Chapter 3 of Tipler & Mosca, section 3
Circular Motion

1. Uniform Circular motion:

a.) Constant speed, go around a circle or just part of one (an arc). Speed and radius.

 b.) Velocity vector is changing, so there is acceleration.

 c.) T is period for complete circle, so $V = \frac{2\pi R}{T}$
d.) Put velocity vectors on a plot, with tails at the origin:

Tip of \vec{V} goes around circle in period T. radius of this circle is V.

Thus rate of change of \vec{V} with time is $a = 2\pi V / T$ and since $T = 2\pi R / V$
$$a = V^2 / R$$
called Centripetal Acceleration

e.) NOT a constant acceleration. Magnitude is constant but Direction rotates.
Points toward center of circle. Demo.

f.) Clicker problem
A satellite in “low earth orbit” travels a few hundred km above the surface of the Earth. The orbit radius is 7×10^6 m. If g is still 9.8 m/s2 at that height, what is the speed of the satellite?

A. 7.0×10^7 m/s
B. 8.3×10^3 m/s
C. 6.3×10^3 m/s
D. 4.3×10^3 m/s
E. 5.0×10^7 m/s
2. “Circular” motion with change of speed
 a.) Centripetal acceleration always perpendicular to \vec{V} (toward inside of turn)
 b.) Change of speed result of Tangential acceleration. (parallel to \vec{V} -- just like one dimensional case.)
 c.) Homework problem example.

3. General case of “curvy” motion
 a.) At any point along a particle’s path the acceleration vector has one component parallel to \vec{V} and another perpendicular. That is all there is.
 b.) Parallel component is the tangential acceleration – changes speed.
 c.) Perp component is centripetal acceleration – changes direction.
 d.) What about the projectile?