EE 331: Topics to be covered

1. The physics of electrical conduction
 a. Single carrier conduction
 i. Metals and insulators
 ii. Conductivity and resistivity
 iii. Electron density and mobility
 b. Semiconductor energy bands
 i. Electrons and holes
 ii. Donors and acceptors
 iii. Equilibrium carrier concentrations
 c. Conduction processes in semiconductors
 i. Drift, diffusion
 ii. Generation and recombination
 iii. Injection
 d. Junctions
 i. Boundary conditions
 ii. Diffusion currents
 iii. Charge storage and capacitance

2. Semiconductor diodes
 a. Construction and characteristics
 i. PN-junction structure
 ii. I-V characteristics and regions of operation
 iii. Ratings, specifications, and parameters
 b. Circuit models
 i. Ideal diode
 ii. Linearized diode
 iii. Shockley diode equation
 c. Circuit analysis
 i. Nonlinear elements in linear RLC circuits
 ii. Determining the device state
 iii. Voltage transfer characteristics
 iv. Analysis using SPICE
 d. Applications and design
 i. Rectifiers
 ii. Zener diodes
 iii. Clippers and clampers
 iv. LEDs and photodiodes
3. Field-effect transistors

a. Construction and characteristics
 i. N-channel and P-channel JFETs
 ii. N-channel and P-channel MOSFETs
 iii. Enhancement and depletion mode devices
 iv. I-V characteristics and regions of operation
 v. Ratings, specifications, and parameters

b. Circuit models
 i. Ideal FETs
 ii. Linearized FETs
 iii. Schickman-Hodges FET equations

c. Circuit analysis
 i. Determining the device state
 ii. Voltage transfer characteristics
 iii. Analysis using SPICE

d. Applications and design
 i. Controlling higher power loads
 ii. Complementary designs
 iii. Memory cells

4. Digital logic families

a. Characteristics and parameters
 i. Output high and low voltages
 ii. Input high and low voltages
 iii. Noise margins
 iv. Fan-out and Fan-in
 v. Power-delay product

b. NMOS and PMOS logic
 i. Resistor loads
 ii. Saturated e-mode load
 iii. Non-saturated e-mode load
 iv. Depletion mode load

c. CMOS logic
 i. Inverter characteristics
 ii. NAND and NOR
 iii. Transmission gates
 iv. Bistable circuits