Lecture 14: Cost Estimation

Overview
- Project management activities
 - Project costing
 - Project scheduling and staffing
 - Project monitoring and review
- General cost estimation rules
- Algorithmic Cost Modeling
 - Function point model
 - COCOMO

Components of Project Cost
- Tools (both HW and SW)
- Facility, utility, communication, etc.
- Travel, training, etc.
- Acquisition
- Development personnel (cost of person-hours)

Why Estimating Software Personnel Cost
- A big portion of overall IS project cost
- Allocate and control budget
 - Justify project value
 - A significant component in economic feasibility study
- Product pricing
 - Fixed vs. variable cost

Cost Estimation Methods
- Boehm (1981)
 - Algorithm cost modeling
 • Develop a model using historical cost information
 • Use software metric as input
 - Expert judgment
 • Expert on development technique and application domain
 • Arrive conclusion by consensus
 - Estimation by analogy
 • Other projects in the same project domain
- Parkinson's Law
 • Work expends to fill the time available
 • The cost is determined by available resources rather than by objective assessments
- Pricing to win
 • Based on how much the customer can afford
Estimation Trade-offs

- **Size**
 - Function points
 - Lines of code

- **Effort**
 - Person-months

- **Time**
 - Months

Function Points

Function Point Model

- Derive cost directly from analysis documents such as DFD and ERD
- Identify five Factors
 - Sizing Data Functions
 1. Files
 2. Program interfaces
 - Sizing Transactional Functions
 3. External Inputs
 4. External Outputs
 5. External Queries

Function Points Estimation

1. Total Unadjusted Function Points (TUF)
2. Project Complexity (PC)
3. Adjusted Project Complexity (PCA)
 \[PCA = 0.65 + 0.01 \times PC \]
4. Total Adjusted Function Points (TAFP)
 \[TAFP = TUF \times PCA \]

Lines of Code

- Conversion:
 \[LOC = k \times TAFP \]
 \(k \) is the LOC to FP conversion factor
- Example:
 - 100 Function Points
 - C: 13,000 Lines
 - VB: 3,000 Lines

COCOMO Estimation Calculation

- Effort (in person-months) = 1.4 \times \text{thousand LOC}

Estimating Schedule Time

- Rule of thumb for estimation
 \[\text{Schedule Time} = 3.0 \times \text{Effort}^{1/3} \]
COCOMO

COnstructive COst MOdel

- Use final project size (in terms of lines of code) as model input
- Classify project into three types
 - Organic, semi-detached, embedded
 - Depends on how many other systems to interface with
- Has three forms
 - Basic, intermediate, and detailed

COCOMO-Basic Form

- Three project types
 - Effort
 - PM = 2.4 (KLOC)\(^{1.05}\)
 - PM = 3.0 (KLOC)\(^{1.12}\)
 - PM = 3.6 (KLOC)\(^{1.20}\)
 - Schedule
 - TDEV = 2.5(PM)\(^{0.38}\)
 - TDEV = 2.5(PM)\(^{0.35}\)
 - TDEV = 2.5(PM)\(^{0.32}\)

- Limitations
 - Does not accommodate highly sequential forms of incremental development
 - Calculate average staff level in each phases
 - Does not incorporate the effect of other software cost drivers

COCOMO-Detailed Model

- Improvements
 - Phase-sensitive effort multiplier
 - In addition to Size
 - Reliability
 - Application experience
 - Interactive development
 - Three-level product hierarchy
 - Module level
 - Subsystem level
 - System level

Cost-Effectiveness Analysis

Performance Models

- Transaction Processing System
 - N = Number of processors
 - S = Processor Speed (Kops/sec)
 - P = Processor Overhead (Kops/sec)
 - M = Multiprocessor overhead factor

– $T = \text{Number of operations required per transaction in Kops}$

Performance Models

* Performance

Production Function

* Economies of Scale
 – More efficient to produce large quantities than small quantities

* Diseconomies of Scale on large software projects
 – Interpersonal communications
 – Software gold-plating
 – Hardware software
 - Modularity

Gold Plating

* Software gold plating
 – Instant response
 – Pinpoint accuracy
 – Unbalanced systems
 – Artificial intelligence (AI) features
 – Interactive multicolor vector graphics
 – “Everything for Everybody” systems

* Usually Not gold plating
 – Humanized Input Preprocessors
 – Humanized Output Postprocessors
 – Modularity and Information hiding
 – Measurement and diagnostic, backup and recovery capabilities

* Sometimes gold plating
 – High generalized control and data structure
 – Sophisticated user command languages
 – General-purpose utilities and support software
 – Automatic trend analysis

Choosing Among Alternatives

* Decision Criteria
 – Maximum Available Budget
 – Maximum Performance requirement
 – Minimum Performance requirement
 – Maximum Effectiveness/Cost Ratio
 – Maximum Effectiveness-Cost difference

* Composite options
Risk Analysis

Complete Uncertainty
- No knowledge for chance of success
- Decision Rules
 - Maximin (Most pessimistic)
 - Determine the minimum payoff for each alternative
 - Choose the alternative to maximize the minimum payoff
 - Maximax (Most optimistic)
 - Determine the maximum payoff for each alternative
 - Choose the alternative to maximize the maximum payoff
 - Laplace or Equal-Probability Rule
 - All states of nature are equally likely
 - Determine the expected payoff for each alternative
 - Choose the alternative to maximize the expected payoff
 - Subjective Probabilities
 - Breakeven Analysis

Value of Information
- The prototype approach