
Greenwald, Rudman, Nosek, & Zayas:  Comment on Blanton & Jaccard Draft of 15 July 2005             -1

Why So Little Faith?  A Reply to Blanton and Jaccard’s (2006) 

Skeptical View of Testing Pure Multiplicative Theories

Anthony G. Greenwald

University of Washington

Laurie A. Rudman

Rutgers University

Brian A. Nosek

University of Virginia

Vivian Zayas

University of Washington

Address correspondence to:
Anthony G. Greenwald
Department of Psychology
University of Washington
Box 351525
Seattle, WA  98195-1525

email:  agg@u.washington.edu
phone: (206) 543-7227
fax: (206) 685-3157

Running Head:  Testing Pure Multiplicative Theories



Greenwald, Rudman, Nosek, & Zayas:  Comment on Blanton & Jaccard Draft of 15 July 2005             -2

Why So Little Faith?  A Reply to Blanton and Jaccard’s (2006) 

Skeptical View of Testing Pure Multiplicative Theories

Abstract (123 words; 832 characters)

H. Blanton and J. Jaccard (2006) questioned the 4-test regression method used by

A. G. Greenwald et al. (2002) to test a pure multiplicative theory.  We address their

concerns with a combination of simulations and meta-analysis.  Simulations show that

(a) Blanton and Jaccard’s preferred simultaneous regression method suffers severe

power loss in testing multiplicative theories when predictor variables’ means deviate

from rational zero values, and (b) Greenwald et al.’s 4-test method has a more limited

weakness when predictor means deviate from rational zero in the positive direction. 

Meta-analyses showed that aggregate analyses of Greenwald et al.’s five experiments

confirmed a multiplicative theory regardless of which analysis method was used. 

However, only the 4-test method could confirm a pure multiplicative theory.
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Why So Little Faith?  A Reply to Blanton and Jaccard’s (2006) 

Skeptical View of Testing Pure Multiplicative Theories

Greenwald, Banaji, Rudman, Farnham, Nosek, and Mellott (2002) proposed and

tested a unified account of four central constructs of social cognition research —

attitude, stereotype, self-esteem, and self-concept.  They used a strategy that

simultaneously tested both their theory of triadic relationships among the four constructs

and their assumption that measures used in testing the theory had rational zero values.1

The central hypothesis of Greenwald et al.’s (2002) theory was that interrelations

among triads of the four social-cognitive constructs could be described by a pure

multiplicative model.  A pure multiplicative model asserts that the multiplicative product

of two variables is the sole predictor of some effect.  Because of the well known

association between interpretation of multiplicative products and the scale properties of

the numbers entering the multiplication, any test of this theory requires measures that

have rational zero values.  If the measures do not have rational zero values then theory-

disconfirming results might indicate only that the measures lacked the needed rational-

zero property.

The results reported by Greenwald et al. (2002) largely conformed to the

expectations of their pure multiplicative theory, which meant that their results supported

both their theoretical conception and their measurement assumption of rational zero

values.  In commenting on the Greenwald et al. article, Blanton and Jaccard (2006)

made three points: (a) the theory confirmations reported by Greenwald et al. might have

been spurious because Greenwald et al.’s method is prone to false confirmations in the

presence of pure additive (rather than pure multiplicative) models, (b) Greenwald et al.’s
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method of testing a pure multiplicative theory (described under the next heading) was

inappropriate because of the inappropriateness of assuming that their measures had

rational zero values, and (c) Greenwald et al. should have used the SMR analysis

method for testing multiplicative theories, even though that method does not distinguish

pure multiplicative theories from theories that specify additional effects. 

In this reply, we (a) summarize Greenwald et al.’s (2002) method, (b) evaluate with

simulations Blanton and Jaccard’s (2006) concern about that method’s susceptibility to

false positive results (demonstrating that there is some susceptibility), (c) examine

whether Greenwald et al.’s several studies had properties making them susceptible to

such false positives (finding that for the most part they did not), (d) examine what

Blanton and Jaccard’s recommended SMR method reveals for Greenwald et al.’s data

(showing that it also confirms the presence of multiplicative models), and (e)

demonstrate that the SMR method has a previously unrecognized severe loss of power

in detecting multiplicative effects when component factors of predictor variables have

values displaced from zero on rational-zero measurement scales.

 

The Four-Test Regression Method

A familiar example of a pure multiplicative model is a rectangle’s area being a

function purely of the multiplicative product of its length and width.  Area can be

predicted perfectly from the multiplicative product of length and width, with no need to

use length and width as supplementary individual predictors.  However, this perfect

prediction will occur if (and only if) length and width are measured on scales with

rational zero values, which we define more fully in the next section.

Greenwald et al. (2002) described a sequence of four tests that are based on the
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example just given of a rectangle’s area.  Each of the four tests provides an opportunity

for a pure multiplicative model to fail.  We repeat here Greenwald et al.’s description

(pp. 9–11) of their 4-test method, which was built on the two-step hierarchical

regression analysis represented by Equations 1 and 2, below.  The present description

of the 4-test method changes the symbols originally used to identify criterion and

predictor variables, to correspond to Blanton and Jaccard’s (2006) notation.  In

Equations 1 and 2, Y represents a criterion measure, XZ represents the multiplicative

product that is assumed to be a sole predictor (i.e., a pure multiplicative model), and X

and Z are measures of the variables that comprise the multiplicative predictor’s

component factors.

Y = b0 + b1(XZ) + e (1)                    

Y = b0 + b1(XZ) + b2(X) + b3(Z) + e (2)                    

Test 1.  The R in Step 1 of the regression (Equation 1) should account for

substantial variance in the criterion, and Step 1 should estimate a

numerically positive value for b1

Test 2.  The estimate of b1 should also be positive in Step 2 (Equation 2)2

Test 3.  The increment in R on Step 2 should not be statistically significant

Test 4.  Neither b2 nor b3 should differ significantly from zero (positively or

negatively) in Step 2

The conclusion that passing all of Tests 1–4 provides support for a pure

multiplicative model depends on a measurement assumption — that numeric zero

values for measures X and Z correspond to rational zero values of the variables that

they measure.  Failure of this scaling assumption, even in the presence of a pure

multiplicative relationship, might produce a significant increment in R at Step 2, along
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with significant deviations of b2 and/or b3 from zero (see Aiken & West, 1991, Appendix

A).

As previously noted, Blanton and Jaccard (2006) regarded Greenwald et al. (2002)’s

4-test method as improper because (as Blanton & Jaccard asserted) psychological

measures could not confidently be assumed to have rational zero values (msp. 6:

“Psychologists typically are reluctant to make such strong assumptions, given the

arbitrary metrics that they so often rely upon”).  As an alternative, they proposed use of

the standard simultaneous multiple regression method (SMR method, hereafter) for

testing multiplicative models.  The SMR method uses the test of significance of the

multiplicative product term in a three-term SMR analysis that includes the multiplicative

predictor along with the two variables that comprise its component factors.  This test is

well established in statistics texts (e.g., Cohen, Cohen, Aiken & West, 2003).  However,

as previously noted, this test cannot distinguish a pure multiplicative theory from any

other multiplicative theory.3

Justifying the Assumption of Rational Zero Values for Psychological Difference

Measures

Greenwald et al. (2002) and Blanton and Jaccard (2006) agreed that measures with

rational zero values are needed to test a pure multiplicative model using the 4-test

method.  They disagreed about when it is appropriate to assume that measures have

rational zero values.

The phrase “rational zero” may be subject to multiple interpretations.  We therefore

are explicit about our definition: For a measure described as having a rational zero

value, the value of zero should indicate absence of the quantity being measured.  For

example, zero length, zero weight, zero calories, zero correlation, and zero words per
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minute as typing speed are interpretable as absence of length, weight, calories,

correlation, and words typed in a minute.  At the same time, it is much less obvious

what should be meant by zero intelligence, zero achievement, or zero enthusiasm —

these dimensions may lack the possibility of having rational zero values.  

The context of considering multiplicative models allows an extension of the definition

of rational zero:  When it is appropriate to contemplate multiplication of a quantity

measured on a scale having a rational zero value, the zero result of multiplication by a

zero value on that scale should likewise be validly interpretable as absence of the new

quantity represented by the multiplication.  As an example, a zero value for a

rectangle’s width, measured on a rational-zero scale, implies a zero value of the product

of multiplication with a length measure, regardless of whether length is measured on a

scale with rational zero value.  

For the Implicit Association Test (IAT) measures that were used in Greenwald et

al.’s (2002) research, zero values were taken to indicate absence of difference in

strengths of the sets of associations measured by the IAT’s two combined tasks.  In the

context of Greenwald et al.’s theory, the zero product of multiplying two IAT measures

(both assumed to have rational zero values) is interpretable as absence of consistency

pressure on the third IAT measure in a triad of interrelated measures.

Blanton and Jaccard (2006) took the very cautious position that one should be

reluctant to assume that any psychological difference measures have rational zero

values.  They illustrated their concern with an example of differences in ratings of height

for a group of men versus a group of women.  Indeed their example did not warrant the

assumption of a rational zero value (Blanton and Jaccard, msp. 7).  However, it does

not follow that rational values of psychological difference measures are generally
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unwarranted.  For example, in a signal detection paradigm, zero difference between a

perceiver’s hit and false alarm rates has a rational-zero interpretation as absence of

sensitivity to the signal source.  Similarly, differences in latencies in time to identify

presence of a target amid varying numbers of distracters can be assumed to measure

search time required per distracter on a scale with a rational zero value.  It is possible to

generate many examples of psychological difference measures for which the

assumption of rational zero values is plausible.4

Simulations to Evaluate the 4-Test and SMR Methods

Method

All simulations reported in this article generated data from two alternative theoretical

models and compared the statistical analyses of resulting data sets when analyzed by

the SMR method and the 4-test method.  One theoretical model for generating data sets

was always the pure multiplicative model of Equation 3.  The comparison theoretical

model was usually one containing only an additive predictor (shown in Equation 4) —

the model identified by Blanton and Jaccard (2006) as one for which the 4-test method

was susceptible to false positive results.5 

Y = a + 1.0 XZ + e (3)                       

Y = a + 1.0 (X+Z) + e (4)                       

The coefficients of 1.0 in Equations 3 and 4 are arbitrary and inconsequential to

simulation outcomes.  Simulations were carried out by a computer program6 that

controlled several parameters of interest.  The program’s modifiable parameters

included ones known to affect covariances of variables with their sums and products

(Goodman, 1960) — viz., means and standard deviations of the predictor variables (X

and Z) and intercorrelation of the predictors (rXZ).
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Simulations generated data for samples of N = 100 cases, with estimates of Type I

error rate and power being based on 3,000 iterations of a simulation for given

parameters.  Taking the null hypothesis to be absence of a pure multiplicative model, a

Type I error was counted whenever a simulation that was not based on a multiplicative

model (e.g., one generated from the additive model of Equation 4) confirmed a

multiplicative model by the SMR or 4-test method.  Similarly, power was indicated by

the observed proportion of multiplicative-model confirmations when the simulated data

were generated by the pure multiplicative model of Equation 3.

Simulations were conducted in pairs that differed only in whether data were

generated from the pure multiplicative model or the pure additive model.  These paired

simulations differed only in the regression coefficients that generated the two types of

model.  Results from each simulation were tested statistically in two ways.  The SMR

method used the procedure advocated by Blanton and Jaccard (2006); with this

method, the test that confirms a multiplicative model is the test for significance of the XZ

product term in the three-term SMR analysis that predicts Y from X, Z, and XZ.  The 4-

test method used the procedure advocated by Greenwald et al. (2002); this test

indicates confirmation of the pure multiplicative model when all four tests are passed. 

All tests involving possible null hypothesis rejections used a two-tailed " = .05 criterion. 

The proportion of confirmations in 3,000 runs of a pure multiplicative model was taken

as the estimate of each analysis method’s power.  Likewise, the proportion of (spurious)

multiplicative-model confirmations in 3,000 runs of a non-multiplicative (e.g., pure

additive) model was taken as the estimate of each method’s Type I error rate.

Because the SMR and 4-test methods generally differed in both power and Type I

error rate, it was insufficient to compare them on these criteria singly.  The sensitivity
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(d') index of signal detection analysis provides a well established metric for comparing

the abilities of decision procedures to distinguish signal (pure multiplicative model in this

case) from noise (pure additive model).  The d' measure was computed from the

combination of hit rate (power) and false alarm rate (Type I error rate) for each analysis

method.  This use of d' to measure sensitivity of test methods entails no assumptions

about the relative costs of a Type I error (confirmation of a pure multiplicative model

when the data were not generated by one) and a Type II error (failure to detect a pure

multiplicative model that generated the data).  If these two types of error do have

differential costs, the criterion for confirming a multiplicative model can be adjusted for

either method.  For the SMR method, for example, this would be done by making "

smaller (than .05) to reduce both Type I errors and power (i.e., increasing Type II

errors).  Raising " to a value higher than .05 would increase both Type I errors and

power.  For the 4-test method, such adjustments are possible for each of the four tests.

Preliminary Test

Blanton and Jaccard (2006) reported a simulation that used a single data set

produced by a pure additive model as an existence proof that the 4-test method could

produce false positives.  The first test using our simulation method was a large-scale

replication of their simulation, using the same parameters used in their simulation.  We

generated 3,000 simulated experiments from each form of model (multiplicative and

additive) with N=100 cases in each simulated experiment using the means, SDs, rXZ,

and Multiple R (= .40) as described by Blanton and Jaccard for their simulation.  We

found for the 4-test method that its Type I error rate was .372, compared to .051 for the

SMR method.  This appeared to be a poor result for the 4-test method.  However, the

power of the 4-test method was .886, compared to only .471 for the SMR method — a
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poor result for the SMR method.  Using signal detection analysis, the sensitivities of the

two methods were nearly identical (4-test method: d' = 1.53; SMR d' = 1.56).

Blanton and Jaccard (2006) described their simulation in terms of variables

contained in one of the five data sets (Banaji, Greenwald, & Rosier, 1997) that had been

analyzed by Greenwald et al. (2002).  However, their simulation did not use estimates of

simulation parameters that were available from that data set.  Our second preliminary

test was a repeat of the first, replacing Blanton and Jaccard’s choices of means, SDs,

and rXZ with the estimates that were available from the Banaji et al. (1997) data set.  The

results were strikingly different.  For the 4-test method, power = .896 and Type I error

rate = .002 (d' = 4.14), while for the SMR method, power = .966 and Type I error rate =

.049 (d' = 3.48).  Especially noticeable was that the Type I error rate of the 4-test

method had dropped to an extremely low value, while the power of the SMR method

had risen to an extremely high value.

The wide fluctuation in power of the SMR method was entirely unexpected.  Also,

the great increase in sensitivity from the first to second simulation for both methods was

quite surprising given that the value of Multiple R (= .40) was identical for the two

simulations.  These observations led us to pursue a set of further simulation studies,

seeking to shed light on properties of both analysis methods.

Further Comparisons of the 4-Test and SMR Methods

Our main sets of simulations focused on effects of variation in means of the X and Z

predictors on power and Type I error rate for tests of pure multiplicative theories

compared to pure additive theories.  This focus on predictor means was prompted partly

by observing that the most obvious difference between the two preliminary tests was in

the means of their predictors.  Also, it was prompted by known relations among means



Greenwald, Rudman, Nosek, & Zayas:  Comment on Blanton & Jaccard Draft of 15 July 2005             -12

of variables, variances of their multiplicative products, and covariances of the variables

with their multiplicative products (Bohrnstedt & Goldberger, 1969; Goodman, 1960). 

Values of the X and Z predictors were generated so as to have normal distributions

with SD = 1.0.  Values of the mean of each of the X and Z variables were varied

orthogonally from –2.0 to 2.0 in steps of 0.5.  The simulations generated latent values of

X and Z, with correlation maintained at rXZ = 0, and then generated observed values of X

and Z so as to maintain a correlation of these observed values of X and Z at r = .75 with

their respective latent values.  This latent–measured variable correlation corresponds to

reliability = .56 (= .752), which approximates the average observed test–retest reliability

of IAT measures (Nosek, Greenwald, & Banaji, in press).

Values of Y (criterion) were generated from latent values of X and Z to simulate pure

multiplicative (Equation 3) or pure additive (Equation 4) models.  The latent value of Y

was either the product of latent values of X and Z, or their sum.  The method of adding

error to Y was varied in different sets of simulations.  In the first set of simulations to be

reported, error variance in Y was set at the level needed to achieve a fixed correlation of

latent Y with observed Y (at r = .6) regardless of means of X and Z. 

The results are shown in Figure 1, revealing that the power of the 4-test method was

consistently high, in the vicinity of 85% (see Figure 1D).7  By contrast, power of the

SMR method varied considerably with variations in the X and Z means (see Figure 1A),

such that increasing displacement from zero of means for X and/or Z was associated

with reduced power.  This loss of power can be understood by recognizing that the SMR

test is the test of significance of a partial correlation and by considering the factors that

affect the magnitude of this partial correlation.8

Type I error rates (Figure 1B and 1E) revealed a very different pattern.  For the SMR
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method the Type I error rate was consistently very close to the expected 5% rate for a

two-tailed test of significance with " = .05.  For the 4-test method, Type 1 error rates

varied considerably, being mostly well below 5%, but increasing to much higher levels

when predictor means were positively polarized — to a maximum of 45% when means

of both X and Z were at the maximum positive values (2.0 SDs) used in the simulations. 

Unlike the SMR method, Type I error rates for the 4-test method are not limited at the

low end by the 5% alpha level of the two-tailed tests used in the simulation — they can

be as low as zero.9

As explained previously, the information contained jointly in power and Type I error

rates is captured by the signal detection sensitivity measure, d'.  For all 81 pairs of

simulations, the sensitivity of the 4-test method exceeded that of the SMR method.  For

the SMR method, mean d' = 1.55, compared to mean d' = 3.73 for the 4-test method. 

Comparison of sensitivities is shown in Figure 2A, in the form of difference between d'

values.  The average difference in d' was 2.18, t (80) = 17.93, p = 10–29.

For the simulations shown in Figure 1, error was added to the criterion Y by

maintaining a fixed correlation of r = .60 between latent Y and observed Y.  For the pure

multiplicative model, variance of latent Y increases as means of X and Z are

increasingly displaced from zero.  Correspondingly, with this simulation method the

simulated error component of Y increases with increasing displacements from zero of

the means of X and Z.  This increase in the error component of Y contributes to adverse

effects on power of the SMR method while having little effect on power of the 4-test

method.  An alternative was to keep the error component of Y fixed through all

simulations.  Use of this alternative strategy was the only change made for the second

major set of simulations.  The error variance of Y was set at a value that produced a
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correlation of r = .6 between latent Y and observed Y when means of X and Z were

zero.  Error variance of Y was retained at that same value through all variations in

means of X and Z.  With this change (see Figure 2B), the SMR method achieved

sensitivity superior to the 4-test method for 14 of the 81 paired-simulation comparisons. 

Still, the difference in sensitivity strongly favored the 4-test method, with average

difference in d' of 1.28, t (80) = 11.15, p = 10–17.  

The change to a fixed error for Y attenuated the power losses of the SMR method

for multiplicative models when means of X and Z were displaced from zero, while

having little effect on performance statistics for the 4-test method.  There is no obvious

way to conclude that one of the two methods of simulating the error component of Y is

superior.  Each has a rationale and each has drawbacks.  Consider first the method of

fixed correlation of latent Y with observed Y.  Actual data frequently show such a

correlation between means and variances, suggesting the reasonableness of this

method.  Nevertheless, this method allows the error component of Y to rise to rather

large values when X and Z means are substantially displaced from zero.  In the context

of the multiplicative model, the alternate strategy of keeping the error in Y fixed allows

the correlation between latent and measured Y to rise to perhaps unrealistically high

values when means of X and Z are displaced from zero (e.g., the average

latent–observed correlation for Y was r = .92 when means of X and Z were ±2.0 SD,

compared to average latent–observed correlation for Y of r = .60 when means of X and

Z were 0.0).  If it is reasonable to assume that criterion error variance in actual data of

multiplicative models is intermediate between these two simulation strategies, then

Figures 2A and 2B estimate upper and lower bounds, respectively, of sensitivity

differences between the 4-test and SMR methods.
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Additional simulations examined effects of (a) varying the intercorrelation of X and Z

(rXZ varied from –.40 to .40), (b) varying the Multiple R of the three-term regression

(varied from .3 to .7), (c) varying the value of t used as criterion for passing the 4-test

method’s Test 2, and (d) replacing the pure additive noise model with a null model in

which all predictors (X, Z, and XZ) had zero coefficients.  Except for the last, all of these

additional simulations were run with varied displacement from zero of means of X and

Z, to determine whether variations in the other parameters might moderate the already-

observed strong effects of polarization of means.

Variations of rXZ had complex effects on power of the SMR method and Type I error

rate of the 4-test method when means of X and Z were both non-zero.  Power of the

SMR method decreased with increasing magnitude of rXZ when all three of rXZ and

means of X and Z were non-zero, with either all positive in sign or two of the three

having a negative sign.  In contrast, power of the SMR method increased with

increasing magnitude of rXZ when all three of rXZ and means of X and Z were non-zero,

with either all negative in sign or just one of the three having a negative sign.  For the 4-

test method and limited to the situation of positive means of both X and Z, negative rXZ

correlations reduced Type I error rate and positive rXZ correlations increased Type I

error rate.  These effects were smaller in magnitude than the effects of polarized means

shown in Figure 1.

Increased Multiple R increased power for both methods but did so more for the SMR

method, which is not restricted by the 4-test method’s upper limit of about 90% power.10 

For the 4-test method, increases in Multiple R also decreased the Type I error rate

when predictor means were positively polarized.  The net effect of increased Multiple R

was a generally increased sensitivity for the SMR method and increased sensitivity for
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the 4-test method when true means of predictors were positively polarized.  Even at the

highest value of Multiple R used in these simulations, power and sensitivity of the SMR

method were substantially impaired with polarized means of predictors, whereas Type I

error and sensitivity of the 4-test method were impaired selectively for positively

polarized predictor means.

In Greenwald et al. (2002), Test 2 was passed if the regression coefficient for XZ in the

regression that also included X and Z as simultaneous predictors was numerically positive (i.e.,

the criterion was t > 0).  Simulations varied the criterion for passing Test 2 by requiring

increased positive values of t.  Increased value of t used as criterion for passing Test 2 of

the 4-test method had expected effects of simultaneously decreasing power and Type I

error rate of the 4-test method, with virtually no effect on sensitivity.

Simulations using a null model produced an average Type I error rate for the 4-test

method of .021.  This Type I error rate is below .05 chiefly because Test 1 of the 4-test

requires a significant positive result, which occurs with probability of .025 for the null

model.  Combining this Type I error rate with the average power of .825 for the two

methods of simulating error in Y yields an average sensitivity of d' = 2.96 for the 4-test

method.  In comparison, the average power for the SMR method was .610, which

coupled with the theoretically expected Type I error rate of .05, yields an average

sensitivity of 1.92, considerably below that of the 4-test method.11

In summary of observations from these simulations, the SMR method was consistent

in Type I error rate across all combinations of parameters, but suffered very

substantially in lost power and sensitivity to the extent that true values of predictor

means were displaced in either direction from zero.  The 4-test method was consistently

high in power, but suffered an increase in Type I error rate and consequent reduced
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sensitivity when predictor means were positively polarized.  The 4-test method showed

reduced Type I error rate and therefore had much higher sensitivity than the SMR

method when predictor means were negatively polarized (see Figure 1F).

Although this summary suggests that the 4-test method is superior to the SMR

method in sensitivity to presence of a pure multiplicative model under a wide variety of

conditions, the two methods approached similar sensitivity — both showing impaired

sensitivity — when predictor means were positively polarized (see Figure 2).

To examine properties of the two methods under a sampling of conditions that arise

in research, we used the 16 data sets from the five experiments that were analyzed by

Greenwald et al. (2002) as natural sources of simulation parameters.  The parameters

taken from the 16 analyses were (a) means and standard deviations of predictors, (b)

intercorrelation of predictors (rXZ), and (c) Multiple R of the three-term regression model 

(see footnote 10).

The first set of these simulations used N=100 cases for each of 1,000 simulated

experiments for each of the 16 data sets, for each of a pure multiplicative and a pure

additive generating model.  The sample size of N=100 cases was approximately the

size of the largest of the sample sizes in Greenwald et al. (2002)’s five experiments. 

The resulting data can be summarized by the averages, across the 16 pairs of

simulations, of power, Type I error, and sensitivity for the two analysis methods.  For the

SMR method, average power = .713, average Type I error = .052, and average

sensitivity (d') = 2.45.  For the 4-test method, average power = .872, average Type I

error = .106, and average sensitivity (d') = 3.12.  A paired-sample t test on the

obtained16 pairs of sensitivity values showed superiority of the 4-test method, t (15) =

2.89, p = .01.
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An additional set of simulations was done identically except for using N=60, slightly

smaller than the smallest of Greenwald et al. (2002)’s sample sizes.  The corresponding

results for power, Type I error, and sensitivity for were .551, .053, and 1.82 for the SMR

method, and .806, .136, and 2.53  for the 4-test method.  The t test for comparison of

sensitivities again yielded a result showing superiority of the 4-test method, with

numerically the same value of t as for the test with larger sample sizes t (15) = 2.89, p =

.01.12

Sensitivity of the 4-Test Method to Rational Zero Values

Greenwald et al. (2002) observed that the 4-test method could fail when measures

of the multiplicative predictor’s component variables lacked rational zero values.  The

aim of a final set of simulations was to assess the 4-test method’s sensitivity to

deviation from these rational zero values, using a minor variation on the 81 pairs of

simulations for which results were presented in Figure 1.  After generating values of X

and Z with means that varied for each of X and Z from –2.0 to 2.0 in SD units and

computing the XZ product, the true means of X and Z were subtracted from values of

the respective variables for each simulated case.  This effectively centered the

predictors while destroying rational zero values13  As expected, the 4-test method

deteriorated in power, and did so when means were displaced from rational zero values

by even half a standard deviation.  When measures had accurately located zero values,

power in these simulations was 89%.  When the zero value of each measure was

misplaced by only half a standard deviation, power dropped to 29%.  Type I error rates

of the 4-test method were consistently near zero in these simulations.  These

simulations confirmed the appropriateness of regarding the 4-test method as useful only

when zero values of predictor measures are quite close to rational zero values of their
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underlying latent variables.  These simulations results further confirmed Greenwald et

al.’s (2002) expectation that the 4-test method would serve simultaneously to test their

theoretical prediction of a pure multiplicative model and their measurement assumption

that their measures had rational zero values.

Summary of Simulation Findings

The present simulations demonstrated surprisingly low power for the SMR test of a

product term when X and Z variables had means that were polarized relative to

meaningful zero values.  Under conditions in which the SMR method thus suffers

sharply reduced power, Greenwald et al. (2002)’s 4-test method was often considerably

more sensitive to presence of a pure multiplicative model (see Figures 1A, 1D, and

Figure 2).  The 4-test method has the added advantage of being able to confirm pure

multiplicative models, something not possible for the SMR method.  However, the 4-test

method also had problems of reduced sensitivity, which were limited to the situation in

which means of X and Z were positively polarized (see Figure 1E and Figure 2).

Meta-Analysis of Greenwald et al. (2002)’s Findings

Blanton and Jaccard (2006) suggested that Greenwald et al. (2002)’s tests of pure

multiplicative models were untrustworthy because the 4-test method was prone to false

positives.  It is indeed true that the 4-test method is prone to false positives when

predictor means are positively polarized and the true model is additive (see Figure 1E),

although it is not prone to false positives when the true model is a null model.  Blanton

and Jaccard (2006) did not provide evidence to justify their implied further conclusion

that Greenwald et al’s. (2002) published results should be treated as likely false

positives resulting from true additive models.

To evaluate what should be concluded from the results reported by Greenwald et al.
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(2002) we conducted a meta-analysis of the 16 analyses they reported.  The 16 data

sets were first analyzed using the SMR method.  The meta-analysis (see Appendix for

details) revealed that (a) the SMR method confirmed a multiplicative model in 9 of the

16 data sets,  (b) in aggregate analyses of Greenwald et al.’s five studies, the SMR test

for presence of a multiplicative model was statistically significant in two of three

aggregate analyses, and (c) there was limited evidence for heterogeneity among the

five studies, with one of the five studies (Mellott & Greenwald, 2000) appearing to be

discrepant from the others.

As previously described, simulations using as input parameters the means and

standard deviations of each data set’s X and Z variables and its observed values of rXZ

and Multiple R were used to obtain estimates of power, Type I error rate, and sensitivity

of both the 4-test and SMR methods for these 16 data sets.  Only three of the 16 data

sets (all from the study identified as FG in Table A1) were found to have parameters

that made them prone to spurious confirmation of a pure multiplicative model when the

generating model was pure additive rather than pure multiplicative.

Although the SMR method confirmed the multiplicative relationship expected from

Greenwald et al. (2002)’s theory in nine of the 16 data sets, the added value of the 4-

test method was its indication that most of the observed multiplicative effects were

plausibly interpreted as pure multiplicative effects and, simultaneously, that the

measures used in these tests were plausibly interpreted as having rational zero values.

Blanton and Jaccard (2006) raised the question of whether regression product-term

effects in Greenwald et al. (2002)’s studies were bilinear in shape.  This is indeed an

expectation of the pure multiplicative theory, as was noted by Blanton and Jaccard

(2006).  Blanton and Jaccard further reported an analysis to test whether the Rudman,
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Greenwald, and McGhee (2001) data (one of the five experiments analyzed by

Greenwald et al.) conformed to this expected bilinear shape of the product-term effect. 

They used a method described by Kenny and Judd (1984), which requires fitting

regression models of the form of Equation 5. 

Y = a + b1X + b2Z + b3Z2 + b4XZ + b5XZ2 (5)

Significance of the b5 effect indicates a deviation of the multiplicative effect from

bilinearity.  Blanton and Jaccard (2006) reported that “when the above equation was

tested for the Rudman et al. [data], b5 was statistically significant” (msp.  30).  Because

there are three variables that can be used as criterion (Y) and, for each of these three,

the remaining two variables can be switched between the roles of X and Z, it is actually

possible to conduct six tests of the form shown in Equation 5 for the Rudman et al. data. 

In conducting all six of these tests, we found a significant b5 coefficient (p = .0378) for

just one — for the other five, the 2-tailed p values were .39, .50, .80, .81, and .97.  By

contrast, the linear product term was statistically significant in the appropriate tests

corresponding to all six of these analyses — these are the tests shown in the “Test 2 pr”

column of Table A1 for the three data sets identified there as RGM.  In summary, and

contrary to Blanton and Jaccard’s conclusion, the Kenny and Judd (1984) method that

they advocated clearly indicated lack of complication due to quadratic contributions.

Summary and Conclusion

Blanton and Jaccard (2006) criticized the 4-test method that Greenwald et al. (2002)

used as support for the conclusion of a pure multiplicative model underlying balance-like

relations among implicit attitudes, stereotypes, self-concepts, and self-esteem.  This

article has examined both Greenwald et al.’s conclusions and their methods in light of

Blanton and Jaccard’s critique.  We re-examined all of Greenwald et al.’s data sets
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using the simultaneous multiple regression (SMR) method preferred by Blanton and

Jaccard.  That method provided very substantial support for presence of a multiplicative

model underlying the triadic interrelationships of variables in the majority of Greenwald

et al.’s data sets.  However, the SMR method has the limitation of not being able to test

the pure multiplicative model that was proposed in Greenwald et al.’s theory.

In further examining Blanton and Jaccard’s (2006) critique, we confirmed that

Greenwald et al.’s (2002) 4-test method had a susceptibility to spurious conclusions as

was suggested by Blanton and Jaccard.  Our various simulation studies showed (a) that

this susceptibility was much more delimited than implied by Blanton and Jaccard, and

(b) was a plausible complicating factor in only one of the five experiments analyzed by

Greenwald et al.  An unanticipated result of our simulation studies was to show that

Blanton and Jaccard’s preferred SMR method has a previously unrecognized weakness

in the form of sharply reduced power in testing pure multiplicative models when

predictor means are displaced from rational zero values.

Blanton and Jaccard (2006) went so far as to conclude by proposing that physicists

could effectively use the SMR method to test pure multiplicative models.  "Had Einstein

or Newton been stuck with the types of measures that psychologists typically work with,

and if their experimental designs were such that they had to work with correlational data

and regression models, then they would indeed have needed to include component

parts of the product term in their empirical tests of their models" (msp. 21).  Our

simulations show that this conclusion was mistaken.  With fallible measures, the SMR

method suffers severe power loss in tests such as the illustration they chose —

predicting rectangle area from the product of length and width.  Physicists would indeed

be unwise to use that method, and psychologists should likewise not judge it wise to
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follow Blanton and Jaccard's suggestion to rely on the SMR method to test pure

multiplicative models.

In advocating the SMR method for detecting multiplicative effects of predictor

variables, Blanton and Jaccard (2006) abandoned two significant possibilities: (a)

identifying pure multiplicative models and (b) assessing whether measures used in tests

of multiplicative models have rational zero values.  We believe that Blanton and Jaccard

might reasonably have had greater faith in the possibility of psychological measures

having rational zero values, might have had greater faith in the strategy of

simultaneously testing theoretical and measurement assumptions, and might have

recognized that the 4-test method has real advantages over the SMR method in testing

pure multiplicative theories.
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Appendix

Meta-Analysis of the Sixteen Analyses in Greenwald et al. (2002)’s Five Studies

Here we report details of analyses done to determine what conclusions can be

justified by considering as a group the 16 analyses (from five experiments) that were

reported in the Greenwald et al. (2002) article.  Tests based on SMR analyses use

standard meta-analytic procedures, as described below.  Those based on the 4-test

method are in a box-score format, there not being available techniques for meta-

analysis of the 4-test method.  Table A1 collects results of all tests for the 16 analyses

included in Greenwald et al.’s (2002) article.

We consider first the results from the SMR method, which uses the same statistic as

Test 2 of the 4-test method.  Whereas the 4-test method requires only a numerically

positive result of this test, the SMR method requires a statistically significant result to

confirm a multiplicative model.  To assure independence of the effects that were meta-

analytically combined in aggregated SMR results, we conducted three separate meta-

analyses, each including one partial correlation from each of the five studies.  The tests

for significance of aggregate effect sizes were t  tests against the null hypothesis of zero, with

each of the five samples weighted by the square root of its sample size.  The tests for

homogeneity were Fisher tests for the homogeneity of correlations (cf. Kenny, 1999).  These

meta-analyses used, respectively, data in rows of Table A1 that had the same type of

criterion measure — either a self–group association, a self–attribute association, or a

group–attribute association.14

The average product term coefficient for the SMR method (the pr for Test 2 in Table

A1) was statistically significant in meta-analyses for self–group associations as criteria

(SG in Table A1; average pr = .20, t(4) = 2.86, p = .05) and for self–attribute
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associations (SA; average pr = .23, t(4) = 3.61, p = .02).  For group–attribute

associations (GA), the average effect size was almost as large (average pr = .18), but

was not statistically significant, t(4) = 2.00, p = .12.  These results are consistent with

the conclusion that the SMR method demonstrated presence of a multiplicative

predictor in the majority of the 16 data sets.

In tests of the hypothesis that effect sizes were homogeneous, tests for criterion

measures of types SG and SA met criteria of homogeneity, P2(4) = 8.56 (p = .07) and

P2(4) = 7.35 (p = .12), but not for type GA, P2(4) = 13.13 (p = .01).  Because of the low

power of these tests — each being based on only five effect sizes — and because of

indications (see just below) that results for the Mellott and Greenwald (2000) study

deviated from the other four, we are reluctant to accept the conclusion that effect sizes

were homogeneous.

We next considered results for the 4-test method.  For 10 of the 16 data sets, the 4-

test method confirmed a pure multiplicative model by yielding a passing result for all

four tests.  Fewest tests were passed in the Mellott and Greenwald (2000) study (MG in

Table A1), which involved young and old subjects’ implicit attitudes toward the concepts

old and young, their implicit identification (association of self) with old and young, and

their implicit self-esteem.  Mellott and Greenwald’s study produced the surprising

observation that elderly subjects tended to associate self more with young than with old

on the IAT.  This was an unexpected discovery that a group of subjects (elderly) did not

implicitly identify with a group to which they nominally belonged.  In discussing this

study, Greenwald et al. (2002) had noted that its results did not fit well with the

multiplicative-model expectations of their theory.

The study that conformed next least well to the expectations of the pure
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multiplicative model was Banaji et al.’s (1997) study (BGR in Table A1), which involved

Black and White subjects’ implicit attitudes toward and implicit identification with their

racial groups, in relation to their implicit self-esteem.  For this study, the SMR test for all

three analyses revealed a significant effect of the multiplicative predictor.  Two of the

three analyses nevertheless failed at Test 3 of the 4-test method, meaning that — even

though a multiplicative predictor was strongly indicated — there were significant

increments in explained variance when the component factors were added as predictors

to the solitary product term of Test 1.  This pattern indicated either that the model was

not a pure multiplicative model (i.e., component factors were additionally involved) or

that the measurement scales deviated from having rational zero values, or both.

To assess the plausibility of regarding some of the 10 confirmations by the 4-test

method in Table A1 as Type I errors, we used the means and standard deviations of

predictors and intercorrelations of predictors to generate simulations that appraised both

the power of the 4-test method and its proneness to Type I error (i.e., spurious

confirmation when the true model was additive, rather than multiplicative).  The results

for simulated sample sizes of N=100, shown in Table A1’s two rightmost columns,

indicated that three of the 16 analyses had high potential for Type I error.  These three

tests were all from the Farnham and Greenwald (1999) study (FG in Table A1).  At the

same time, Table A1 shows that one of these three analyses had a statistically

significant product term in the SRM test, indicating presence of a multiplicative model. 

Five of the 16 data sets passed both the four-test and the SMR test for a multiplicative

model.  For these five data sets, the evidence for a pure multiplicative model was

especially strong.
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Figure Captions

1.  Summarized results of simulation studies with analyses by the SMR method (A, B,

C) and the 4-test method (D, E, F), for 9 values of true means of each of Predictors X

and Z, varied orthogonally.  Results are averaged over 3,000 iterations of each

simulation, with N=100 cases per iteration.  Means of predictors are on scales with

rational zero values and are in standard deviation units.  The method of simulating error

in the criterion, Y, was a fixed correlation between its latent and observed values.  See

text for further description.

2.  Summarized results from simulation studies indicating sensitivity differences

between the SMR and 4-test methods for the simulations shown in Figure 1 (Panel A). 

Panel B summarizes results for a parallel set of simulations in which the method of

simulating error in the criterion, Y, was change to maintaining a fixed magnitude of error

variance through all variations of mean values of the X and Z predictors.  See text for

further description.
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Figure 1
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Figure 2
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Table A1.  Summary of Results for Greenwald et al. (2002)’s Four-Test Procedure 
Applied to 16 Analyses from Their Five Experiments

Study

Meas-
ure

typea N

Criterion (Y)

rXZ

Test 1
beta

Test 2
pr

Test 3
R2 gain

Test 4a
pr

Test 4b
pr

No.  of
tests

passed

Simulatedb

measure d
Type 1
error Power

FG SG 65 self-
female

1.39 .340 .472* .269* .018 -.146 -.066 4 .471 .854

FG SA 65 self-
esteem

2.00 .380 .428* .216 .014 -.110 -.017 4 .425 .874

FG GA 65 female-
positive

2.43 .320 .445* .100 .008 .022 .091 4 .389 .874

BGR SG 61 self-white 0.25 .020 .578* .250* .122* -.236 .196 3 .009 .908

BGR SA 61 self-
esteem

1.54 .640 .267* .394* .093* -.292* .042 2 .124 .899

BGR GA 61 white-
positive

0.91 -.060 .700* .357* .001 .031 .022 4 .000 .900

MG SG 98 self-old -0.80 -.380 .375* .019 .027 -.175 .103 4 .001 .886

MG SA 98 self-
esteem

1.25 .290 .403* .031 .059* -.140 -.258* 2 .000 .897

MG GA 98 old-
positive

-1.21 -.380 .298* -.112 .092* .193 -.305* 1 .001 .879

RGM SG 95 self-
female

0.04 -.030 .363* .390* .045 -.227* -.057 3 .108 .899

RGM SA 95 self-warm 0.43 .110 .296* .343* .046 -.219* -.030 3 .100 .840

RGM GA 95 female-
warm

1.33 .130 .355* .336* .001 -.008 -.004 4 .024 .867

NBG SG 91 self-male -0.05 -.070 .407* .094 .023 .129 -.115 4 .017 .903

NBG SA 91 self-math -0.06 -.140 .433* .173 .005 .082 -.008 4 .020 .899

NBG GA 91 male-math 1.37 .410 .228* .216* .015 -.102 -.023 4 .007 .666

NBG AA 91 math-
positive

-1.19 .410 .449* .302* .013 -.058 .112 4 .001 .905

Note.  These data are from five experiments that were described in Greenwald et al. (2002):  FG =
Farnham and Greenwald (1999); BGR = Banaji, Greenwald, and Rosier (1997); MG = Mellott &
Greenwald (2000); RGM = Rudman, Greenwald, & McGhee (2002); NBG = Nosek, Banaji, & Greenwald
(2002).  d = mean of indicated criterion measure in SD units, pr = partial correlation.  Tests 1 thru 4 are the
respective tests of Greenwald et al. (2002)’s 4-test procedure.  Test 4 involves two effects, identified as 4a
and 4b.
     aIAT measures of associations involved three types of concepts: self (S); groups (G — e.g., male, old,
Black); and attributes (A — e.g., valence, math).  The 2-letter codes indicate the two types of concept
included in the criterion IAT measure in each analysis.  The two predictor variables for each analysis are
the measures indicated as criterion measures in the other two rows.  For the last row of the table, the two
predictors were NBG’s GA and SG measures.
     bThe simulated Type I error and power figures are based on 1,000 repetitions of simulations with
samples of N=100 cases. 
     *p < .05.
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1.  This strategy was in accordance with the widely held view (cf. Curd & Cover, 1998)

that, necessarily, empirical tests of a theory will simultaneously appraise the theory and

any auxiliary measurement assumptions made in testing it (cf. Duhem, 1906/1954;

Lakatos, 1970; Popper, 1959; Quine, 1953).

2.  The b1 coefficients the Tests 1 and 2 should be positive if the predictors (X and Z)

have been scored so that the sign of their multiplicative product (XZ) is consistent with

the theoretical expectation of a positive relationship of that product with the criterion

measure, Y.  An appropriate basis for deeming that b1 explains “substantial variance” in

Test 1 is a statistically significant result, whereas Test 2 requires only a numerically

positive (i.e., greater than zero) estimate of b1.

3.  As a relevant historical observation, we note that the initially submitted version of the

Greenwald et al. (2002) article used the same SMR method advocated by Blanton and

Jaccard (2006).  However, as a result of the review process, Greenwald et al. were

persuaded to use the 4-test method and adopted it.  We can report that they remain

persuaded of the method’s value and take full responsibility for their published

conclusions using that method.

4.  Further consideration of when a zero value of a difference measure can be taken as

a rational zero value appears in Greenwald, Nosek, and Sriram (2005).

5.  The simulations we shall report did not consider ability of either the SMR method or

the 4-test method to distinguish models containing both additive and multiplicative

predictors from ones with only multiplicative predictors.  However, the simulation

methods we developed (see footnote 6) can perform such tests.

6.  All simulations reported in this article can be reproduced with Excel spreadsheets

Footnotes



Greenwald, Rudman, Nosek, & Zayas:  Comment on Blanton & Jaccard Draft of 15 July 2005             -36

that are downloadable at

http://faculty.washington.edu/agg/MeanXZ.Simulations.Model2&3.13Jul05.zip.  The

spreadsheets provide instructions enabling their use both to reproduce this article’s

simulations and to generate a wide variety of other simulations.

7.  Power of the 4-test method is limited to a maximum of approximately 90% because

passing each of Tests 3 and 4 involves accepting a null hypothesis that has a Type I

error rate of 5%.  At least one of these two tests will fail approximately 10% of the time.

8.  In most of the present simulations of pure multiplicative theories, each of X and Z is

composed of a true-score (or latent) component and an error component, such that the

XZ product also has true-score and error components.  The true-score component of

the XZ product then generates the observed value of the criterion Y, adding an

independent error component.  With nonzero means of X and Z, the XZ product

includes variance shared with X and Z (multicollinearity).  With no measurement error in

X and Z, the regression analysis effectively partials the variance contributions of X and

Z from the XZ product, leaving a residual that fully captures the multiplicative

relationship that generates Y.  However, measurement error reduces the regression

analysis’s effectiveness in partialing variance associated with true-score components of

X and Z from the true-score component of the XZ product.  This reduces the portion of

the XZ variance that is associated with Y independently of associations of X and Z with

Y, reducing the partial correlation corresponding to the SMR method’s test of the

multiplicative product term.  Increased displacement of the X and Z means from zero

exacerbates this problem because of the associated increases in correlations of X and

Z with XZ.  It is beyond the scope of this article to describe these relationships formally,

although such description can follow the lines of previous work by Goodman (1960),
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Borhnstedt and Goldberger (1969), Busemeyer and Jones (1983), and McClelland and

Judd (1993).

9.  An end-point correction is needed to compute signal detection sensitivity measures,

either when power reaches 1.0 or Type I error rate drops to 0.0.  The correction that

was used replaces these extreme values of 0.0 with (.25 ÷ k) and 1.0 with 1.0 – (.25 ÷

k), where k is the number of simulations used to estimate the proportion.  For the

simulations in this article, k = 3,000, such that 0.0 and 1.0 were replaced with .000083

and .999917, respectively.  The logic of this end-point correction is to treat an observed

value of 1 ÷ k as if it were the midpoint of a range between 0.5 ÷ k  and 1.5 ÷ k. 

Extending that reasoning to interpret 0 ÷ k as the observed value for a true-value range

extending from 0 ÷ k to 0.5 ÷ k, it is replaced by 0.25 ÷ k.  The logic of replacing 1.0 with

1.0 – (.25 ÷ k) is the same.  This end-point correction method was first reported by

Banaji and Greenwald (1995, Footnote 5).

10.  In order to use the Multiple R as a simulation parameter, it was necessary to return

to the Y-error strategy of the preliminary simulations.  This strategy treats X and Z as

measured without error and incorporates error only into the criterion, Y, at the level

required to produce the target value of R.

11.  The theoretical value of .05 was used in place of the observed value of .054, which

was presumably a chance deviation from theoretical expectation.

12.  Details of the data and results of the 16 pairs of simulations are given in Appendix

Table A1.  The 16 pairs of simulations were repeated using the two alternative methods

that permitted modeling measurement error in X and Z.  (In these simulations, R could

not be used as a parameter.)  With fixed error variance in Y the 4-test and SMR

methods were similar in sensitivity to multiplicative models (average sensitivities over
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the 16 data sets were, respectively, d' = 3.20 and d' = 3.21).  With fixed correlation (r =

.6) between latent Y and observed Y, the 4-test method was generally more sensitive

than the SMR method (sensitivities, respectively, of d' = 3.17 and d' = 2.30).

13.  The pre-subtraction measures X and Z had rational zero values because the XZ

product values generated from them had a value of zero if either or both of the original

measures had a value of zero.  The linear (subtraction) transformations destroyed this

rational-zero property.  These simulations used the method of fixing the Multiple R (at R

= .40), treating X and Z as measured without error.

14.  We thank Betsy Becker for recommending the meta-analytic strategy of conducting

three separate tests, each including five independent effect sizes.


