Where do data come from?

- Observational studies
 - Interpretation of results subject to effects of **confounding**
 - **Confounding variable** is one that affects the response variable and is related to the explanatory variable
 - Can often establish an association, but generally can’t conclude cause and effect

- Experiments
 - Observe effects on subjects after the application of some **treatment**
 - Might want to compare a treatment versus a control or multiple treatments
 - Key elements in experimental design are
 - Control for effects of variables
 - Use replication
 - Use randomization
Where do data come from?

- Controlling for effects of variables
 - blinding
 - placebo effect
 - double dummy
 - blocking
- Replication and sample size
 - need sufficiently large enough samples to be able to distinguish between a true effect and natural variability
 - experimental results should be reproducible

Where do data come from?

- Using randomization
 Expect all components of the population to be approximately proportionately represented
 - Random sample: each individual has an equal chance of being selected
 - Simple random sample: each sample of the same size n has the same chance of being chosen
 - Probability sample: each member has a known chance of being selected

Where do data come from?

- Other sampling techniques
 - Systematic sampling
 - Stratified sampling
 - Cluster sampling
 - Multistage sampling
 - Convenience sampling
- Good design combines elements
 - Randomized block design

Where do data come from?

- Surveys
 - a type of observational study
 - phone, mail, email, web-based, in person
 - some additional issues
 - Wording of questions can introduce bias (deliberate or unintentional)
 - “Do you agree…?”
 - Ordering of questions (planting ideas)
 - Convenience samples/Self-selected samples
 - Desire of respondents to please
 - Confidentiality concerns may influence responses
 - Non-response bias
Where do data come from?

Fundamental Rule:
Data must be representative of the population with regards to the question(s) of interest
-- regardless of how data were collected
-- randomization important
 Helps to ensure that all components of the population will be approximately proportionately represented

Sampling error
Difference between the sample result and the true population result due to chance sample fluctuations.

Nonsampling error
Errors due to sample data that are incorrectly collected, recorded, or analyzed

Things to be aware of

• Already mentioned
 -- Sample sizes
 -- Loaded questions
 -- Order of questions
 -- Nonresponse
 -- Association versus causation

• Some other potential issues
 -- Graphs used to exaggerate or understate (scaling of axes)
 -- Pictographs
 -- Percentages (misleading or unclear)
 -- Missing data
 • At random meaning unrelated to values
 • Special reasons
 -- Self-interest studies
 -- Precise numbers ➔ accuracy