Use of the 3-phase diagram

Soil Relationships

- \(V_t = V_a + V_w + V_s \)
- \(W_t = W_w + W_s \)
- \(W_w = V_w D_p \) (\(V_w \times 1 \text{ g/cc} \))
- \(W_s = V_s D_p \)

Definitions

- Void ratio = \(e = \frac{V_p}{V_s} \)
- Porosity = \(n = \frac{V_p}{V_t} \)
- Water content = \(\theta_m = \frac{W_w}{W_t} \) (moisture content)
- % moisture = \(\frac{W_w}{W_t} \times 100\% \)
- % solids = \(\frac{W_s}{W_t} \times 100\% \)
- Degree of saturation = \(S = \frac{V_w}{V_p} \)
- Particle density = \(D_p = \frac{W_s}{V_s} \) (specific gravity)
- Bulk density = \(D_b = \frac{W_s}{V_t} \)

Note: all of these are normally expressed as a “%”, i.e., times 100%

Example 1

A soil has the following characteristics:
- Wet weight = 2500 g
- Dry weight = 2000 g
- Void ratio = 100%
- Particle density = 2.5 g/cc
Find

Water content (moisture content)

\[\theta_m = \frac{W_w}{W_s} \times 100\% \]

\[= \frac{500 \text{ g}}{2000 \text{ g}} \times 100\% \]

\[= 25\% \]

Example 2

A soil has the following characteristics:

- Dry weight \(= \) 2000 g
- Moisture content \(= \) 50%
- Volume \(= \) 2000 cc
- Particle density \(= \) 2.65 g/cc

MOISTURE RELATIONSHIPS

Water (moisture) content

\[= 25\% \]

% moisture

\[= \frac{W_w}{W_t} \]

\[= \frac{500 \text{ g}}{2500 \text{ g}} \times 100\% \]

\[= 20\% \]

% solids

\[= \frac{W_w}{W_t} \]

\[= \frac{2000 \text{ g}}{2500 \text{ g}} \times 100\% \]

\[= 80\% \]

Therefore:

\[\% \text{ moisture} = 100\% - \% \text{ solids} \]
Find

Porosity \(n = \frac{V_p}{V_t} \)
\[= \frac{1245 \text{cc}}{2000 \text{cc}} \times 100\% \]
\[= 62\% \]

Find

Void ratio \(e = \frac{V_p}{V_s} \)
\[= \frac{1245 \text{cc}}{755 \text{cc}} \times 100\% \]
\[= 165\% \]

Find

Degree of saturation \(S = \frac{V_w}{V_p} \)
\[= \frac{1000 \text{cc}}{1245 \text{cc}} \times 100\% \]
\[= 80\% \]

Measuring water in soil

% moisture \(= \frac{W_w}{W_t} \)
% solids \(= \frac{W_s}{W_t} \)

Measuring bulk density

\(D_b = \frac{W_s}{V_t} \)

Measuring pore space

\(V_p = \text{volume of water used to entirely fill up voids} \)
\(D_p = \frac{W_s}{(V_t - V_p)} \)
Alternate for measuring pore space

\[V_p = V_t - V_s \]
\[D_p = \frac{W_s}{V_s} \]

Oven dry sample
determine dry weight

Known volume \(= V_t \)