5.14 eq 5.33: \[E_n = -Z^2 \frac{e^2}{4\pi \epsilon_0 r} \]

15. The energy of a single electron about a nucleus of charge \(Z \).

In the approximate case the proton is just like the hydrogen atom except for the \(Z \).

a) \(L = L_n = L_n^2 = Z^2 \frac{\hbar^2}{2} (1 - \frac{1}{r}) \)

b) For \(Z = 92, (1 - \frac{1}{r}) \approx \frac{3}{4}, \frac{8}{9}, \frac{15}{16} \)

For \(n = 2, \frac{3}{4} \)

\[\hbar^2 = \frac{\hbar^2}{2} \rightarrow \hbar = \hbar \sqrt{2} \]

So \(\lambda k^2 = \frac{12.40}{92 \lambda (1.6)} \frac{4}{3} = 0.108 \lambda = 0.0147 \text{ nm} \)

\[\lambda k = \frac{3}{4}, \frac{9}{8} \lambda k = 0.0108 \frac{3}{8} = 0.0122 \text{ nm} \]

\[\lambda k = \frac{3}{4}, \frac{4}{15} \lambda k = 0.0108 \frac{3}{15} = 0.0116 \text{ nm} \]

5.25 \[R_{n1} = \frac{d}{\lambda} = 0.05 \text{ nm} = 0.6 \text{ pm} \]

Which is \(10^2 \times \) bigger than the lead nucleus with \(r = 7 \times 10^{-8} \text{ m} \)

5.26 Silver, \(Z = 47 \)

\[R_{m1} = \frac{A \frac{m}{2}}{Z^{3/2}} = 0.05 \frac{1}{47} \text{ nm} = 5 \times 10^{-10} \text{ m} \]

Since \(a \geq R_m \),
5.26 - continued

a) The \(m_1 \) is very inside all the electrons, so it is ok to ignore them. It may be inside the nucleus too.

b) \(E_{\text{kin}} = \frac{m_1 E_R^2}{m_2} \) since \(E_1 \propto m_1 \)

\[
E_1 = \frac{m_1 E_R^2}{m_2} \left (1 - \frac{1}{2} \right)
\]

\[
= \frac{(20)(3.4 \times 10^7)}{(5)} \left (\frac{3}{4} \right) = 4.66 \text{ MeV}
\]

\[
\gamma = \frac{E_1}{E_2} = \frac{4.66 \text{ MeV}}{\frac{4.66 \text{ MeV}}{4.66 \text{ MeV}}}
\]

5.27 For an atom initially stationary,

a) Final \(P = AP \) of electron.

\(\Delta P \) of electron occurs when it bounces backwards. The magnitude of its \(P \) is hardly changed, since the nucleus is very little \(K \) away.

\[
\Delta P = 2P = 2\sqrt{2ZeK} = P_{\text{max}}
\]

For atom, \(K = \frac{P_{\text{max}}}{2m_1 \text{kin}} = \frac{4(3.4 \times 10^7)}{2m_1 \text{kin}}
\]

\[
= 4 \frac{m_1 \text{MeV}}{m_1 \text{MeV}} K
\]
6.27 -

6) \(K = 3 \text{eV}, \quad M_{e} = 0.58 \text{ MeV/c}^{2} \)

\[M_{h} = \lambda_{h} (0.915) \text{ MeV/c}^{2} \]

\[A_{19} = 200.65 \quad \text{(averaged over all the isotopes)} \]

The isotopes have \(A = 198, 199, 200, 201\) and 204, 208 is a nice round number.

Max \(K = \frac{4}{(2\pi)(932)} \times 3 = 3 \times 10^{-5} \text{eV for } a \text{ atom} \)

Units: \(\text{MeV} \cdot \text{eV} = 0 \text{eV} \)

6.8 p = h/\lambda \Rightarrow p = 6e/\lambda

if \(h = 0.05 \text{nm}, \quad pc = \frac{1240}{0.05} = 25 \text{ BeV} \)

for photons, \(E = p^2 \Rightarrow \text{we need } 25 \text{ BeV x-rays} \)

for neutrons \(K = \frac{p^2}{2m} \quad (\text{Since } p < m) \)

\[= \frac{p^2}{2m^2} = \frac{25^2}{(2)(938 \times 10^3)} = 0.33 \text{ eV} \]

for electrons \(K = \frac{p^2}{2me^2} \quad \text{is } 3 \text{ MeV} \)

\[= \frac{25^2}{(2)(511)} = 0.61 \text{ MeV} \]
\[E^2 = (pc)^2 + (mc^2)^2, \quad E = mc^2 + \pi \]

<table>
<thead>
<tr>
<th></th>
<th>K</th>
<th>E</th>
<th>pc</th>
<th>(\pi = \frac{\lambda}{2c})</th>
</tr>
</thead>
<tbody>
<tr>
<td>electron</td>
<td>10^3 eV</td>
<td>2.2 MeV</td>
<td>3.2 MeV</td>
<td>39 pm</td>
</tr>
<tr>
<td></td>
<td>10^6 eV</td>
<td>1.8 MeV</td>
<td>1.1 MeV</td>
<td>0.87 fm</td>
</tr>
<tr>
<td></td>
<td>10^9 eV</td>
<td>1.008 GeV</td>
<td>1.008 GeV</td>
<td>1.24 fm</td>
</tr>
</tbody>
</table>

photon	10^3 eV	10^3 eV	10^3 eV	1.24 nm
	10^6 eV	10^6 eV	10^6 eV	1.24 pm
	10^9 eV	10^9 eV	10^9 eV	1.24 pm

\(m = 0 \)

\(\sqrt{c} \text{call} \quad \lambda = 10^{10} \text{m} \)

\(\lambda = 10^{12} \text{m} \)

\(f = 10^{15} \text{Hz} \)