
Pergamon Stud. Hist. Phil. Mod. Phys., Vol. 28, No. 3, pp. 307-323, 1997 

@ 1997 Elsevier Science Ltd. All rights reserved 

Printed in Great Britain 

1355-2198/97 $17.00 + .OO 

Gauge Theory, Anomalies and Global 
Geometry: 

The Interplay of Physics And 
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1. Introduction 

Whether today’s physics will lead to a grand theory of everything or to a 
more modest layer cake of effective theories of different orders (or perhaps to 
something else), certainly the next theoretical turnings will evolve out of the 
successes and failures of quantum field theory. In its postwar re-incarnation, 
field theory has been at the centre of developments not only in the physics 
of fundamental particles (quantum electrodynamics, chromodynamics and the 
standard model), but also in condensed-matter physics and cosmology. One of 
the most striking aspects of field theory in this period has been its alliance 
with the frontiers of research in ‘pure’ mathematics, especially in the areas 
of differential geometry and topology. At least since the advent of relativity, 
the prominent role of abstract mathematics, although not well understood 
(witness Wigner’s (1967, p. 222) ‘unreasonable effectiveness of mathematics’), has 
nevertheless been accepted as a fact of life in theoretical physics. What is perhaps 
new in the context of field theory is the reciprocal feedback of physics on pure 
mathematics, not just in the promotion of mathematical work in fields and topics 
allied to physics but also in concrete suggestions, deriving from the physics, for 
the solution to outstanding mathematical problems. The present work is a small 
contribution to tracing some of the interplay of physics and mathematics in field 
theory. Our particular subject is the treatment of anomalies in gauge theory, 
specifically the global chiral (i.e. left-right) anomalies. In general, the term 
‘anomaly’ signifies the breakdown, upon quantisation, of a symmetry present in 
the classical action where that breakdown does not depend on special features 
of the vacuum state (as it does in the case of spontaneously broken symmetry). 
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Since symmetries are associated with conservation laws, one can regard the 
question of anomalies as a question of what remedy to apply when a classical 
conservation law seems to fail, or actually does fail, in the quantum treatment of 
the phenomena. A standard example of the former would be the seeming failure 
of energy conservation in beta decay, whose remedy was the neutrino hypothesis. 
The chiral anomaly is an example of the latter; that is, chirality is a classical 
symmetry that actually disappears after (second) quantisation. Originally the 
chiral anomaly arose in perturbative calculations relating to models of neutral 
pion dissociation. Using Feynman rules, the calculations were seen to involve 
a fermion triangle diagram with one axial and two vector currents. Imposing 
current conservation and Bose symmetry in the vector channels leads to non- 
conservation of the axial current. This breaks chiral symmetry and results in 
neutral pion decay Our interest is in showing how this chapter in physics 
and perturbation theory connects with the introduction of global mathematical 
methods, and the ramifications of that. The story begins in the laboratory 

2. Penetrating Showers in Lead 

This is the title of a paper by W. B. Fretter (1948) that provides perhaps 
the first experimental evidence for the existence of neutral mesons. Fretter’s 
experiment involves a cloud chamber containing eight In-inch thick lead plates, 
eight inches wide, used to track the production of penetrating showers by 
cosmic rays. Discussing the interpretation of these showers, Fretter refers to 
J. R. Oppenheimer, who appears to have been the first to propose the y-instability 
of neutral mesons when coupled to nucleons: ‘Recently J. R. Oppenheimer 
has suggested that in these nuclear events not only charged mesons may be 
produced, but also uncharged mesons. The neutral mesons are calculated to have 
an extremely short life ( lo-t5 s). Thus, even if the neutral mesons were given a 
large amount of energy in the initial event they would decay almost immediately 
and produce a pair of y-rays, which would then create the electron shower’ 
(pp. 45-46). If it had mattered, Fretter could have improved on the estimate 
of lo-l5 s, for Oppenheimer had already assigned the problem of calculating 
the lifetime to R. J. Finkelstein. Finkelstein’s result (1947) gave an order of 
magnitude estimate of 1 x 1 O-t6 s for the decay of neutral ‘pseudo-scalar’ mesons 
into two photons. This turns out to be in good agreement with the experimental 
decay rate of (1.12 -t 0.202) x lOi s-l derived from subsequent measurements. 1 
The physical picture employed by Finkelstein was that of ‘dressed’ nucleons; 
i.e. of nucleons surrounded by a virtual meson cloud. Coupling a neutral 
meson to the electromagnetic field permits y-decay: the neutral pion dissociates 
into a proton-antiproton pair which then radiates the photons. Finkelstein’s 
calculations, however, encountered divergent integrals of a sort reminiscent of 
the self-energy divergences in electrodynamics. Finkelstein’s resolution was to 
employ a rather ad hoc method of subtraction for cancelling the divergences. 

1 For example, see Rosenfeld (1968). 
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Fig. 1. The triangle diagram. 

3. Perturbations 

Follow-up studies by J. Steinberger (1949) made use of the then new technique 
of Feynman diagrams to effect the perturbative calculation. 2 Steinberger 
represented neutral pion decay by the graph in Fig. 2, where the central 
triangular ‘loop’ corresponds to a linearly divergent integral: ‘All infinities in 
field theory are similar to that of this example. Somewhere in the Feynman 
diagram there is a closed loop which gives rise to the infinite integral’ (p. 1181). 
To deal with this Steinberger borrowed a regularisation technique (Pauli-Villars 
regularisation) and wrote down general consistency conditions for a formal 
‘method of subtraction fields’ (p. 1180), applying it first to the no - yy 
decay. Two years later Schwinger (1951) treated the same problem as an 
application of his general ‘proper-time method’ (p. 672). Using Green’s functions 
without the aid of the Feynman diagrams. Schwinger’s treatment depended on 
formulating the perturbation expansion in such a way that a so-called proper- 
time integration was reserved to the last. Both Schwinger and Steinberger based 
their perturbation calculations for the neutral pion decay rate on approximations 
to an explicit Lagrangian function with interaction g(vy5 ~4 (where q/, II/ are the 
proton fields, r#~ is the pion field andg is the coupling constant.) The concordance 
of these methods for handling the divergences suggested that something was 
right about the renormalisation techniques. But clearly some things, if not 
actually wrong, were certainly not well understood. 3 

The problem of neutral pion decay arose again in the context of the ‘current 
algebra’ approach to symmetry introduced by M. Gell-Mann (1962) and the 
exploration of the assumption (called PCAC) that axial-vector currents are 
partially conserved: explicitly, that the divergence of the current is proportional 
to the particle mass. Arguments by D. G. Sutherland (1967) and M. Veltman 
(1967) implied that under this assumption (given gauge invariance) the am- 

2 Steinberger’s paper appeared in the October issue of Physical Review. The September 
issue contained Feynman’s (1949) now famous paper, ‘Space-Time Approach to Quantum 

Electrodynamics’. 
3 Concerning the cogency of Steinberg& calculation R. Jackiw remarked: ‘It is presumably an 

accident that this completely implausible calculation gives a result in excellent agreement with 

experiment’ (1972, p. 167). 
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plitude for rro - yy vanishes in the limit where the pion mass goes to zero. 
In this limit exact chiral symmetry holds, and J. C. Taylor (1958) had already 
shown that chiral symmetry is incompatible with the beta decay of pions. 
J. S. Bell and R. Jackiw (1969) formulated the problem this way: perturbation 
theory calculations involving methods for subtracting infinities yield a non- 
zero amplitude for neutral pion decay in the limit where the pion mass is 
zero. PCAC, however, which is formally satisfied in the Lagrangian models on 
which the perturbative calculations are based, implies that the decay amplitude 
vanishes in that limit. How can we reconcile the two? The answer provided 
by Bell and Jackiw was to suggest an unorthodox regularisation scheme. Their 
approach modifies the customary Pauli-Villars regularization. Bell and Jackiw 
require that the coupling constants gi for the auxiliary fermion fields used to 
‘subtract off’ the infinities in the triangle diagram co-vary with the regulator 
masses mi of those fields; i.e. that mi/gi = m/g = constant (where g is the 
original coupling constant and m the fermion mass). This scheme preserves 
gauge invariance and the PCAC conditions (along with Lorentz covariance and 
Bose symmetry). The price for preserving these symmetries in the regularisation 
is the Sutherland-Veltman theorem: the neutral pion decay rate vanishes. In 
addition to this awkward conflict with experiment, S. Adler (1969) points out 
that for strong interactions the Bell and Jackiw regularisation would result in 
unrenormalisable infinities. Adler concludes that in order to preserve the other 
symmetries and also the possibility of renormalisation the PCAC condition 
must go. Adler’s analysis pinpoints the problem. The PCAC condition arises by 
calculating the divergence of the axial-vector current formally from the equations 
of motion inherent in the Lagrangian of the interaction model. These formal 
equations lead to the conservation of the axial-vector current (hence to chiral 
symmetry) in the zero mass limit. Translated into a condition on amplitudes 
this symmetry is expressed by a so-called Ward identity. If the corresponding 
calculation for the Ward identity is performed in perturbation theory, however, 
one encounters divergent path integrals, linearly divergent for a single triangle 
(or loop) graph. Thus one must introduce a regularisation technique. Because of 
contributions from the regulator terms, which are non-vanishing and finite even 
as the regulation is removed, the Ward identity acquires an extra (‘anomalous’) 
term and global chiral symmetry is broken. Similarly, regularisation modifies 
the PCAC condition. These modifications deny the critical assumptions of the 
Sutherland-Veltman theorem and allow the perturbative calculation for the 
-rrO - yy decay rate to proceed essentially as in Finkelstein, Steinberger and 
Schwinger; i.e. to yield a non-zero rate within the range of experimental error. 
W. Bardeen (1969) made a similar analysis for the non-Abelian case (essentially 
sum x SU(3)& showing that anomalous terms arise in the Ward identities 
due to the singular nature of the spinor loops. Bardeen also calculates an 
expression for the minimal anomalous divergence in the axial-vector current on 
the assumption that the vector currents themselves are conserved. 4 

4 There is an interesting sidelight to this analysis. As described above, the Finkelstein, Steinberger 
and Schwinger calculations involve a proton loop (or triangle). If one does the calculation in 
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4. Clarification and Development 

Chiral symmetry is a global property of the Lagrangian. It is incompatible 
with neutral pion decay. Neutral pion decay is a fact. Upon regularisation, 
neutral pion decay emerges naturally via the anomalous terms in the Ward 
identity. Thus chiral symmetry is a property of a classical Lagrangian that does 
not survive its quantisation via perturbation theory. In view of this, questions 
arise as to what other classical symmetries might be lost in a perturbative 
calculation, and how can we tell? Looked at the other way around, how can we 
be sure of having encoded a desired symmetry in a physical theory? In particular, 
since renormalisability depends crucially on symmetry considerations, how can 
we tell which renormalisability arguments are (or will be) safe? Finally, are 
anomalies such as we encounter in the breaking of chiral symmetry just an 
artefact of perturbation theory, or do they have a deeper and more significant 
source? D. Gross and R. Jackiw (1972) address these questions: ‘The anomalies 
of the axial-vector current are thus a consequence of a chirally invariant 
regulator procedure for fermions. However it must be emphasized that this 
difficulty is not merely technical; one must not entertain the hope that eventually 
a proper regulator procedure will be found’ (p. 478). No doubt the emphasis 
here was enhanced by the shortcomings of the Bell and Jackiw attempt at 
constructing such a ‘proper regulator’. More than a decade later Jackiw (1984) 
wrote again in a similar vein, having in mind both the Abelian Adler-Bell-Jackiw 
anomaly and the non-Abelian Bardeen anomaly: ‘Nevertheless, there is good 
reason to believe that anomalies are not an obscure consequence of problems 
with perturbation theory, but reflect a deep fact about Nature’ (p. 278). In 
1972, however, neither the ‘good reasons’ nor the nature of this ‘deep fact’ were 
apparent. Gross and Jackiw move toward a deeper understanding by studying 
the interplay between gauge invariance and renormalisation. Looking at massive 
vector mesons coupled to an axial-vector current constructed from massless 
fermions they begin by showing that in the presence of gauge invariance, the 
axial vector anomaly prevents the resulting theory from being renormalisable. 
As expected, they localise the source of the difficulty in the anomalous triangle 
graph. They then extend the scope of non-renormalisability, first to an Abelian 
version of the spontaneously broken gauge theory of weak interactions and 
then to non-Abelian vector-meson gauge fields with axial-vector coupling to 
fermions. In this latter case, a more realistic model for weak interactions, they 
succeed in deriving an explicit formula for the anomalous contribution to the 
divergence of the current. Their formula involves a trilinear function of the 
structure constants of the gauge group associated with the action. 

This formula is picked up by H. Georgi and S. Glashow (1972) in the context 

more modern terms using a quark loop for U, d and s quarks alone, then the experimental rate 

for 7r0 - yy decay is smaller than the calculated rate by a factor of three. To make up the 

difference one needs to triple the U, d and s quarks; i.e. to add another quantum number. Colour 

does the trick and thus the rro - yy decay rate can be used to lend support to the quantum 

chromodyndmic model. See Aitchison (1982. p. 153). 
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of what became known as the Glashow-Salam-Weinberg electroweak theory; 
that is, a unitary theory of the weak and electromagnetic fields, where the vector- 
meson masses are acquired via the Higgs mechanism. Georgi and Glashow 
note that the theory must be free of anomalies if it is to be renormalisable. 
The Gross and Jackiw formula enables them to catalogue anomaly-free models. 
In particular Georgi and Glashow identify classes of ‘safe’ Lie algebras (or 
groups) in which the anomalous Gross and Jackiw term vanishes. They show 
that this includes all the Lie groups representable by generators each of which 
is unitarily equivalent to its adjoint. Fortunately, StJ(2) is one of these groups; 
it is safe, with the anomalies posing no barrier to renormalisability. The article 
by Georgi and Glashow moves toward a structural characterisation for the 
presence of an anomaly; that is, toward detaching the anomaly from explicit 
perturbative calculations linked to a particular diagram and relating it instead 
to features of the gauge transformations that characterize a theory. A similar 
move was also made by Wess and Zumino (1971) who introduce a set of 
consistency conditions obtained by combining the Ward identities with the 
structure relations of the gauge group. They formulate things in terms of an 
effective action, essentially a functional of the meson and gauge fields sufficient 
to produce the same expectations with respect to these fields as does the full 
classical action (with the additional fermion fields). The Ward identities state the 
invariance of this functional. The anomalous Ward identities give a particular 
form to its variation. Thus anomalous terms in the Ward identity correspond to 
transformations of the effective action. Such transformations can be described 
in terms of infinitesimal gauge operators. The Wess and Zumino consistency 
conditions require that these transformations of the effective action provide a 
representation of the Lie algebra formed by the in~nitesimal gauge operators. 
Concentrating on the expression that Bardeen had calculated for the minimal 
anomalous divergence in the axial-vector currents, Wess and Zumino show that 
if one knows the leading term in the anomalous Ward identity (that given by 
Adler for the rr~ - yy amplitude) then their consistency conditions suffice 
to determine all the other anomalous terms. ‘In this sense one can say that 
[the minimal anomaly] is model independent’ and determined ‘up to an overall 
constant, by the structure of the gauge group’ (p. 95). 

5. The Cohomological Description of the Anomaly 

In 1975, when C. Beechi, A. Ravet and R. Stora (1975) described their 
new approach to renormalisation, they were well aware that it also implied a 
new understanding of anomalies. Indeed, in their introduction, they claim that 
anomalies ‘can be read off on [sic] the classical Lagrangian’ (p. 128). 

This 1975 paper, however, which only treats the anomaly-free Abelian Higgs- 
Kibble theory, does not provide a primer for how to read off the anomaly. The 

treatment of the non-Abelian version (Becchi et al., 1976) contains the first 
explicit discussion. Stora (1977) gives a concise account, which is as follows. 
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Let I(+, A) denote the effective Lagrangian as a function of matter fields $ 
and the non-Abelian gauge (vector) field A. As in the treatment by Wess and 
Zumino, here too the Bardeen anomaly A(c0, C#I, A) is the effect on I, denoted 
W ( w )r (4, A ), of an infinitesimal gauge transformation w of A. That is, 

A(w, 4, A) = W(w)r(+, A). (1) 
Writing the anomaly as an integral over the Euclidean spacetime manifold M, 
one has 

Now think of the action of co as a new kind of exterior derivative denoted by 
s (from A. Slavnov (1972); it later became known as the BRS transformation). 
Then equation (1) is the statement that the anomaly is an exact differential 
with respect to s. (A = -sI, the minus sign being conventional.) To describe s 
explicitly, set 

SA = -DAL0 (3) 

and 

so = +co, WI. (4) 

The first equation states that s acts on A as does an infinitesimal gauge 
transformation by cu. (Here DAUI = dw + [A, UI] is the covariant exterior 
derivative.) The second equation ensures that s2 = 0 when applied to A or w. 
Then the fact that the anomaly is s-exact implies that it is closed. That is, 

sA = 0. (5) 

That the algebraic manipulation agrees with successive gauge transformation of 
I is the Wess-Zumino consistency condition on the anomaly. (This identification 
also requires s to be an anti-derivation that anti-commutes with the ordinary 
exterior derivative d.) In terms of the integral representation of A, the above 
becomes 

sA = 
I 

so( = 0. (6) 
M 

Assuming M to be compact, there must be some 3-form Q for which 

so( = -dQ. (7) 

The question, ‘is there an anomaly?’ has thus been rephrased, ‘is there a 4- 
form whose BRS transformation is an exact differential?‘. The anomaly has 
become the integral of such a 4-form (properly normalised). Notice, too, that to 
phrase the question this way required making explicit an assumption about the 
topology of M that had been implicit in the calculations of the contribution of 
the triangle diagram; namely, that M is compact. 

To derive the Bardeen anomaly, as the solution to equation (7) Stora adapts 
the theory of secondary characteristic classes, due to S. S. Chern and J. Simons 
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(1971). This adaptation requires treating s on an equal footing with d. Indeed, 
Stora (following Slavnov, 1972) associates a degree (the ‘ghost number’) to s, 
and combines the two operators as (s + d). Notice that with this new notion of 
degree, o( and Q are each forms of total degree 5: ct has ordinary degree 4 (to 
be integrated over M) and ghost number 1 (since A is s of something with no 
dependence on cc), while Q must therefore have ordinary degree 3 and ghost 
number 2. He then applies Chern and Simons’ construction to the cohomology 
of (s + d). This construction begins with a G-invariant, symmetric trinomial T 

(more generally, T might be an invariant, symmetric polynomial) on the Lie 
algebra, and composes it with the curvature two-form of a connection. The 
result is an ordinary 6-form, which is (s + d)-exact. That is, one obtains forms 
Asdi of ordinary degree i and ghost number 5 - i such that 

(s + d) (A; + A; + - . . + A$ = T(F, F, F). 

The anomaly emerges upon breaking this equation down into several equations 
distinguished by ghost number. After applying (s + d) as indicated, the only 
term on the left-hand side of ghost number 6 is sA& hence, sA; = 0. The 
terms of ghost number 5 must likewise vanish (when added together), so dAi + 
sA; = 0. Continuing in this fashion produces a sequence of identities, ending 
with dAt = T (F, F, F) . One of these identites is dA: + SAG = 0. This is exactly 
equation (7) with forms of the correct degrees. The anomaly is thus the integral 
over M of AA . 

This new characterisation and computation of the anomaly in cohomological 
terms neatly explained Georgi and Glashow’s (1972) connection between a 
trilinear function on the Lie algebra and the anomaly. It also made explicit 
the role of the topology of M. Furthermore, it readily generalised to higher 
dimensions. L. Bonora and I? Cotta-Ramusino (1981) seem to have first taken 
advantage of this in a paper which standardises Stora’s argument, generalises 
it to higher dimensions, and points out that this argument fails to fix the 
normalisation constant multiplying the anomaly. This would be a minor point, 
except that this constant, which depends on the fermion field content, can be 
zero. Indeed, this is the mechanism by which the appearance of quarks of 
three colours saved the renormalisability of the electroweak theory of Georgi, 
Glashow and Weinberg (see Aitchison, 1982, p. 155). The cohomological 
description of the anomaly also raised a new question: for what manifold is 
(s + d) the natural exterior derivative? Although in this study we will not trace 
developments so far as to present the answer, we will return to this line of thought 
after a brief look at what was happening in the same period on another track. 

6. The Anomaly as the Index of the Dirac Operator 

Between 1976 and 1979 several authors identified the Adler-Bell-Jackiw 
anomaly as the analytic index of the Dirac operator. The latter is the difference 
between the number of zero modes (eigenfunctions with eigenvalue zero) of 
positive chirality and the number of zero modes of negative chirality. The 
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chirality of a spinor CC, corresponds to the sign in the equation y.# = kl. 
The pioneering work of G. ‘t Hooft (1976a) links the Adler-Bell-Jackiw 
anomaly to what he describes as a ‘topological quantum number’ (now known 
as the instanton number or Pontryagin index). Then ‘t Hooft (1976b) draws 
a connection between the same anomaly and the zero modes of the Dirac 
operator. Papers by J. Kiskis (1977), L. Brown, R. Carlitz and C. Lee (1977) and 
N. Nielsen and B. Schroer (1977), which are all based on the Green’s function 
approach to the anomaly due to Schwinger (1951), focus on these connections. 
Citations give credit to S. Coleman who apparently outlined an updated version 
of Schwinger’s argument, but did not publish it. This approach does not rely 
directly on perturbation theory and hence provides theoretical evidence for the 
inescapability of the anomaly. 

Coleman’s argument, as presented by Kiskis, starts with the usual expression 
for the expectation of the current in terms of the Green’s function, or propagator, 
of the Fermi field in the presence of a gauge field: 

(u/(x)+y%4U) = y’%G(x, x;A). (9) 

Expanding the Green’s function in eigenfunctions of the Dirac operator, regulat- 
ing the infinite expression arising as the result of evaluating a Green’s function 
at two coincident points, and taking the divergence of the resulting equation 
leads to a Ward identity. This identity involves the usual triangle anomaly and a 
sum over only the zero-modes of the Dirac operator. Integrating over spacetime, 
with some assumptions about boundary contributions, leads to an equality; 
namely, the analytic index of the Dirac operator is equal to the (integrated) 
anomaly. The question of boundary contributions, and a subtle question about 
additional contributions from the continuous part of the spectrum of the Dirac 
operator prevent Kiskis from asserting that this equality is correct. In his 
acknowledgements, Kiskis credits L. Dolan and K. Macrae with pointing out 
the connection between his work and the index theorems of M. Atiyah and 
I. M. Singer (1968a; 1968b), Atiyah and G. Segal (1968) and Atiyah, R. Bott 
and V. Patodi (1973). 

Like Kiskis, so too Brown et al. (1977) base their derivation on manipulations 
of the Green’s function for a massive fermion field cc/; however, they do not 
explicitly employ an eigenfunction expansion. After regularising the formal 
expression for the Green’s function, they relate the spacetime integral of the 
large mass limit to the integrated anomaly, and they relate the zero mass limit 
to the index. (The former relation follows from the asymptotic form of the 
Green’s function, while the latter relation is almost immediate from the formal 
expression for the Green’s function.) They then note that the formal expression 
is independent of the mass (which they point out is consistent with the Pauli- 
Villars regulation in perturbation theory) and conclude that the index is equal 
to the anomaly. 

Nielsen and Schroer (1977) differ from Kiskis in working with massless Fermi 
fields and in defining the Green’s function in terms of the inverse G’ (x, y; A ) 
of the restriction of the Dirac operator to the orthogonal complement of its 
kernel. Moreover, they explicitly work on a compactified spacetime (S4 in four 
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dimensions and S* in two), which ensures that the Dirac operator has a discrete 
spectrum. This avoids the difficulties Kiskis encountered. Where Kiskis used 
Pauli-Villars regularisation, Nielsen and Schroer give their own prescription for 
regulating the right-hand side of equation (9) according to which its divergence 
is finite and manifestly gauge-invariant. This leads to a current whose divergence 
is the Adler-Bell-Jackiw anomaly plus a sum over (normalised) zero modes, 
C, c#&Y~+o~. That is, they obtain essentially the same Ward identity as did 
Kiskis. This follows from using the definition of G’ to compute the divergence 
of their presciption for regulating the term on the right-hand side. They then 
extract the short-distance behaviour of G’ (that is, G’ (x, y; A) for y near to x) to 
compute the divergence directly, and find that it vanishes. Upon integration over 
spacetime, they thus obtain Kiskis’ equality between the index and the integrated 
anomaly. (The sum over zero modes becomes the index, because y5 +sn = & 1.) 
Having, like Brown et al., read ‘t Hooft’s papers, Nielsen and Schroer were 
aware that the anomaly is the topological (Pontryagin) index, and, indeed, they 
present the above arguments as an alternative proof of the Atiyah-Singer index 
theorem (which asserts the equality of the topological and analytic indices) in 
the case of the Dirac operator on S4. They seem to be the first to identify the 
usual conditions on the large-distance behaviour of the gauge fields explicitly 
as a compactification of spacetime. 

K. Fujikawa (1979) rederived the anomaly directly from the fermion func- 
tional integral and, also, without recourse to perturbation theory. Likewise, as a 
by-product of his calculation, Fujikawa was able to identify the anomaly as the 
index of the Dirac operator and relate it via the index theorem to the Pontryagin 
index. Moreover, Fujikawa gave a new interpretation for the anomaly: it is the 
(unanticipated) variation of the fermionic functional integral ‘measure’ under 
chiral transformations. His idea is to consider the effect of an infinitesimal chiral 
transformation on the generating function for the Euclidean Green’s functions, 

Z(q, 3, J) = $ 
I 

eSiaA~+(F,,F,)+~‘o+~~-(J.A) D)(Cl;l)qD)A. (10) 

The Green’s functions are derivatives of 2 with respect to the external currents 
n, fl and J, evaluated where each of these currents are zero. To calculate 
the effect of a chiral transformation, expand I,!J in terms of the (orthogonal) 
eigenstates &, with eigenvalues h, of the Dirac operator. In this basis, the first 
term in the exponent diagonalises, the fermionic measure ZXjZD+ becomes an 
infinite product of measures on the spaces of coefficients in the expansion of (1/, 
and the chiral transformation is given by an infinite-dimensional matrix. The 
determinant of this matrix is the Jacobian describing the effect of the chiral 
transformation on the fermionic measure. The logarithm of this Jacobian is 
simply 

c hb5A. (11) 
n 

Upon regularisation, this yields the usual expression for the chiral anomaly. 
Fujikawa remarks that because & and ys anti-commute, only zero-modes can 
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contribute to the above sum. (For the other modes, inserting 1 to either side 
of ys should not affect the term in question, but the anti-comnmtativity implies 
that the two choices are opposite in sign.) Hence, this sum reduces to Nielsen 
and Schroer’s sum over zero modes and is precisely the analytic index of the 
Dirac operator. Fujikawa then uses the Atiyah-Singer index theorem to identify 
the analytic index with the Pontryagin index, thereby identifying the anomaly 
with this topological object. He describes this as an independent check on his 
direct calculation. 

7. The Unifying Geometric Framework 

To return to the trail of the cohomological developments, the question 
of the underlying geometry was addressed by J. Thierry-Mieg (1980) who 
tried to tie the ghost forms directly to the principal fibre bundle. M. Quiros 
et al. (1981) presented a geometrical picture involving product bundles over 
the principal fibre bundle. In the same year, Bonora and Cotta-Ramusino 
(1981) gave a superspace formulation and subsequently presented a truly 
geometric description (1983). T. R. Ramadas (1984) gave a slightly different 
geometric setting. Indeed, during 1984, there were a flurry of papers elaborating 
the cohomological constructions, providing a geometric basis and apparently 
rediscovering the view of the anomaly as the obstruction (identifiable as the 
Dirac index) to the consistent definition of the determinant of the Dirac operator 
(e.g. Stora, 1984; Zumino, 1984; Atiyah and Singer, 1984). In addition, E. Witten 
(1983) gave a topological argument that determined the normalisation of the 
anomaly (which was also fixed by the interpretation of the anomaly as an index). 

It is clear that in the period in which these publications were being developed, 
most of the authors mentioned (along with many others) were in close, informal 
communication. The circular flow of ideas and information makes it difficult to 
track the generation of specific ideas on the basis of published accounts. As an 
instance of the circular paths of citation in this period, note that Atiyah and 
Singer (1984) cite Stora (1984), who in turn refers to Atiyah and Singer (1984) 
and also back to lectures Singer presented in 1982 (in Santa Barbara). Moreover, 
in his acknowledgements Stora mentions intense correspondence with Singer 
and Zumino and discussions with six other authors (some of whom Atiyah and 
Singer similarly acknowledge). 

A significant feature of the interchange amongst and between mathematicians 
and physicists at this time is their insistence on exposing their own colleagues to 
the other community’s perspective, and, quite strikingly, expounding the other 
community’s notation. Stora’s 1976 paper, in which he writes his connections 
and derivatives in the coordinate-free notation of differential forms (maybe after 
working through Chern and Simons (1974))is perhaps the earliest example. At 
that time this coordinate-free formulation was still somewhat novel even among 
differential geometers. In 1984, Zumino took pains to re-write the current (non- 
)conservation laws in this notation. Bonara and Cotta-Ramusino (1981; 1983) 
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likewise introduce this notation in the spirit of presenting something new and 
useful. On the mathematical side, Atiyah and Singer devote half a page of their 
very concise four-page paper to a description of the Yang-Mills functional 
integral and to a heuristic argument linking the first Chern class of the Dirac 
determinant bundle with the anomaly (viewed as the obstruction to defining a 
gauge-invariant effective action). 

We see here a willingness in both communites to consider topics each 
would have dismissed a decade before as ‘irrelevantly abstract’ (physicist to 
mathematician) or as ‘hopelessly vague’ (mathematician to physicist). To get 
some sense of the excitement generated by the interplay at that time we will 
describe Atiyah and Singer’s (1984) elaboration and practical application of the 
geometric picture underlying the BRS cohomology. The space of interest is a 
bundle Q over M x _A/ G, with group G. Here 3 is the space of connections on 
a fixed principal fibre bundle P over spacetime M, and G is the group of gauge 
transformations (restricted to be the identity on the fiber over a fixed point of 
M). One of the sources of mathematical interest in the bundle Q is the fact that 
d, (j and the quotient are infinite-dimensional spaces. To construct Q, begin 
with the space P x A and quotient by the action of G on each factor. Now the 
action of G on P defines Q. The latter has a natural metric (determined by a 
metric on G and a metric on M) which defines a connection w on Q (in the 
_Pt/ G-directions) as the orthogonal complement of the G-orbits. 

Atiyah and Singer (1984) connect the bundle Q with the anomaly by two 
different arguments. One is a functional integral argument. Starting with the 
fermionic functional integral for the Euclidean Green’s function, 

they argue that to make sense of 3, in the presence of zero modes of & requires 
that the Dirac determinant line bundle be trivial (equivalently, its first Chern 
class must vanish). The Dirac determinant line bundle has the same Chern 
characters as the index bundle Ind J. The latter is the vector bundle over 3 / G 
defined by the (formal) difference between the kernel and cokernel of the Dirac 
operator & mapping right-handed to left-handed spinor fields. The connection 
between Ind iYand Q is given by the index theorem, which computes the Chern 
character of Ind 8 in terms of the characteristic classes of the vector bundle 
associated to Q by a representation of G. These latter classes can be expressed 
directly in terms of polynomials in the curvature of the connection w. Integrating 
over A4 the form constructed from the curvature gives a form on 3/G, which, 
in turn lifts to a form on d. Restriction to the orbits defines a form on G, which 
represents a cohomology class. In particular, for M = S4, G = SU (N) and the 
identity representation, the computation of the first Chern class of Ind d and 
the above-mentioned integration, lift and restriction reproduces exactly Stora’s 
cohomological computation. Thus the Bardeen anomaly appears as that element 
of the cohomology of G which corresponds to the first Chern class of Ind Cy, and 
the significance of the trinomial in the Lie algebra is that it serves to represent 
the relevant Chern class of the vector bundle associated to the principal bundle 
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Q. Moreover, the (integrated) Adler-Bell-Jackiw anomaly is the zeroth Chern 
class of Ind d. 5 In this picture, these anomalies are two of a family of Chern 
classes of Ind b, all but the zeroeth of which correpond to elements of the 
cohomology of G. 

The other way to connect Ind ,6 with the anomaly is to consider the 
operator T+ = 8; &.A, Clearly, T+ varies with 4 (or not) just as does BA. 
Since, T+ maps right-handed spinors to right-handed spinors, its determinant 
is relatively straightforward to interpret. In the absence of zero modes, zeta- 
function regularisation gives a well-defined interpretation of detT+ for a given 
4. The existence of a gauge-invariant definition of the determinant of the 
Dirac operator, and hence of a gauge-invariant effective action, thus requires 
that d (det T+) = 0. (Here det T+ is function from G to the non-zero complex 
numbers.) Less stringently, one might ask whether 

d (det T+) = o 
det T+ ’ 

(13) 

The left-hand side represents a generator of the first cohomology of G (the 
pullback of the generator of the first cohomology of the complex plane minus 
the origin). The direct computation of the regularised determinant shows that 
this generator is the same as that obtained from the first Chern character of 
Ind a’, that is, it is the Bardeen anomaly. 

Atiyah and Singer’s geometric construction and index computation answered 
some of the most pressing questions surrounding the anomaly. The topological 
origin of the anomaly was made precise by identifying it as an element of the 
first cohomology of G. The geometric space underlying the BRS cohomolgy was 
seen to be the vector bundle over M x _PL/G associated to Q. Furthermore, this 
construction was quite general: M, G, P could in principle be arbitrary. Finally, 
this setting raised the question of whether there was physical significance to the 
higher Chern characters of Ind 8 

8. Summary 

Figure 5 diagrams the evolution of the anomaly from its origins as the triangle 
diagram’s anomalous contribution to neutral pion decay to its realisation as a 
Chern character of a line bundle over an infinite-dimensional manifold. The 
elegance and completeness of the latter picture inspired physicists to tackle the 
formidable task of gaining control over the machinery of global differential 
geometry. 6 

s The unintegrated Adler-Bell-Jackiw anomaly appears as the second Chern character of the 

vector bundle associated to Q. 

6 Physicists were of course not unanimous in this. L. Alvarez-Gaume and P. Ginsparg (1984) 
extend Fujikawa’s fermionic integral approach to treat the Bardeen anomaly, which they interpret 

directly in terms of the cohomology of the space of gauge transformations, without referring to 
an underlying geometric picture, Though they are well-versed in the work of Atiyah and Singer, 

and adopt the language of differential forms, their explicit aim is to by-pass the families index 
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Fig. 2. The evolution of the anomaly 

Stora, Zumino and Jackiw (among many others) were already on track to 
do so; each wrote primarily expository papers between 1984 and 1986 on 
their perceptions of the intimate relation between anomalies and topology 
(Stora, 1984; Zumino, 1984; Jackiw, 1985). Mathematicians saw this picture not 
only as a striking application of intrinsically important mathematics, but as an 
indication of the potential of quantum field theory as a source of intriguing and 
tractable problems in differential geometry and topology. ft is hard to imagine, 
for instance, that the topology of infinite-dimensional spaces, such as Q or 
6j would have been addressed for internal, mathematical reasons. Note, too, 
that the quantum-field-theoretic Feynman diagrams and functional integrals 
compute the Chern characters of infinite-dimensional bundles in a way that is 
not obviously equivalent to Chern and Simons’ construction. 

The achievement of the geometrical picture of the anomaly, and of the BRS 
cohomology, marks a reasonable point to end the story of penetrating showers 
in lead; that is, the story of the development, understanding, and successive 
use of the chiral anomaly. Later chapters while filling in details and extending 
its range of applicability, preserve this basic picture. ’ This endpoint, however, 

theorem: ‘We hope, in particular, that the pedestrian perspective on the families index theorem 
implicit in our approach will be useful for those physicists to whom K-theory proves anathema’ 
(p. 452). 
’ These developments include Moore and Nelson’s (1985) work on the o-model anomaly, where 
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also marks the start of a period of intense interaction between the physics and 
mathematics communities. The interaction has become so pervasive that critics 
in each field complain that it has fundamentally distorted their discipline. * 
Nevertheless, the interaction has brought to each field new ideas, new techniques 
and new results which neither could have developed in isolation. 

The global geometric approach to anomalies led directly to new physical 
constructs, Cherr-Simons field theory and the Wess-Zumino-Witten model, 
which in turn led to more general topological (and conformal) quantum field 
theories and has played an important role in the development of string theory. g 
Some of these theories have direct implications for physical phenomena ranging 
from the rather hypothetical ground state of the universe to the observed 
fractional quantum Hall effect. Moreover, these physical theories play back 
into mathematics in such diverse realms as Donaldson theory, knot invariants, 
and infinite-dimensional Lie algebras. Topologists and analysts are struggling 
to keep up with the pace at which results (to be made rigorous, to be re-derived 
conventionally, and to be applied) are suggested by these quantum field theories 
and their functional integrals. There is no way the triangle diagram in meson 
decay could explain the fractional quantum Hall effect without the topological 
perspective on the anomaly, nor could the use of secondary characteristic 
classes have led to a generalisation of the Jones knot polynomial without the 
intervention of quantum field theory. This remarkable interplay between physics 
and mathematics is the legacy of the decay of the neutral pion. 
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