the real world. But,
computers almost never forget it, but if they forget it, they can’t look for it in the
real world” — L.,age 7.5, referring to how the Jibo robot learned to recognize

faces.

Observational hypotheses. Based on our analysis, we found that some of the chil-
dren’s hypotheses built upon what they had seen the agent do. In this case children would

describe details of what the agent was doing without drawing social inferences.
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“Because it has to recognize every bit, every single thing that’s green. If I said
‘green’, but put this [the green balloon] with like, a background of something else,
it might not recognize that because it’s supposed to recognize the bigger things as
green” — R., age 7.5, referring to a color sensing coding project. “I think it
works because it says, umm, when you hear good, or happy speech, then, go up
and when it hears bad, it just says go down. Then it says when you’re out of
bounds, make beeping sounds. And when you hit the side, switch directions” —

E., age 8, describing the Jellyfish coding project.

Agency hypotheses. Our analysis showed that participants proposed several hypothe-
ses when asked to evaluate if the agents were smart, trustworthy or human like. Most
children proposed these hypotheses during our pre- and post- group discussions about agent

intelligence. Children shared beliefs such as:

“It’s programmed to always tell the truth” — J., age 8, referring to Jibo. “Yes,
and I think they programmed her so she acts nice” — L., age 7.5, referring to
Alexa. “Then, the computer would learn, and then it would try to fix it’s mistake”

— As., age 7.

These varying sources of hypotheses show that if children believed a smart agent was con-
trolled or programmed by someone else, then they would be more skeptical of its intelligence
and human-like abilities. In turn, if the children believed the agent was in control, they

would tend to overestimate its abilities to perform human tasks.

How did children test their initial assumptions?

Whereas children’s sources of hypothesis were highly varied, our analysis found less variation
in how children tested hypotheses, with most directly interacting with agents. What varied

were the types of test cases that children chose to probe agent behavior.
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Testing edge cases. Our analysis showed that children would come up with a variety of
edge cases in order to understand the limits of the agents’ abilities and intelligence. Children
would use all the resources they had in their arsenal to test the agents: from using niche
cultural references, to speaking in a different language or trying to find examples of images
that are very confusing (e.g., images of dogs with sunglasses). We interpreted this to be
similar to practices observed in studies on Al understanding with the use of counterfactual
examples [?, 24|, children in our study would build on responses they would elicit from the

agents in order to identify more and more narrow edge cases.

“Alexa, play a legendary Kirby rap on Spotify” — Ch., age 7, talking to an Alexa
smart speaker. “We are trying to confuse it by getting a puppy that looks kind of
like a Kirby that is wearing sunglasses” — P., age 8.5, referring to their custom

image classification game.

“We tried to make him say poems but he wouldn’t do it” — Do., age 7.5, referring

to a Jibo robot.

Similar to other examples of playful debugging [185], children would take great pride
when they would find a case that would confuse or trick the agent and they would share
their discovery with their peers.

Testing common cases. We found that this type of testing was used by children when
trying to reveal deeper understanding. In the instances where they knew something should
work but it did not, children would try to infer the reasons for failure and come up with

other similar examples in order to test their assumption:

“He’s seeing the colors - it’s true because I'm showing the balloon and if I take
it away, it’s false. Show it, true, hide it, false, yeah? So, now, if you show the

color, the paddle should move (paddle doesn’t move)” — A.& E., age 8 & 6.5,

debugging their color sensing project. “Cause I put baseball bat, not a baseball,
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but somehow they must have looked kinda similar, I don’t know, and it did it” —

D., age 9, referring to his custom image classification program.

Testing agency. Our analysis showed that children used a series of strategies in order
to test the nature of the agents they were interacting with and tried to more accurately
place the devices on the animate/inanimate spectrum [135, 117, 162]. Participants would
either directly ask questions to the devices about their nature (e.g., “How do you work?”,
“Who made you?”) or they would come up with play scenarios to see if they could get the
agent to embody different personas. Sometimes children would physically cover the devices,
disconnect them from the internet or move them in the room to test how they would behave,

similarly to children’s attempts to make sense of social robots like Cog [310].

“Alexa, does everything you say really get texted to someone?” — E., age 8. “I'm
trying to figure out how to make it, um, say, when I say I am potato’, or, or, 1
want to say 'Are you a potato?’ then it will say 'yes’” — A., age 7, referring to

Jibo robot.

“I think it goes to the internet, but if the internet does not have connection, she’ll

say, okay, it was nice talking with you” — Si., age 8.5, referring to Alexa.

When and how did children refined their understanding?

The testing practices in the previous section were often a precursor to children refining their
understanding of agent intelligence. These moments were particularly observable when chil-
dren were listening and debating perception questions with other children and after several
sessions of coding and training where they gained more insight into how smart agents learn
from examples. We observed children make several types of inferences from their hypothesis
testing.

Post-test Behavior Hypotheses. Some children used the results of testing to build

more complex models of the agent’s mechanics:
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“It can make a mistake. Someone could have made a mistake in programming
but it is supposed to” — So., age 8, referring to an Alexa smart speaker. “Like, if
I taught it face recognition, I would go like, oh, this is the real face, no this is the
real face, no this is the real one, and it would be really mized up and it wouldn’t

know who is who” — D., age 9, referring to Cozmo robot.

Judgements of Social Intelligence. Some children used social judgements of intel-

ligence to refine their models of the agent’s abilities:

“He doesn’t even know how to pick up a block when I say pick a block” — N, age

6, referring to Cozmo robot.

“Because the Alexa, sometimes I asked her questions and she doesn’t understand
and sometimes I ask her and she knows it” — C., age 6.5. “Because my mind is
going both. It will remember me, but it won’t, I just can’t” — G., age 6, referring
to Jibo robot. “If the computer knows how to learn, I think it would be easier
to make it, um, a robot version of a person, because it can learn like a person,
and then it could probably think like a person, move like a person, and act like
a person. And then, someday, someone - a person in your house - could be a

robot.” — L, age 7.5.

References to Programmability. Many children exhibited more elaborate explana-
tions of agent behavior, grounded in the concrete activities of programming. For example,
C., age 6.5, initially said the Alexa smart speaker makes mistakes because “sometimes she
says she doesn’t know”. In the final perception discussion she described the same device in

the following way:

“Surprised me the most that, at first I didn’t really know computers got taught.
I thought computers, once they were invented, knew stuff. I didn’t know they got

taught to do rock paper scissors and all that” — Em., age 6.5, referring to her
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experience in the study. “I think its smarter but a person created it so its as
smart as the person(referring to creator) but programmed to be smarter” — said
M, age 7.5 “I know how to use these ["forever” coding blocks]. I've coded using
a different program before. Oh my god, this is going to be so cool, I want to use

them for the robot now” — P., age 8.5, referring to his prior coding experience.

References to AI Training. Many children specifically grounded their judgements
in their experiences with Al teaching and training. We observed that children would often
try to confuse the AI by showing it examples that combine the different things it is trained
to recognize (e.g., dog with glasses). The experience of confusing the robot or the computer
was primarily attractive for children because it was perceived as fun and because it put them

in charge of the process. This led to inferences about the limitations of Al:

“I think I know. Well maybe because that one looks more like a drawing. And it
doesn’t get it because it’s a drawing” — R., age 7, referring to her model prediction
result. “Because it’s going to learn what those pictures are going to be” — L, age
7.5, referring to So.’s model also. “Cause I don’t wanna put more funny words or
more boring words, cause if I put like, 2 funny words and 1 boring word, it would
probably put funny” — T, age 7.5, after typing ”doing funny homework” in his
prediction game. “Probably it did see me, but it didn’t really recognize me, but he

can learn to recognize me” — said a Em., age 6.5, referring to the Cozmo robot.

Peer Support. Children would often support each other in refining their understand-
ings either by explaining how a specific program works or by providing alternative answers
to group discussions. Although children tested their initial assumptions about agents either
with edge or common cases, when it came to testing the agency of the devices, their test-
ing strategies were based more on peer-aided judgements and examples. The way children
explained their reasoning for their answers influenced each other which lead them to inter-
nalize new explanations and concepts presented by their peers. For example, here are two

exchanges between children facilitating each others’ testing:
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Discussion 1: “So how many examples of trains do you need to give it so it can
recognize multiple trains?”—researcher (referring to a custom image classification
model).

“165 million” answered N., age 6. L. and M.,ages 7.5 and 8, added “I10, at least
10”. Discussion 2: “I actually don’t really know how to use the app” — C.,age
6.5, referring to a program made for Jibo robot. “Ah, I got an idea, see if I can
get it to look in different places. ‘Swipe up’, ‘swipe right’, I'm just trying to see
if I can make it look up when I swipe up. By the way, it won’t say ‘hi’ 10 times,
but it’ll say anything you put in here 10 times, and you can edit this more if you

want”-Ch., age 7, replying to C.’s question about the program.

Overall children refined their understanding of smart agent behavior by evaluating their
test findings and coming up with new interpretations for the agents behavior and new judge-
ments to explain their social intelligence. In the final sessions, children will make more
complex references to programmability and build on their peer support to refine their Al

explanations.

6.3.2 RQ2: How does children’s perception of machine intelligence change?

The previous section showed that children examined and reasoned about agency in diverse
ways. In this section we consider how these varied forms of reasoning led to changes in self
reported judgements about smart agents’ abilities.

As discussed earlier, we measured these changes using pre- and post- answers of the
Perception Game during the initial and last session in each location. Unfortunately, due to
snow, our Public After-School Program’s last session was canceled, and we only report results
from the three sites that completed the pre/post. Additionally, at some sites, we only asked
5 of the 8 Perception game questions because the children became too impatient to answer all
the questions. Many of the children changed their answers to the perception questions pre-

and post- (see Fig.6.9). Children became more skeptical of the agent’s human like abilities,
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® Yes W No Maybe

Wil remember me? (Pre)

Will remember me? (Post)

Is friendly? (Pre)
Is friendly? (Post)

Likes me? (Pre)
Likes me? (Post)

Is smarter than me? (Pre)

Is smarter than me? (Post)

Tells the truth? (Pre)
Tells the truth? (Post)

0% 25% 50% 75% 100%

Figure 6.9: Answers shift from five Perception Game pre- and post- answers in all locations

such as remembering them or being friendly. For instance, even when the children said that
the agent is friendly or that it will remember them, they would explain it was programmed

to do so:

“Because, he looks like he has feelings, but he might not. You can make him, like,
sad, happy, surprised, bored.”— L. 7 years old. “He’s a robot, so he’s probably
going to have lots of things programmed into him that he knows and he doesn’t
have to remember them. Humans have to remember the stuff, but robots don’t.”

— A. 8 years old.

To understand whether any of these shifts were statistically significant, we did the fol-
lowing. For each of the three completed sites, and for each of the 5 completed questions in
the AI Perception game, we performed a Man-Whitney U test with the dependent variable
being the answers to questions measured on an ordinal scale ("yes” answer as 1, "maybe”
answer as 2, "no” answer as 3) and the independent variable being the pre- and post- condi-
tions. The five questions included two questions about intelligence and legibility attribution

(Is the agent smart? Does it understand me?), and three questions about socio-emotional
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attributes (Will it remember me? Does it care about me? Is it friendly?). We used a con-
servative Bonferroni correction for multiple comparisons, setting our alpha to .05/5=0.01 for
each site.

Fig.6.9 shows the distribution of responses. Of the 5 tests, two were significant across all
the students participating in the study. Overall all students in the program were more likely
to answer no to the question Will the agent remember you? after the program (U = 355,
p = 0.00424). Similarly, a significant change in ranks of the children that initially said that
the agents are friendly changed their answers to "no” and "maybe” at the end (U = 149.5,
p = 0.01684). We did not find statistically significant changes in the other measures; the
only other trending shift was an increase in the number of students who said "no” to Is the
agent smarter than you?.

One noticeable trend in the data is that there are more "maybe” answers in the post-
than in the pre-(see Fig. 6.9). This could possibly indicate that, after being exposed to
the programmability of Al machines and thinking critically about the machine’s agency, the
children were reasoning about the complexities and ambiguities of machine intelligence at a

higher level in the post- than in the pre- perception discussions.

6.4 Discussion

Our work contributes several new insights about Al literacies by addressing out initial re-

search questions:

e RQ1: How do children make sense of machine intelligence when training smart pro-
grams? Our qualitative results show that children engage in the scientific method by
formulating hypotheses about machine intelligence, then coming up with scenarios for
testing, and finally refining their understanding either by affirming their initial hy-
potheses or formulating new ones. In this process children use a diverse set of social
sense-making strategies, drawing from their egocentric perceptions of agency and their

empirical observations, to make inferences about agency.
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e RQ2: How do children’s perception of machine intelligence change before and after
training smart programs? Based on the pre-post shifts we observed, children’s percep-
tion of machine intelligence trended toward skepticism. Children also decreased their
pro-social attitudes toward the smart agent’s behavior. We did not observe changes in

children’s perception of an agent’s truthfulness or ability to like them.

Our results suggest that engaging children in programming with Al leads many children
to replace conceptions of smart agents as intelligent with new conceptions of smart agents
as fallible but helpful. Importantly, these shifts did not occur for all children, nor did they
occur in the same directions, suggesting the challenges of promoting a specific conception of
machine intelligence through programming.

Limitations. Some limitations in the study complicate the interpretation of our find-
ings. It was not possible to systematically observe every child’s interaction with every agent,
nor did every child speak in every group; it may be that children who did verbalize more
reasoned differently than those who verbalized less. For the interactions we could observe,
observing a child reason about an agent does not necessarily indicate ground truth for their
conceptions; for example, it may be the case that children were reasoning in similar ways
but were verbalizing their reasoning differently. We also did not have data for all perception
questions and all sites, nor did our sites cover the many possible ways that culture, com-
munity, and collaboration might have shaped sense-making. Since our analysis was episodic
rather than temporal, sense-making strategies may have been highly variable within indi-
vidual and group behavior. Therefore, while modest interpretation of our results suggest
that the children in our particular intervention demonstrated diverse reasoning strategies
and a shift toward skepticism, other populations could reveal new types of sense-making and
different shifts in perceptions.

Programmability impacts intelligence perception. Despite these limitations, our
results have many implications for interpreting prior work. For example, as we shared earlier,

prior studies on smart agents has shown a clear trend of anthropomorphism, especially of
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embodied agents [224, 162, 295]. Some studies have even shown that embodied agents can
exert peer pressure over children [320] and that children can overestimate the intelligence of
embodied agents [100]. Our results show that one reason for this susceptibility is that children
have not engaged in examining the mechanisms and limits of AI; when children in our study
engaged in this examination, their conceptions of smart agents were still anthropomorphizing,
but often less trusting in machine intelligence. These findings are consistent with Duuren’s
results that identified programmability as a key element in children’s perception of social
robots’ abilities [105]. In another experiment, Vollmer et. al found that 7- to 9-year-old
children had a tendency to echo the incorrect, but unanimous, responses of a group of robots
to a simple visual task [320]. Thus, the trends in prior work may be conditioned upon what

experiences children have had with programming with Al

Sense-making for AI literacies. Our results also have implications for prior work
on children developing Al literacies. Prior work has revealed many challenges, including the
importance of children understanding the role of data in shaping machine behavior [217] and
the persistent challenge of debugging and comprehension [298]. Other studies with adults
has explored methods of bridging these comprehension gaps by helping people develop more
robust mental models about Al (e.g., [180, 37, 265]). Our findings suggests that similar ap-
proaches may work for children, at least when children are engaged in constructing projects
that use AI techniques. Our qualitative findings about children’s sense-making strategies
also suggest new interpretations of prior research on program understanding. Whereas prior
work has largely focused on individual, cognitive accounts of program understanding (e.g.,
[174, 17]), our investigation of program understanding from a constructionist [233] and so-
cial sense-making [81] lens suggests that children rely on numerous assets beyond cognition
to understand agent behavior. These assets include social strategies for enacting scientific
activities such as observation with peers, discussing hypotheses with peers, as well as intro-

spective, egocentric strategies for inferring models of agent behavior.

Platform design choices. Importantly, our result do not speak to work on data

literacy. For example, prior work has shown that children engaging with and making sense
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of data itself has its own challenges [178], as does reasoning about statistics [61]. Our design
choices in Cognimates intentionally abstracted and scaffolded away these challenges in service
of engaging children in examining agency. Different designs and pedagogies would likely be

necessary to promote these different literacies.

Guidelines for designers € educators. Of course, all of these findings have im-
plications for both designers of learning technologies and Al literacies teaching methods for
children. Our work selected particular scaffolding to support more accurate assessments of
intelligence. While our results were not granular enough to point to specific aspects of this
scaffolding that contributed to the strategies and shifts in beliefs that we observed, our work
does generate concrete hypotheses to investigate in research and practice. For example, one
clear trend in our results was that some children attempted to take the perspective of the
agent to reason about its capabilities, trying to imagine how it was making decisions to make
inferences about it’s capabilities. Designers and teachers might therefore consider methods
for promoting perspective taking about Al agents, just as similar work on programming
language learning has encouraged learners to take the perspective of a compiler [187, 225].
Another clear trend was that children used their experiences in generating training data
to make inferences about agent ability. Designers and teachers might explore methods for
engaging children in reflecting on the relationship between the training data, the agent’s use

of that data, and it’s resulting behavior.

Future work. While these implications for design are modest, the need for future work
is clear. The results in this paper demonstrate the feasibility of promoting more accurate
estimations of intelligence, and begin to reveal the mechanisms behind those changes, but
many questions remain about how robust—or repeatable—these changes are in different
settings, with different instructors, on different platforms, and using different assessments.
Future work should explore these variations, but also extend them to longitudinal observa-
tions to understand the robustness of these conceptions over time, and the degree to which

they transfer to non-learning settings such as home, play, and adulthood.
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6.5 Conclusion

After a 4-week observational study in after-school programs, we found programming with Al
leads many children to replace conceptions of smart agents as intelligent with new conceptions
of smart agents as fallible but helpful. If we can build a robust understanding of how to
promote Al literacies, we will be much better positioned to respond to a future in which Al
is embedded in children’s’ everyday lives. By enabling inclusive Al literacies we will help
democratize Al education [98, 199], and by increasing children’s AT literacies we would allow
them to responsibly use smart technologies for creative learning and personal expression
[252]. This vision must be attained if our children and our children’s children are to live in
a just and equitable society.

This study shows that joint peer engagement in coding Al games enables children to
discover the core concepts of image and text classification and foster critical reflection on the
uses of Al by refining their sense-making hypotheses when testing their classification models

and smart games and becoming more skeptical of machine intelligence in the process.



120

Chapter 7
FAMILY CREATIVE CODING SUPPORTED BY AI FRIENDS

we made an impossible
game I like it

Figure 7.1: Examples of joint family interaction during the study: a. F1 getting acquainted
with the AI friend, b. F5 reaction to a joke from an Al friend, c. F8 Mom and son
playing a multiplayer Pacman game they just programmed, d. F4 Dad and two daughters
brainstorming game ideas with the Al friend

This last study explores how joint family engagement enables children to learn creative
coding with Al to enable self-expression. Building on my prior studies looking at how families
program together described in chapter 6, in this study, I explore how families program

together when assisted by an Al friend.
7.1 Study motivation and contributions

In the era of ChatGPT and ever-increasing automation being introduced across all levels of
society, we see a unique and significant role for youth’s creative thinking [250] as a driver

for constant adaptation, life-long learning, problem-solving, inclusion, and openness. This
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meaningful future argument is further strengthened by the need for creativity education
for future generations with advances in Al, representing a critical differential factor in the
competitive global economy [242].

Our current definitions of creativity, such as divergent production, lateral thinking, con-
textual composition, or possibility thinking, need to consider how we can assess if children
are developing their creative voice. For example, children may be speaking out loud some
of their imaginative p-prims [86] or trying to engage in pretend play, yet when our theoret-
ical frameworks establish measures of novelty and originality determined by adults, these
expressions are often ignored or suppressed.

Children have been able to express and develop their creativity via creative coding with
platforms like Scratch, where over 123 million coding projects have been shared by youth
from all over the world [218]. Crreative coding is a rapidly expanding computational domain.
It generally refers to programming work that “blur(s) the distinction between art and design
and science and engineering”[191], encompassing various interests such as generative art,
embedded computing, audio editing, performative live programming, and countless others.

A valuable source of inspiration for how we might approach family creative coding in
this study comes from the philosophy and pedagogy of Reggio Emilia, emphasizing listening,
documentation, and critical reflection [112]. This pedagogy is based on four core principles:
(1) Creative values are the strength & power of kids, pedagogy of listening; (2) Creative rela-
tionships are attentive and respectful; (3) Creative environments are physical and emotional;
(4) Behavior and dispositions matter, holistic support learning and creative thinking.

Building on Reggio Emilia’s approach, we aim to design a creativity support agent per-
ceived as attentive, respectful, and friendly is essential, which is why we will frame our Al
system as a “friend” that can provide creative support for families with their coding projects.
Prior work in HRI on family-AT interaction shows how much the agent persona design choices
can bias the families’ expectations and experiences. For example, changing a device’s wake
word can have ethical implications. A personified name can make a device seem more so-

cial, masking the connection between the device and the company that made it, which also



122

has access to the user’s data. Additionally, family members are more likely to think an Al
agent is more competent and emotionally engaging when it exhibits social cues, like moving
to orient its gaze at a speaking person [230]. HRI researchers have used these insights to
lay out several Al persona design considerations, including developing warm, outgoing, and
thoughtful personalities; understanding the influence of a wake word on user acceptance; and
conveying nonverbal social cues through movement [230].

Recognizing that every child is born with immense natural talents [126] and innate cre-
ative potential [324], how can we design new learning opportunities and tools for creative
thinking that allow children’s creativity to flourish in an era of constant technological change
and consumption? Engaging in creative expression with code is a social phenomenon where
learning does not happen in isolation. Even if children create individual creative projects,
they are immersed in the family social context. While in previous chapters of this thesis,
I showed how family and peer engagement could support children’s creative coding, in this
study, I want to explore how we might design AI supports that could further enhance family
joint creative coding. This presents a unique opportunity for designing new forms of creative
coding for families that involve authentic [123], personalized, and dynamic creative collabo-
ration between families and Al friends. With this current study proposal, we aim to frame
creative coding for families from a stance of epistemological pluralism [311], recognizing the
validity of multiple ways of knowing and thinking. We believe that future programming
tutorials should balance introducing families to new computing topics (“level up”) while also
leveraging families’ creative engagement to enable self-expression and re-imagine computing
norms at home.

To begin articulating this research direction, we need to understand children’s different
creative processes when creating programs with a limited dynamic vocabulary based on their
interests, working both on open-ended [307] and closed-ended projects [186]. This study aims
to contribute rich and “thick” [129] descriptions of the new ways youth collaborate with Al
for creative coding and propose new pathways to engage diverse learners in creative thinking

and coding. The future of creative coding for youth is a place where creativity is a language
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on its own, just like Romanian, Python, or Math. It will create a vocabulary of heuristics,
objects to think with [309], and processes that inherently allow families to express their

creative ideas with code freely.

Our recent research analyzed longitudinal interactions with various intelligent technolo-
gies to find that programmability is essential in shifting the agency from intelligent technol-
ogy to family members. Children’s hypotheses about Al agents and how they tested them
were highly diverse [93], as demonstrated in our recent study on family collaborative coding.
We found that while families enjoy designing and programming video games together, they
struggle to start their games from Scratch or identify how to modify existing complex games.
To compensate, they benefited the most from using a vocabulary of programming patterns
that expressed specific game behaviors [90], which prompted us to design family learning
activities that support the composition and decomposition of programming projects with

dedicated micro-worlds and programming patterns.

Now, while there are existing efforts to have Al-powered code assistants for adults, such
as GitHub’s Copilot [215] and Replit’s Ghostwriter [248]. Currently, no Al coding assistants
are designed to support creative coding for youth and families [345]. Our study aims to
answer the following research question: RQ): What are the ways in which children (7-12) and

parents engage in collaborative creative coding supported by an Al friend?

Building on our prior work on creative coding [93] and Al literacies for families [103, 92],
as part of this study, I extended the development of the Cognimates platform I created and
developed in 2018. Cognimates [89] is presented in chapter 6. The goal was to include various
possibilities to collaborate with autonomous agents (Al Friends) in curated coding micro-
worlds that match the diverse families’ interests, such as intelligent games or drawing with
code (see examples in appendix). To test a prototype of a new Al-supported creative coding
platform (CogniSynth) with children and parents, I ran a 3-week Wizard of Oz (WoZ) study
[87]. The WoZ prototyping approach, widely used in human-computer interaction research,

is instrumental in exploring user interfaces for Al-assisted tasks [157, 161, 261].
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The study involved 19 participants (10 children aged 7-12 and 9 parents) and observed
families’ creative coding practices and interaction with the Al friend trying to help them.
This investigation makes three contributions to the understanding of Al-supported creative
coding. First, we provide empirical evidence of how families engage in collaborative creative
coding with an AT friend. Second, we present how families’ joint engagement with Al supports
has unique benefits. Finally, we discuss how the theoretical model of creative self-efficacy is

relevant to developing creative Al literacies in families.

7.2 Study Procedure

Eight families participated in three study sessions, each lasting 30-40 minutes, comprising
two sessions of games programming with Al Friends and one final interview. During the
games programming sessions, families interacted with an Al Friend, controlled remotely by
the researcher via a Wizard of Oz (WoZ) interface. The Al Friend provided creative prompts,
coding debuggi