Physics 116

Lecture 14
Energy and momentum of light, polarization
Oct 21, 2011

R. J. Wilkes
Email: ph116@u.washington.edu
• Guest lecturer today: Kevin Connolly
Lecture Schedule

(up to exam 2)

<table>
<thead>
<tr>
<th>Date</th>
<th>Day</th>
<th>Lecture Title</th>
<th>Section(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/18/11</td>
<td>Tues</td>
<td>Electromagnetic Waves</td>
<td>25.1 – 25.2</td>
</tr>
<tr>
<td>10/20/11</td>
<td>Thurs</td>
<td>Energy and speed of electromagnetic waves</td>
<td>25.3 – 25.4</td>
</tr>
<tr>
<td>10/21/11</td>
<td>Fri</td>
<td>Polarization</td>
<td>25.5</td>
</tr>
<tr>
<td>10/24/11</td>
<td>Mon</td>
<td>Reflection and mirrors; ray tracing [HW 3 due]</td>
<td>26.1 - 26.2</td>
</tr>
<tr>
<td>10/25/11</td>
<td>Tues</td>
<td>Spherical mirrors; mirror equation</td>
<td>26.3 - 26.4</td>
</tr>
<tr>
<td>10/27/11</td>
<td>Thurs</td>
<td>Refraction, total internal reflection</td>
<td>26.5 - 26.6</td>
</tr>
<tr>
<td>10/28/11</td>
<td>Fri</td>
<td>Thin-lens equations</td>
<td>26.7</td>
</tr>
<tr>
<td>10/31/11</td>
<td>Mon</td>
<td>Rainbows & Vision</td>
<td>26.8 ,27.1 - 27.2</td>
</tr>
<tr>
<td>11/1/11</td>
<td>Tues</td>
<td>Optical Instruments</td>
<td>27.3 - 27.6</td>
</tr>
<tr>
<td>11/3/11</td>
<td>Thurs</td>
<td>Interference; Young's experiment [HW 4 due]</td>
<td>28.1 – 28.2</td>
</tr>
<tr>
<td>11/4/11</td>
<td>Fri</td>
<td>Review</td>
<td></td>
</tr>
<tr>
<td>11/7/11</td>
<td>Mon</td>
<td>EXAM 2 (covers Chs. 25-27)</td>
<td></td>
</tr>
</tbody>
</table>

Today: Monday, 10/24/11 - Reflection and mirrors; ray tracing [HW 3 due]
Intensity of EM waves

- With sound waves we had intensity (watts/square meter) proportional to amplitude (pressure change) squared.
- Same is true for EM waves: amplitude = N/C or teslas.
- In time t, EM wave passing through a window of given area travels a distance ct meters.
 - All the wave energy that passed through the window lies in a volume $V = (\text{area})ct$.
 - Energy that passed through the window is uV.
 - Power per square meter passing through the window is uV/t.

\[
U(\text{Joules}) = u(\text{Joules/m}^3) V(\text{m}^3) = u [(\text{area})c \Delta t]
\]

\[
I = \frac{\Delta U}{(\text{area})\Delta t} = u \frac{(\text{area})c \Delta t}{(\text{area})\Delta t} = u c = c \left[\varepsilon_0 E^2 \right] = c \left[\frac{B^2}{\mu_0} \right]
\]

So intensity is again proportional to A^2, where amplitude $A = E$ or B.

$L = ct$
Radiation pressure

- If a given area (window) absorbs energy U from an EM wave, it receives a transfer of momentum given by

$$p \text{ (}kg - m/s\text{)} = \frac{U \text{ (}kg - m^2/s^2\text{)}}{c \text{ (}m/s\text{)}} \quad \text{(check units)}$$

$$\Delta p = \frac{\Delta U}{c} = \frac{u \text{ (area)} c \Delta t}{c} = \frac{I \text{ (area)} \Delta t}{c}$$

$$F_{AVG} = \frac{\Delta p}{\Delta t} = \frac{I \text{ (area)}}{c} \rightarrow p_{AVG} = \frac{F_{AVG}}{\text{(area)}} = \frac{I_{AVG}}{c}$$

- So we expect an illuminated surface to feel “radiation pressure”
- Unless I is huge, this is normally a microscopic value of pressure!
Polarization

- Wave propagating in z direction is *plane polarized* if the E field vector has a single orientation (in the x-y plane).
- Unpolarized light is a mixture of light waves with random E field orientations.

-X and y components are in phase.
- Plane of "vibration" = x-y plane.

Linearly polarized light.
Polarized light vs natural light

- "Natural light" is *un*polarized
 - Waves from most sources have *random* polarizations
 - Light bulb filament has billions of atoms, each independently emitting *wavetrains*
 - We can *filter* natural light to get polarization
 - Example: radio wave passing through linear array of wires
 - wires *short out* the vertical component, only horizontally polarized wavetrains pass

- Edwin Land, 1928: Polaroid filter material
 - first cheap mass-market polarizing filter

 For light, 'wires' = aligned long organic molecules:
 Stretched polyvinyl alcohol
 (Idea from book by Brewster on kaleidoscopes)
“Analyzing” polarized light

- If light polarized in vertical plane encounters a Polaroid sheet oriented horizontally, light is blocked.
- If Polaroid is at angle between 0 and 90 deg, some light gets through:

\[
\vec{E} = E_y \hat{y} \\
I_0 \approx E_y^2 \\
E_\theta = E_y \cos \theta \\
I_\theta \approx E_\theta^2 \quad \Rightarrow \quad \frac{I_\theta}{I_0} = \frac{(E_y \cos \theta)^2}{E_y^2} = \cos^2 \theta \\
I_\theta = I_0 \cos^2 \theta \quad \text{(Malus, c.1800)}
\]
Example

- What is the angle θ if the final intensity is 10% of I_0?

\[
\frac{I}{I_0} = \frac{1}{2} \cos^2 \theta = 0.1 \rightarrow \cos^2 \theta = 0.2
\]

\[
\cos \theta = \sqrt{0.2} = 0.44 \rightarrow \theta = 63^\circ
\]
Polarization by reflection

• Next week: we’ll discuss refraction of light; for now
 – Index of refraction n of a material medium = $c / \text{(speed of light in that medium)}$
 – Examples: water = 1.33, glass = 1.5

• David Brewster (1781-1868):
 Found that when $q_T - q_R = 90^\circ$
 reflected light is polarized parallel to surface
 (perpendicular to plane of incidence)
 Brewster (polarizing) angle: $\tan q_B = n_2 / n_1$
 e.g., air/glass has $q_B = \tan^{-1}(1.5) = 57^\circ$
 Reason:
 – incident light has E components parallel and perpendicular to plane of incidence
 – reflected light can only have component perpendicular to plane of incidence for $q_R = q_T + 90^\circ$
 • Parallel component would have to be along propagation direction = longitudinal wave!
 Note that $R=\text{intensity reflection coefficient} \approx 0.15$ at $q_B = 57^\circ$
 So most of light intensity is transmitted
 – Transmitted light is partially polarized
 – Degree of polarization:
 $$V = \frac{I_{\text{POLARIZED}}}{I_{\text{POLARIZED}} + I_{\text{UNPOLARIZED}}}$$
 – Stack polarizer (Arago, 1812): stack of glass plates
 • more layers = higher V for transmitted beam and higher I for reflected beam.
Why is the sky blue?

- Light scattered from small particles is also partially polarized.
- Blue light more readily scattered by air molecules than longer light.
 - called *Rayleigh Scattering*; *strong* function of wavelength.
 - blue light in sky has been diverted from some other path.
 - with some blue light missing, sun looks yellowish.
- Look at setting sun through smoke: it is reddened (blue removed).
Today’s quiz question

- If **natural** light passes through a Polaroid filter, it becomes

 A. Redshifted

 B. Linearly polarized

 C. unpolarized

 D. You have to tell me more to answer