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We provide necessary and sufficient conditions for several observables to have a joint distribution.
When applied to the bivalent observables of a quantum correlation experiment, we show that

these conditions are equivalent to the Bell inequalities, and also to the existence of deterministic
hidden variables. We connect the no-hidden-variables theorem of Kochen and Specker to these
conditions for joint distributions. We conclude with a new theorem linking joint distributions and
commuting observables, and show how violations of the Bell inequalities correspond to violations

of commutativity, as in the theorem.

PACS numbers: 02.50. — r, 03.65.Bz

1. INTRODUCTION

The question of when joint probabilities exist in quan-
tum mechanics is not entirely settled, although several re-
sults in the literature suggest that joint probabilities exist
only for commuting observables.! We show here that the
special question of whether observables can have a joint dis-
tribution in a given, fixed state lies at the center of recent
investigations into hidden variables; in particular, it is the
key to the Bell theorems” and the no-hidden-variables result
of Kochen and Specker.* We conclude with a new theorem
linking joint distributions and commuting observables.

2. STATISTICAL OBSERVABLES

In this section we establish a framework, and results on
joint probabilities, to be applied below to quantum mechan-
ics. We begin by defining a statistical observable (or, observa-
ble, for short) as a pair (4, P, ), where 4 is a real-valued
function and P, is a probability measure on the Borel subsets
of the reals (R). Intuitively, P, (S ) gives the probability that 4
takes a value in .S. Thus every random variable paired with
its distribution function is a statistical observable. In quan-
tum mechanics every self-adjoint operator A gives rise to
statistical observables (4, P %), where 4 maps a sequence of
unit rays (“states”) ¢, to a real number A iff
Inf||44, — Ad,|| = 0, and where P ¥(S) = (ys(4)), for
s, the characteristic function of the set .S and ¥ any state
(i.e., unit ray). It is convenient to refer to the function 4
alone, in the pair (4, P, }, as the (statistical) observable, sup-
pressing reference to the measure P, . Using this convention,
we define a joint distribution of statistical observables 4,
A,,...,A, as a probability measure P, _ , on the Borel sub-
sets of R” returning each measure associated with each ob-
servable as marginals; i.e., satisfying

Povota (RX .. XS X XR) =P, (S),

where Borel set S occurs in the /" place in the Cartesian
product. It is trivial to show that observables always have a
joint distribution, since the product measure

PA"___'A" = PA. ...PA"

always suffices. If, however, one is given a set of observables
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with certain fixed joint distributions already defined for var-
ious tuples of observables in the set, then it is a nontrivial
question whether there exists a joint distribution for all the
observables that returns the fixed joints as marginals. If so,
we shall say that there is a joint distribution compatible with
the fixed joints. We now establish some results of this sort,
having in mind an application to quantum correlation ex-
periments. (Intuitively, below, think of the fixed joints as the
ones quantum mechanics gives—in some state—for pairs of
commuting observables.)

Theorem 1: Let observables 4, 4,, ..., 4,; B,, ...,B,, be
given together with joint distributions P, 5, fori=1,2,..,n
andj =1, 2, ..., m. There exists a joint distribution for all
n + m observables compatible with the given joints if and
only if there exists a joint distribution P, , and corre-
sponding joint distributions P, 5 5 ,€ach of which is
compatible with P, 5 and P, 5, fori=1,2,..,nand
j=12,..,m

Proof: Clearly, if there is a joint distribution for all the
n 4+ m observables, compatible with the joints for the 4B
pairs, then the stated conditions hold. To establish the con-
verse, notice that these conditions enable one to define den-
sity functions p, =dP, 5 5 onR™"'and a density
B=dP; _, onR"suchthatfory=(p,, ...,y,.)
Srpi(x:, y)dx, = B(y)fori=1, .., n. Then for

x = {x,, ..., X,y we can define a probability density p on
R"* " by
px, y) = [pux 1y} pn (X, ¥ /B (¥): (1)

(For 8 = 0, we can set the left-hand side to zero as well.) This
is a proper density, for

Spn s mp(XY)AXdy = §p B (y)dy = 1.
Moreover, we get the given distributions P,  , back as
marginals because

Sqr— 1P yldx,..dx; _ Wdx; o dx, = px,y)

fori =1, 2, ..., n. Finally, since each p; returns
Pupli=1, . m) as marginals, the probability measure on
the Borel subsets of R" * ™ corresponding to the density p is
the required joint distribution. To apply the theorem it is
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useful to state an immediate corollary.

Corollary: Necessary and sufficient for the existence of
a joint distribution for observables A4, ..., 4,,; B;, B,, compa-
tible with given joints P, 5 (1<i<k <n and j = 1,2), is the ex-
istence of a joint distribution P, p and of distributions
P,. 5. s, €ach of the latter compatible with P, , and with
the given P, B

The corollary enables one to reduce the general prob-
lem to conditions on triples of obervables, which we now
study in a special case.

Theorem 2: If 4, B, B’ are bivalent observables (each
mapping into {x,y}) with given joint distributions P, 5P, .
and P 5., then necessary and sufficient for the existence of a
joint distribution P, ; 5., compatible with the given joints for
the pairs, is the satisfaction of the following system of
inequalities:

P{d) + P(B)+ P(B')<I

+ P(AB)+ P{AB')+ P(BB'), {2a)
P{4AB)+ P(AB')<P(4) + P(BB'), (2b)
P(AB)+ P(BB')<XP(B)+ P(4B’), (2¢)

and
P(4B')+ P(BB')<P{B')+ P(4B), {2d)

where we write P ( ) for the probability that each enclosed
observable takes the value x.*

Proof: Write S for the observable taking value y iff §
takesvaluex,andleta = P(4BB"'). Thenthe termsin adistri-
bution P, , ;, if there were one compatible with the given
joint distributions for pairs, would have to satisfy

P(ABB')=P(4B)—a, (3a)
P(ABB')=P(4B') —a, (3b)
P(ABB')=P(4)— P(AB)— P(4B') + a, (3c)
P(ABB')=P(BR') —q, (3d)
P(ABB')=P(B)— P(4AB)— P(BB') + a, (3e)
PABB')=P(B')— P(A4B') - P(BB') + q, (3f)

P(ABB')=1—P(4)—P(B)— P(B')
+P(AB)+ P(AB')+P(BB')—a. (3g)

UsingO<a<min{P (4B ),P(AB’),P(BB")),theconditionthat
each term in (3) be non-negative produces the system (2). For
example, requiring (3c) to be non-negative yields (2b). Con-
versely, if the system (2} is satisfied then choosing & as above
insures that Eqs. (3) define the required distribution P, , ;..

If we combine Theorem 2 with the corollary to
Theorem 1, we get a good working condition for when bival-
ent observables 4, ..., 4, B,, B, with preassigned joints

P, 8, for 1<i<k <nandj = 1,2, have a compatible joint dis-

tnbutlon namely, when there exist joint distributions P, 5
(for k <I<n andj = 1,2) such that the system (2) of 1nequa1—
ities is simultaneously satisfiable for 4 = 4,, B = B,, and
B’ = B,, 1<i<n. In special cases these inequalities form an
especially tractable system.

Theorem 3: If 4,, 4,, B,, B, are bivalent observables
with joint distributions P, B, (fori = 1,2 and j = 1,2), then
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necessary and sufficient for there to exist a joint distribution
P, 45,5, compatible with the given joints is that the follow-
ing system of inequalities is satisfied:
— 1<P(4,B))+ P(4,,B;) + P(4,B;) — P(4,B))
— P{d;) - P(B;)<0, 4)

fori#i = 1,2 and jj = 1,2.

Proof: To show necessity note that, assuming the distri-
bution Py 4 » g, foris#i' =12, andj#j = 1,2,

P(4,B;B;)=P(4,4,B,B,) + P(4,4,B,B;)
<P(4,B)+P(B,)—P|4,B,) (5)
and
P(4,BB;)=P(4,4,B,B,) + P(4,4,B B,)
<P(4,B;)+ P(B,)— P(4,B,). (6)
Also
O<P(4,BB;)=P(4,) — P(4,B,) — P(4,B;)
+ P(4,B.B,), (7)
and
O<P(4,BB;)=1—P(4,)— P(B,)— P|(B,)
+ P(4,B;))+ P(A,B;)+ P(4,B,B;). (8)

Then (5) with (7) yields the right-hand side of (4), and (6) with
(8) yields the left-hand side of (4). In order to show sufficien-
¢y, consider inequalities (2), first for B = B, B' = B,, and
A = A, and then, similarly, for 4 = A4,. If these eight in-
equalities hold simultaneously for one and the same P (B,B,)
then, by Theorem 2 and the corollary tc Theorem 1, we have
therequired P, , p p - Toshow that inequalities (4) guaran-
tee all this, letn = 1,2 and m+#k = 1, 2; set
y=min(P(4,B,) + P(B,) — P(4,B,),P(B,,).P(B,})
9

and define P (B, B;) = y. We can fill out the rest of the distri-
bution P, , by letting P(B, B,)=P(B) —
P(B\B,)=P(B,)— yand P(B,B,) = | —P(B ) —
Then (9) and the left-hand side of (4) imply that
P(4,)+ P(B,) + P(B,)<1 + P(4,B,) + P(4,B,) + P(B,B,)
fori =1, 2. Similarly, (9) and the right-hand side of (4) imply
the remaining six inequalities corresponding to (2b), (2¢), and
(2d) for the successive 4 = 4, 4,; B=B,,and B' = B,.

P(B,) +7.

3. CORRELATION EXPERIMENTS AND HIDDEN
VARIABLES

We apply the preceding results to quantum correlation
experiments. These involve distinct measurements of two
noncommuting, bivalent obvservables (with values + 1) 4,
A, in spacetime region R, and of two noncommuting, bival-
ent observables B, B, (values + 1)in region R,. Ideally, R,
and R, would be spacelike separated. In any case, we assume
that each 4, commutes with each B,. Each measurement is
performed on one of a correlated pair of particles, for exam-
ple, on one of pairs of photons emitted in the singlet state
from an atomic cascade (see Ref. 2). Various sets of assump-
tions about the workings of the experiment have been shown
to lead to the probabilities of the experiment (i.e., the ob-
served distributions for 4,,B, and for the commuting pairs

A;, B;) being constrained by the system of inequalities (4).
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Let us refer to these, collectively, as the Bell /CH inequalities.
It follows from Theorem 3, that the Bell/CH inequalities

hold for the probabilities of a quantum correlation experi-
ment if and only if there exists a joint distribution P, , 5 5
for the observables of the experiment that is compatible with
the observed distributions for the singles 4, and B; and the
commuting pairs 4;, B,. We now show, in turn, that the exis-
tence of such a joint distribution function is equivalent to the
existence of a deterministic hidden variables theory for the
experiment. Such a theory is defined as follows. Let 4,,..., 4,
,-.. be observables of a quantum system, in a given state ¥. A
deterministic hidden variables theory for these observables
(in that state) consists of a classical probability space

2 = (A, g{A), P}, where A is a nonempty set (the “hidden
variables” = “complete states” of the system), o{A ) is a o-
algebra of subsets of A and P is a probability measure on
o(A ). We require that there is a mapping A—4 () from the
observables 4 = A, to random variables on (2, where the
range of 4 () is the spectrum of 4 and satisfying

PY{=P, |, (D)
for each given observable 4 = 4,, and
P:/,EZPAH,B(D (Dz)

for all commuting pairs, 4, B among the given observables.
{In (D,) the left-hand side is the quantum joint distribution,
determined by

Pip(S XT)= (s )xr(B))y. (10)
On the right-hand side of (D,),
Py s (SXT)=P[4 7! S)hB~\(T)) (1)

is the joint distribution of the random variables 4 ( }, B{ ).}

Itis straightforward to see that there exists such a deter-
ministic hidden variables theory for 4,,4,,... if and only if
there is a joint distribution for 4,,4,,... compatible with the
quantum mechanical distributions P ¥ and Py ; . For given
such a hidden variables theory we can define the distribution
ford,, 4,,.by

PA, ..... Ay T PA,( )"'PA,,( )ors e,

as the usual product measure. Conversely, suppose we have a

,,,,,,,,,, compatible with the quantum
single and joint probabilities (for commuting pairs), then let
A consist of all sequences (a,, a,, ...), where a;€ spectrum of
A;. Let g(A ) consist of all the infinite-dimensional Borel sub-
sets of A “, and define P by

(81X XS, Xov).

Then (D,) and (D,) follow from the compatibility require-
mentson P, ,  if we associate with observable 4, the
random variable 4,( ) defined by

AA)=a, ford={a..a;.)EA.

Clearly, this same equivalence between hidden variables and
joint distributions obtains if we replace the left-hand side of
(D,) and (D,) by any given distributions. In the case of the
quantum correlation experiments, the weight of evidence
suggest that the observed distributions are those of quantum
mechanics (see Ref. 2). But even if this were not so, we could
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ask about the possibility for a hidden variables theory re-
turning the experimentally observed probabilities, whatever
they are, on the left-hand side of {(D,) and (D,). We summa-
rize the bearing of our results on this question in the follow-
ing theorem.

Theorem 4: For a correlation experiment with observa-
bles 4, A;, B, B, and with exactly the four pairs 4,, B,
(i =1,2;j = 1,2) commuting, the following statements are
mutually equivalent: (1) The Bell/CH inequalities hold for
the single and double probabilities of the experiment; (2)
there is a joint distribution P, , p » compatible with the
observed single and double distributions; (3) there is a deter-
ministic hidden variables theory for 4,, 4,, B,, B, returning
the observed single and double distributions; and (4) there is
a well-defined joint distribution (for the noncommuting pair)
Py p andjointdistributions P, , p and P, 5 , ,eachofthe
latter compatible with P , and with the observed single
and double distributions.’

4. OTHER HIDDEN VARIABLES

There are observables whose quantum mechanical pro-
babilities for certain states of correlated quantum systems
violate the Bell/CH inequalities. Likewise, in most of the
correlation experiments the observed probabilities also vio-
late these inequalities. Thus both theoretically and experi-
mentally we have a refutation of the possibility of determin-
istic hidden variables. Before the investigations initiated by
Bell on correlated systems, however, there were other no-
hidden-variables results. The strongest recent one is due to
Kochen and Specker (Ref. 3). We show here the connection
between their work and our investigation of joint probabili-
ties and deterministic hidden variables.

Kochen and Specker begin by defining a hidden varia-
bles theory, for a set 0 of observables of a quantum system in
state ¥, exactly as in our definition in the preceding section
for such a deterministic hidden variables theory, including
(D,) for every A€0, but not requiring (D,) for commuting
pairs. Let us refer to this as a weak hidden variables theory.
They then suggest that a reasonable-looking formal require-
ment, in addition, would be to have the algebra of operators
mirrored by the algebra of random variables. Thus they add
the requirement

fA)NA)=f[4(1)] (KS)
for all AeA and for every Borel function f (and for all 4€0).

Our first result here is to show that if the set 0 is large
enough, then (KS) is equivalent to (D,). Specifically, define a
set of observables 0 to be large enough if (1) whenever A€0
and Be0 and AB = BA, then ABe€0, and also there is some
observable Ce0 such that 4 = f(C) and B = g(C) for Borel
functions fand g; and (2) whenever A€0 and S is a Borel set,
then y(4 )e0.

Lemma: If 0 is large enough, then for 4€0, B€0 and
AB = BA, (KS) implies

AB(A)=A(A)BA) (PR)

Proof: We have that 4 = f(C)and B = g(C } for C<0. By
(KS), 4 (A ) =f[C(A)]and B (1) = g[C (1 )]. ButAB = f2(C).
Soby (KS), 4B(A)=L(C)A})=LIC(1)]
=fICA)ICA)N=4)B(1).
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Theorem 5: If 0 is large enough, then a weak hidden
variables theory for 0 satisfies (KS) only if it satisfies (D,) for
all commuting pairs 4, B in 0.

Proof: 1t follows from (D,) and the lemma, that

PLa(S XT) = (sl r(B)Yy = P i um)(l)
=Py qainernnil):
By (KS), this yields

PLa(SXT)=P[{A|xsd(A)=xr(BA)=1}]
=P[A7'S)NB ~YT)] =P, 5(S XT).

There is nearly a converse to this theorem, as follows.
Theorem 6: If 0 is large enough, then the following are
equivalent. (1) There is a deterministic hidden variables the-
ory for 0; (2) there is a weak hidden variables theory for 0
satisfying (KS) almost everywhere; {3) there is a weak hidden
variable theory for 0 satisfying (PR) almost everywhere.
Proof: We show that (1) implies (2), that (2) implies (3),
and that (3) implies (1). To show that (1) implies (2), suppose
we have (D,) for all commuting pairs 4, B in 0. We want to
show that f{4 )(1 }** = f[4 (1)]; i.e., that
P{A|fIA4)A)#£STA (A)]}] = 0. Lety be any numberin the
spectrum of /{4 ), and let S = {4 | f[4 (1)] = y} and
T={1|fl[41)] =y). Wewant P(SnT) = P(SnT) =0.
ThiswillfollowifwehaveP (S) = P(T) = P(SNT ).From(D,)
and the usual rules for functions of observables, we have

P(T)=P[{A|4A)ef 'O} =PIV~ '0) = Pfsy) = P(S).

= P(§).) Using the spectral representation of 4, it follows
that ' ¥p{d4 Jy,p)(f(4)} = ypl4) for any set D, where
S(D)={f(x)|xeD }. Hence,

P L) (D Xf(D) = (xp(4))y = PZ(D). In particular,
PYal /' WX yH = P4 S ~') = P(S) = P(T). But,
P (f 7' w)x{p}) = P(SnT). The conclusion now fol-
lows from (D,). That (2) implies (3) is a consequence of the
lemma. Finally, the derivation of (1) from (3) has already
been carried out elsewhere® and, since it involves no new
principles, need not be repeated here.

This theorem has an immediate corollary that applies to
the correlation experiments.

Corollary: If 0 is large enough, then a necessary condi-
tion for there to exist a weak hidden variables theory for 0
that satisfies (KS) [or (PR)] is that there exists a joint distribu-
tion for every finite subset of 0, one compatible with all the
well-defined quantum mechanical single and joint probabili-
ties in that subset.

If we consider the observables 4,, 4,, B,, and B, for a
correlation experiment, then clearly there is a finite, large
enough set 0 containing them all. According to the corollary
above, and Theorem 4, the failure of the Bell/CH inequal-
ities for particular correlated systems implies that there is no
weak hidden variables theory satisfying (KS) for any finite
large enough set of observables of such a system. It was just
the tying down of the no-hidden-variables results to such
finite systems of observables that was the central concern of
the Kochen and Specker results. Qur work in this section
and the previous one shows that the Bell/CH inequalities for
the correlation experiments achieve the same end.
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5. COMMUTING OBSERVABLES

Our investigations suggest that what the different hid-
den variables programs have in common, and the common
source of their difficulties, is the provision of joint distribu-
tions in those cases where quantum mechanics denies them.
In this section, we formulate an intuitive criterion for a joint
distribution, and show that its satisfaction in quantum me-
chanics leads to the usual connection between joint distribu-
tions and commuting operators.

If A and B are random variables over a common prob-
ability space with measure P, then for any two-place Borel
function fand any Borel set S, the joint distribution P, ; is
well defined, as is the random variable f(4,B ), and they sa-
tisfy the condition that P, z(f~'(S)) = P4.5,(S ). We now
propose, essentially, the same condition as a criterion for
when several observables of a quantum system have a joint
distribution, as follows.

We shall say that observables 4, ..., 4,, of a quantum
system satisfy the joint distribution condition [briefly, (jd)]
just in case, corresponding to every n-place Borel function f,
there is an observable of the system with operator
fid,, ..., 4,), and corresponding to every state ¥ of the sys-
tem there is probability measure sy, 4, . 4, Onthe Borel sets
of R” that returns the quantum single distributions P ¥ as
marginals, such that

Hy, a4, ...,A,,(f_l(s)) = P_‘;EA,,...,A,,)(S) (12)

for every state ¥ and Borel set S of reals.

Theorem 7: Observables 4, ..., 4, satisfy (jd) if and only
if all pairs commute.’

Proof:1f A4, ..., A, form a commuting set then f(4,, ...,
A, ) is well defined for every n-place Borel function f, and the
usual joint distribution determined by
K a, .., 81X XS,) = (xs (4 1)Xs, (4,)) o satisfies (jd)
for all states ¥. To show the converse we will show that if (jd)
holds and 4 = 4,, B = 4, then the spectral projections
Ysld ), y+(B) commute for any Borel sets S, T of reals. So
suppose that /,j are fixed and S, T are given Borel sets. Then
there are n-place Borel functions fand Borel sets of reals S/,
T’ such that

RX XS X XR=f""(S") (13)
and
RX-XT X-XR=f"NT, (14)

where S occurs in the ith place in (13), and Tin the th place
in (14). For example, we can define a Borel function f by
Sflxy, .., x,) = Ofor x,eSand x,&T, f(x,, ..., x,) = 1 for x,€S
and x;€T, f(x), ..., x,) = 2 for x,€S and x;¢T, and f(x,, ...,
x,)=3forxaSand x;,eT. If S’ = {1,2} and T’ = {1, 3}
then (13) and (14) hold. For such an f, we have from (jd) that

PYS)=pya, 4 RXXSXXR)

=#'I’,A,,.4.,A"(f_l(sl))
=P, . )5 (15)

Since (15) holds for all states ¥, it follows that
XS(A ) = XS' (f(A 13 ==» An )) Slmllarly)
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Xr(B)=xr(fAy ..
Xr(B).

The criterion (jd) and Theorem 7 help us to understand
the significance of the violations of the Bell inequalities for
the correlation experiments, for the observables 4,, 4,, B,
B, of the experiments (with values + 1) do not form a com-
muting set. Hence, by Theorem 7, if f(x,, x,, ¥, ¥2)

= X, + XV, + X,y, — X,y, and we try the correspondence
rule f(A,, A,, B,, B,) = A,B, + A,B, + A,B, — A,B, then
Eq. (12) will fail for some set .S and state ¥. In particular, if S
is the closed interval from — 2to + 2,thenf~!(S)2{ — 1,
1}* and the left side of (12) must be 1 for any measure. But in
certain singlet states ¥ (namely, those for which the Bell/CH
inequalities fail) the quantum mechanical probability on the
right side of (12) will differ from 1. Thus violations of the
Bell/CH inequalities are particular cases where (jd) fails, as
Theorem 7 tells us it somewhere must, for observables not all
pairs of which commute. {Of course, it is Bell’s important
and lasting contribution to have found cases especially sim-
ple, and also experimentally tractable, where (jd) does fail.]

It seems natural to take (jd) as a criterion for when ob-
servables have a joint distribution. It is a coarse-grained cri-
terion, not sensitive to the particular state of a system. As we
have seen in the preceding sections, more finely grained cri-
teria (and hidden variables are among them) are equivalent
to constraints (like the Bell/CH inequalities) that some
quantum systems violate in certain states. These violations
have been experimentally confirmed. Perhaps, then, we
ought to accept the straight-line induction; that where (jd)
fails, and quantum mechanics does not give a well-defined

joint distribution, neither would experiments. After all, if we
hold that probabilities (including joint probabilities) are real
properties, then some observables may simply not have
them.

, 4,)). Hence, ys(4 ) commutes with
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which also contains another derivation of (3) from (1).

®A. Fine, Synthese 29, 257 (1974). This is reprinted, with a relevant correc-
tion to the proof, in Logic and Probability in Quantum Mechanics, edited by
P. Suppes (Reidel, Dordrecht, 1976), pp. 249-281.

’For pairs of discrete observables a computational proof is contained in A.
Fine, Brit. J. Philos. Sci. 24, 1 (1973). I want to thank Robert Latzer for
correspondence that helped me find the simple, general derivation below.
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