Today:
 • Approximate Riemann solvers
 • Multidimensional

Friday:
 • AMR

Projects: Make an appointment this week, and see
 http://www.clawpack.org/links/burgersadv
Shallow water equations

\[h(x, t) = \text{depth} \]
\[u(x, t) = \text{velocity (depth averaged, varies only with } x) \]

Conservation of mass and momentum \(hu \) gives system of two equations.

mass flux = \(hu \),
momentum flux = \((hu)u + p \) where \(p = \text{hydrostatic pressure} \)

\[
\begin{align*}
 h_t + (hu)_x &= 0 \\
 (hu)_t + \left(hu^2 + \frac{1}{2}gh^2 \right)_x &= 0
\end{align*}
\]

Jacobian matrix:

\[
f'(q) = \begin{bmatrix}
0 & 1 \\
gh - u^2 & 2u
\end{bmatrix}, \quad \lambda = u \pm \sqrt{gh}.
\]
Given \(h_l, u_l, h_r, u_r \), define

\[
\bar{h} = \frac{h_l + h_r}{2}, \quad \hat{u} = \frac{\sqrt{h_l u_l} + \sqrt{h_r u_r}}{\sqrt{h_l} + \sqrt{h_r}}
\]

Then

\[
\hat{A} = \text{Jacobian matrix evaluated at this average state}
\]

satisfies

\[
A(q_r - q_l) = f(q_r) - f(q_l).
\]

- Roe condition is satisfied,
- Isolated shock modeled well,
- Wave propagation algorithm is conservative,
- High resolution methods obtained using corrections with limited waves.
Roe solver for Shallow Water

Given h_l, u_l, h_r, u_r, define

$$\bar{h} = \frac{h_l + h_r}{2}, \quad \hat{u} = \frac{\sqrt{h_l} u_l + \sqrt{h_r} u_r}{\sqrt{h_l} + \sqrt{h_r}}$$

Eigenvalues of $\hat{A} = f'(\hat{q})$ are:

$$\hat{\lambda}^1 = \hat{u} - \hat{c}, \quad \hat{\lambda}^2 = \hat{u} + \hat{c}, \quad \hat{c} = \sqrt{g \bar{h}}.$$

Eigenvectors:

$$\hat{r}^1 = \begin{bmatrix} 1 \\ \hat{u} - \hat{c} \end{bmatrix}, \quad \hat{r}^2 = \begin{bmatrix} 1 \\ \hat{u} + \hat{c} \end{bmatrix}.$$

Examples in Clawpack 4.3 to be converted soon!
Potential failure of linearized solvers

Consider shallow water with $h_\ell = h_r$ and $u_r = -u_\ell \gg 1$.

Outflow away from interface \implies small intermediate h_m.

With $u_r = 0.8$

Roe $h_m > 0$

With $u_r = 1.8$

Roe $h_m < 0$
Harten – Lax – van Leer (1983): Use only 2 waves with

- \(s^1 \) = minimum characteristic speed
- \(s^2 \) = maximum characteristic speed

\[W^1 = Q^* - Q_\ell, \quad W^2 = Q_r - Q^* \]

Conservation implies unique value for middle state \(Q^* \):

\[s^1 W^1 + s^2 W^2 = f(Q_r) - f(Q_\ell) \]

\[\implies Q^* = \frac{f(Q_r) - f(Q_\ell) - s^2 Q_r + s^1 Q_\ell}{s^1 - s^2}. \]
HLL Solver

Harten – Lax – van Leer (1983): Use only 2 waves with

\[s^1 = \text{minimum characteristic speed} \]
\[s^2 = \text{maximum characteristic speed} \]

\[\mathcal{W}^1 = Q^* - Q_\ell, \quad \mathcal{W}^2 = Q_r - Q^* \]

Conservation implies unique value for middle state \(Q^* \):

\[s^1 \mathcal{W}^1 + s^2 \mathcal{W}^2 = f(Q_r) - f(Q_\ell) \]
\[\implies Q^* = \frac{f(Q_r) - f(Q_\ell) - s^2 Q_r + s^1 Q_\ell}{s^1 - s^2}. \]

Choice of speeds:

- Max and min of expected speeds over entire problem,
- Max and min of eigenvalues of \(f'(Q_\ell) \) and \(f'(Q_r) \).
Einfieldt: Choice of speeds for gas dynamics (or shallow water) that guarantees positivity.

Based on characteristic speeds and Roe averages:

\[s_{i-1/2}^1 = \min_p (\min(\lambda_i^p, \hat{\lambda}_{i-1/2}^p)), \]
\[s_{i-1/2}^2 = \max_p (\max(\lambda_{i+1}^p, \hat{\lambda}_{i-1/2}^p)). \]

where

\(\lambda_i^p \) is the \(p \)th eigenvalue of the Jacobian \(f'(Q_i) \),
\(\hat{\lambda}_{i-1/2}^p \) is the \(p \)th eigenvalue using Roe average \(f'(\hat{Q}_{i-1/2}) \).
Wave propagation methods

- Solving Riemann problem gives waves $\mathcal{W}_i^{i-1/2}$:
 \[
 Q_i - Q_{i-1} = \sum_p \mathcal{W}_i^{i-1/2}
 \]
 and speeds $s_i^{i-1/2}$. (Usually approximate solver used.)

- These waves update neighboring cell averages depending on sign of s^p (Godunov's method) via fluctuations.

- Waves also give characteristic decomposition of slopes:
 \[
 q_x(x_{i-1/2}, t) \approx \frac{Q_i - Q_{i-1}}{\Delta x} = \frac{1}{\Delta x} \sum_p \mathcal{W}_i^{i-1/2}
 \]

- Apply limiter to each wave to obtain $\tilde{\mathcal{W}}_i^{i-1/2}$.

- Use limited waves in second-order correction terms.
High-resolution wave-propagation algorithm

\[Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x} (A^- \Delta Q_{i+1/2} + A^+ \Delta Q_{i-1/2}) - \frac{\Delta t}{\Delta x} (\tilde{F}_{i+1/2} - \tilde{F}_{i-1/2}), \]

where

\[\tilde{F}_{i-1/2} = \frac{1}{2} \sum_{p=1}^{m} |s_{i-1/2}^p| \left(1 - \frac{\Delta t}{\Delta x} |s_{i-1/2}^p| \right) \tilde{W}_{i-1/2}^p. \]

\(\tilde{W}_{i-1/2}^p \) represents a limited version of the wave \(W_{i-1/2}^p \), obtained by comparing this jump with the jump \(W_{I-1/2}^p \) in the same family at the neighboring Riemann problem in the upwind direction,

\[I = \begin{cases}
 i - 1 & \text{if } s_{i-1/2}^p > 0 \\
 i + 1 & \text{if } s_{i-1/2}^p < 0.
\end{cases} \]
Wave limiters

Let $\mathcal{W}_{i-1/2} = Q_i^n - Q_{i-1}^n$.

Upwind: $Q_i^{n+1} = Q_i^n - \frac{u\Delta t}{\Delta x} \mathcal{W}_{i-1/2}$.

Lax-Wendroff:

$$Q_i^{n+1} = Q_i^n - \frac{u\Delta t}{\Delta x} \mathcal{W}_{i-1/2} - \frac{\Delta t}{\Delta x} (\tilde{F}_{i+1/2} - \tilde{F}_{i-1/2})$$

$$\tilde{F}_{i-1/2} = \frac{1}{2} \left(1 - \left| \frac{u\Delta t}{\Delta x} \right| \right) |u| \mathcal{W}_{i-1/2}$$

High-resolution method:

$$\tilde{F}_{i-1/2} = \frac{1}{2} \left(1 - \left| \frac{u\Delta t}{\Delta x} \right| \right) |u| \tilde{\mathcal{W}}_{i-1/2}$$

where $\tilde{\mathcal{W}}_{i-1/2} = \Phi_{i-1/2} \mathcal{W}_{i-1/2}$.
Extension to linear systems

Approach 1: Diagonalize the system to

\[v_t + \Lambda v_x = 0 \]

Apply scalar algorithm to each component.

Approach 2:

Solve the linear Riemann problem to decompose \(Q_i^n - Q_{i-1}^n \) into waves.

Apply a wave limiter to each wave.

These are equivalent.

Important to apply limiters to waves or characteristic components, rather than to original variables.
Wave limiters for system

\(Q_i - Q_{i-1} \) is split into waves \(\mathcal{W}^{p}_{i-1/2} = \alpha^p_{i-1/2} r^p_{i-1/2} \in \mathbb{R}^m \).

Replace by \(\tilde{\mathcal{W}}^{p}_{i-1/2} = \Phi(\theta^p_{i-1/2}) \mathcal{W}^{p}_{i-1/2} \) where

\[
\theta^p_{i-1/2} = \frac{\mathcal{W}^{p}_{i-1/2} \cdot \mathcal{W}^{p}_{I-1/2}}{\mathcal{W}^{p}_{i-1/2} \cdot \mathcal{W}^{p}_{i-1/2}} = \frac{\alpha^p_{I-1/2}}{\alpha^p_{i-1/2}} \quad \text{if} \quad r^p_{i-1/2} = r^p_{I-1/2}
\]

where

\[
I = \begin{cases}
 i - 1 & \text{if} \quad s^p_{i-1/2} > 0 \\
 i + 1 & \text{if} \quad s^p_{i-1/2} < 0.
\end{cases}
\]

In the scalar case this reduces to

\[
\theta^1_{i-1/2} = \frac{\mathcal{W}^{1}_{I-1/2}}{\mathcal{W}^{1}_{i-1/2}} = \frac{Q_I - Q_{I-1}}{Q_i - Q_{i-1}}
\]
First order hyperbolic PDE in 2 space dimensions

Advection equation: \[q_t + uq_x + vq_y = 0 \]

First-order system: \[q_t + Aq_x + Bq_y = 0 \]

where \(q \in \mathbb{R}^m \) and \(A, B \in \mathbb{R}^{m \times m} \).

Hyperbolic if \(\cos(\theta) A + \sin(\theta) B \) is diagonalizable with real eigenvalues, for all angles \(\theta \).
Advection equation: \(q_t + u q_x + v q_y = 0 \)

First-order system: \(q_t + A q_x + B q_y = 0 \)

where \(q \in \mathbb{R}^m \) and \(A, B \in \mathbb{R}^{m \times m} \).

Hyperbolic if \(\cos(\theta) A + \sin(\theta) B \) is diagonalizable with real eigenvalues, for all angles \(\theta \).

This is required so that plane-wave data gives a 1d hyperbolic problem:

\[
q(x, y, 0) = \breve{q}(x \cos \theta + y \sin \theta)
\]

implies contours of \(q \) in \(x-y \) plane are orthogonal to \(\theta \)-direction.
Acoustics in 2 dimensions

\[\rho_0 u_t + p_x = 0 \]
\[\rho_0 v_t + p_y = 0 \]

\[A = \begin{bmatrix} 0 & K_0 & 0 \\ 1/\rho_0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad R^x = \begin{bmatrix} -Z_0 & 0 & Z_0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \]

Solving \(q_t + A q_x = 0 \) gives pressure waves in \((p, u)\).
\(x \)-variations in \(u \) are stationary.
Acoustics in 2 dimensions

\[p_t + K_0(u_x + v_y) = 0 \]
\[\rho_0 u_t + p_x = 0 \]
\[\rho_0 v_t + p_y = 0 \]

\[
A = \begin{bmatrix}
0 & K_0 & 0 \\
1/\rho_0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix},
\quad
R^x = \begin{bmatrix}
-Z_0 & 0 & Z_0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{bmatrix}
\]

Solving \(qt + Aq_x = 0 \) gives pressure waves in \((p, u)\).
\(x \)-variations in \(v \) are stationary.

\[
B = \begin{bmatrix}
0 & 0 & K_0 \\
0 & 0 & 0 \\
1/\rho_0 & 0 & 0
\end{bmatrix}
\quad
R^y = \begin{bmatrix}
-Z_0 & 0 & Z_0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{bmatrix}
\]

Solving \(qt + Bq_y = 0 \) gives pressure waves in \((p, v)\).
\(y \)-variations in \(u \) are stationary.
2d finite volume method

\[Q_{ij}^{n+1} = Q_{ij}^n - \frac{\Delta t}{\Delta x} [F_{i+1/2,j}^n - F_{i-1/2,j}^n] \]
\[- \frac{\Delta t}{\Delta y} [G_{i,j+1/2}^n - G_{i,j-1/2}^n]. \]

Fluctuation form:

\[Q_{ij}^{n+1} = Q_{ij} - \frac{\Delta t}{\Delta x} (A^+ \Delta Q_{i-1/2,j} + A^- \Delta Q_{i+1/2,j}) \]
\[- \frac{\Delta t}{\Delta y} (B^+ \Delta Q_{i,j-1/2} + B^- \Delta Q_{i,j+1/2}) \]
\[- \frac{\Delta t}{\Delta x} (\tilde{F}_{i+1/2,j} - \tilde{F}_{i-1/2,j}) - \frac{\Delta t}{\Delta y} (\tilde{G}_{i,j+1/2} - \tilde{G}_{i,j-1/2}). \]

The \(\tilde{F} \) and \(\tilde{G} \) are correction fluxes to go beyond Godunov’s upwind method.

Incorporate approximations to second derivative terms in each direction (\(q_{xx} \) and \(q_{yy} \)) and mixed term \(q_{xy} \).
Wave propagation algorithms in 2D

Clawpack requires:

Normal Riemann solver \texttt{rpn2.f}

Solves 1d Riemann problem \(q_t + A q_x = 0 \)

Decomposes \(\Delta Q = Q_{ij} - Q_{i-1,j} \) into \(A^+ \Delta Q \) and \(A^- \Delta Q \).

For \(q_t + A q_x + B q_y = 0 \), split using eigenvalues, vectors:

\[
A = R \Lambda R^{-1} \implies A^- = R \Lambda^- R^{-1}, \quad A^+ = R \Lambda^+ R^{-1}
\]

Input parameter \(\text{i} \times \text{y} \) determines if it’s in \(x \) or \(y \) direction.

In latter case splitting is done using \(B \) instead of \(A \).

This is all that’s required for dimensional splitting.
Wave propagation algorithms in 2D

Clawpack requires:

Normal Riemann solver rpn2.f
Solves 1d Riemann problem \(q_t + A q_x = 0 \)
Decomposes \(\Delta Q = Q_{ij} - Q_{i-1,j} \) into \(A^+ \Delta Q \) and \(A^- \Delta Q \).
For \(q_t + A q_x + B q_y = 0 \), split using eigenvalues, vectors:

\[
A = R \Lambda R^{-1} \implies A^- = R \Lambda^- R^{-1}, A^+ = R \Lambda^+ R^{-1}
\]

Input parameter \(ixy \) determines if it’s in \(x \) or \(y \) direction.
In latter case splitting is done using \(B \) instead of \(A \).
This is all that’s required for dimensional splitting.

Transverse Riemann solver rpt2.f
Decomposes \(A^+ \Delta Q \) into \(B^- A^+ \Delta Q \) and \(B^+ A^+ \Delta Q \) by splitting this vector into eigenvectors of \(B \).
(Or splits vector into eigenvectors of \(A \) if \(ixy=2 \).)
Acoustics in heterogeneous media

\[q_t + A(x, y)q_x + B(x, y)q_y = 0, \quad q = (p, u, v)^T, \]

where

\[
A = \begin{bmatrix}
0 & K(x, y) & 0 \\
1/\rho(x, y) & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}, \quad B = \begin{bmatrix}
0 & 0 & K(x, y) \\
0 & 0 & 0 \\
1/\rho(x, y) & 0 & 0
\end{bmatrix}.
\]

Note: Not in conservation form!
Acoustics in heterogeneous media

\[q_t + A(x, y)q_x + B(x, y)q_y = 0, \quad q = (p, u, v)^T, \]

where

\[
A = \begin{bmatrix}
0 & K(x, y) & 0 \\
1/\rho(x, y) & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}, \quad B = \begin{bmatrix}
0 & 0 & K(x, y) \\
0 & 0 & 0 \\
1/\rho(x, y) & 0 & 0
\end{bmatrix}.
\]

Note: Not in conservation form!

Wave propagation still makes sense. In \(x\)-direction:

\[
\mathcal{W}^1 = \alpha^1 \begin{bmatrix}
-Z_{i-1,j} \\
1 \\
0
\end{bmatrix}, \quad \mathcal{W}^2 = \alpha^2 \begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}, \quad \mathcal{W}^3 = \alpha^3 \begin{bmatrix}
Z_{ij} \\
1 \\
0
\end{bmatrix}.
\]

Wave speeds: \(s_{i-1/2,j}^1 = -c_{i-1,j}, \quad s_{i-1/2,j}^2 = 0, \quad s_{i-1/2,j}^3 = +c_{ij}.\)
Acoustics in heterogeneous media

\[W^1 = \alpha^1 \begin{bmatrix} -Z_{i-1,j} \\ 1 \\ 0 \end{bmatrix}, \quad W^2 = \alpha^2 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad W^3 = \alpha^3 \begin{bmatrix} Z_{ij} \\ 1 \\ 0 \end{bmatrix}. \]

Decompose \(\Delta Q = (\Delta p, \Delta u, \Delta v)^T \):

\[
\begin{align*}
\alpha_{i-1/2,j}^1 &= (-\Delta Q^1 + Z \Delta Q^2)/(Z_{i-1,j} + Z_{ij}), \\
\alpha_{i-1/2,j}^2 &= \Delta Q^3, \\
\alpha_{i-1/2,j}^3 &= (\Delta Q^1 + Z_{i-1,j} \Delta Q^2)/(Z_{i-1,j} + Z_{ij}).
\end{align*}
\]
Acoustics in heterogeneous media

\[W^1 = \alpha^1 \begin{bmatrix} -Z_{i-1,j} \\ 1 \\ 0 \end{bmatrix}, \quad W^2 = \alpha^2 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad W^3 = \alpha^3 \begin{bmatrix} Z_{ij} \\ 1 \\ 0 \end{bmatrix}. \]

Decompose \(\Delta Q = (\Delta p, \Delta u, \Delta v)^T \):

\[\alpha_{i-1/2,j}^1 = \frac{-\Delta Q^1 + Z \Delta Q^2}{Z_{i-1,j} + Z_{ij}}, \]
\[\alpha_{i-1/2,j}^2 = \Delta Q^3, \]
\[\alpha_{i-1/2,j}^3 = \frac{\Delta Q^1 + Z_{i-1,j} \Delta Q^2}{Z_{i-1,j} + Z_{ij}}. \]

Fluctuations: \(\text{(Note: } s^1 < 0, \ s^2 = 0, \ s^3 > 0) \)

\[A^- \Delta Q_{i-1/2,j} = s_{i-1/2,j}^1 W_{i-1/2,j}^1, \]
\[A^+ \Delta Q_{i-1/2,j} = s_{i-1/2,j}^3 W_{i-1/2,j}^3. \]
Acoustics in heterogeneous media

Transverse solver: Split right-going fluctuation

\[A^+ \Delta Q_{i-1/2,j} = s^3_{i-1/2,j} \mathcal{W}^3_{i-1/2,j} \]

into up-going and down-going pieces:

\[\begin{align*}
B^+ A^+ \Delta Q &= \\
B^- A^+ \Delta Q &=
\end{align*} \]

Decompose \(A^+ \Delta Q_{i-1/2,j} \) into eigenvectors of \(B \). Down-going:

\[A^+ \Delta Q_{i-1/2,j} = \beta^1 \begin{bmatrix} -Z_{i,j-1} \\ 0 \\ 1 \end{bmatrix} + \beta^2 \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix} + \beta^3 \begin{bmatrix} Z_{ij} \\ 0 \\ 1 \end{bmatrix}, \]
Transverse solver for acoustics

Up-going part: \(B^+ A^+ \Delta Q_{i-1/2,j} = c_{i,j+1} \beta^3 r^3 \) from

\[A^+ \Delta Q_{i-1/2,j} = \beta^1 \begin{bmatrix} -Z_{ij} \\ 0 \\ 1 \end{bmatrix} + \beta^2 \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix} + \beta^3 \begin{bmatrix} Z_{i,j+1} \\ 0 \\ 1 \end{bmatrix}, \]

\[\beta^3 = \left((A^+ \Delta Q_{i-1/2,j})^1 + (A^+ \Delta Q_{i-1/2,j})^3 Z_{i,j+1} \right) / (Z_{ij} + Z_{i,j+1}). \]
Transverse Riemann solver in Clawpack

\texttt{rpt2} takes vector \texttt{asdq} and returns \texttt{bmasdq} and \texttt{bpasdq} where

\[
\text{asdq} = \mathbb{A}^* \Delta Q \text{ represents either } \\
\mathbb{A}^- \Delta Q \text{ if } \text{imp} = 1, \text{ or } \\
\mathbb{A}^+ \Delta Q \text{ if } \text{imp} = 2.
\]

Returns \[
\mathbb{B}^- \mathbb{A}^* \Delta Q \text{ and } \mathbb{B}^+ \mathbb{A}^* \Delta Q.
\]
rpt2 takes vector asdq and returns bmasdq and bpasdq where

\[\text{asdq} = A^* \Delta Q \]

represents either
\[A^- \Delta Q \] if \(\text{imp} = 1 \), or
\[A^+ \Delta Q \] if \(\text{imp} = 2 \).

Returns \(B^- A^* \Delta Q \) and \(B^+ A^* \Delta Q \).

Note: there is also a parameter \(ixy \):

\(ixy = 1 \) means normal solve was in \(x \)-direction,
\(ixy = 2 \) means normal solve was in \(y \)-direction.

In this case \(\text{asdq} \) represents \(B^- \Delta Q \) or \(B^+ \Delta Q \) and the routine must return \(A^- B^* \Delta Q \) and \(A^+ B^* \Delta Q \).
Shallow water equations in two dimensions

\[\begin{align*}
 &h_t + (hu)_x + (hv)_y = 0 \\
 & (hu)_t + \left(hu^2 + \frac{1}{2}gh^2 \right)_x + (huv)_y = 0 \\
 & (hv)_t + (huv)_x + \left(hv^2 + \frac{1}{2}gh^2 \right)_y = 0
\end{align*} \]
Shallow water equations in two dimensions

\[h_t + (hu)_x + (hv)_y = 0 \]
\[(hu)_t + \left(hu^2 + \frac{1}{2}gh^2 \right)_x + (huv)_y = 0 \]
\[(hv)_t + (huv)_x + \left(hv^2 + \frac{1}{2}gh^2 \right)_y = 0 \]

Jacobian matrices:

\[f'(q) = \begin{bmatrix} 0 & 1 & 0 \\ -u^2 + gh & 2u & 0 \\ -uv & v & u \end{bmatrix}, \quad g'(q) = \begin{bmatrix} 0 & 0 & 1 \\ -uv & v & u \\ -v^2 + gh & 0 & 2v \end{bmatrix}. \]
Shallow water equations in two dimensions

\[h_t + (hu)_x + (hv)_y = 0 \]
\[(hu)_t + \left(hu^2 + \frac{1}{2}gh^2 \right)_x + (huv)_y = 0 \]
\[(hv)_t + (huv)_x + \left(hv^2 + \frac{1}{2}gh^2 \right)_y = 0 \]

Jacobian matrices:

\[
 f'(q) = \begin{bmatrix}
 0 & 1 & 0 \\
 -u^2 + gh & 2u & 0 \\
 -uv & v & u \\
\end{bmatrix},
 g'(q) = \begin{bmatrix}
 0 & 0 & 1 \\
 -uv & v & u \\
 -v^2 + gh & 0 & 2v \\
\end{bmatrix}.
\]

Eigenvalue and eigenvectors of \(f'(q) \):

\[\lambda^{x_1} = u - c, \quad \lambda^{x_2} = u, \quad \lambda^{x_3} = u + c, \]
\[r^{x_1} = \begin{bmatrix} 1 \\ u - c \end{bmatrix}, \quad r^{x_2} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad r^{x_3} = \begin{bmatrix} 1 \\ u + c \end{bmatrix}. \]
Jump in shear velocity v is advected with velocity u_m. (Linearly degenerate)

Note: Variations in v (y-velocity) in the x-direction do not compress fluid.
Structure of dam-break Riemann solution in 2d

\[h_l > h_r, \quad u_l = u_r = 0, \quad v_l < 0, \quad v_r > 0. \]

Jump in shear velocity \(v \) is advected with velocity \(u_m \). (Linearly degenerate)

Note: Variations in \(v \) (y-velocity) in the \(x \)-direction do not compress fluid.

(Elasticity: restoring force from shear deformation \(\Rightarrow \) shear waves.)
Shallow water equations in two dimensions

\[
\begin{align*}
h_t + (hu)_x + (hv)_y &= 0 \\
(hu)_t + \left(hu^2 + \frac{1}{2} gh^2 \right)_x + (huv)_y &= 0 \\
(hv)_t + (huv)_x + \left(hv^2 + \frac{1}{2} gh^2 \right)_y &= 0
\end{align*}
\]
Shallow water equations in two dimensions

\begin{align*}
 h_t + (hu)_x + (hv)_y &= 0 \\
 (hu)_t + \left(hu^2 + \frac{1}{2} gh^2 \right)_x + (huv)_y &= 0 \\
 (hv)_t + (huv)_x + \left(hv^2 + \frac{1}{2} gh^2 \right)_y &= 0
\end{align*}

Roe averages:

\[
 \bar{h} = \frac{1}{2}(h_l + h_r), \quad \hat{u} = \frac{\sqrt{h_l} u_l + \sqrt{h_r} u_r}{\sqrt{h_l} + \sqrt{h_r}}, \hat{v} = \text{similar}.
\]

Roe matrix in x-direction:

\[
 \hat{A} = \begin{bmatrix}
 0 & 1 & 0 \\
 -\hat{u}^2 + g\bar{h} & 2\hat{u} & 0 \\
 -\hat{u}\hat{v} & \hat{v} & \hat{u}
 \end{bmatrix} = f'(\hat{q})
\]
Shallow water equations in two dimensions

Roe matrix in x-direction:

$$\hat{A} = \begin{bmatrix} 0 & 1 & 0 \\ -\hat{u}^2 + g\bar{h} & 2\hat{u} & 0 \\ -\hat{u}\hat{v} & \hat{v} & \hat{u} \end{bmatrix},$$

has eigenvalues and eigenvectors

$$\hat{\lambda}^{x1} = \hat{u} - \hat{c}, \quad \hat{\lambda}^{x2} = \hat{u}, \quad \hat{\lambda}^{x3} = \hat{u} + \hat{c}$$

$$\hat{\rho}^{x1} = \begin{bmatrix} 1 \\ \hat{u} - \hat{c} \\ \hat{v} \end{bmatrix}, \quad \hat{\rho}^{x2} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad \hat{\rho}^{x3} = \begin{bmatrix} 1 \\ \hat{u} + \hat{c} \\ \hat{v} \end{bmatrix}$$
Roe matrix in x-direction:

$$
\hat{A} = \begin{bmatrix}
0 & 1 & 0 \\
-\hat{u}^2 + g\bar{h} & 2\hat{u} & 0 \\
-\hat{u}\hat{v} & \hat{v} & \hat{u}
\end{bmatrix},
$$

has eigenvalues and eigenvectors

\begin{align*}
\hat{\lambda}^{x1} &= \hat{u} - \hat{c}, \\
\hat{\lambda}^{x2} &= \hat{u}, \\
\hat{\lambda}^{x3} &= \hat{u} + \hat{c} \\
\hat{\mathbf{r}}^{x1} &= \begin{bmatrix} 1 \\ \hat{u} - \hat{c} \\ \hat{v} \end{bmatrix}, \\
\hat{\mathbf{r}}^{x2} &= \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \\
\hat{\mathbf{r}}^{x3} &= \begin{bmatrix} 1 \\ \hat{u} + \hat{c} \\ \hat{v} \end{bmatrix}
\end{align*}

Transverse solver: use $\hat{v} \pm \hat{c}$ for transverse wave speeds.

http://www.amath.washington.edu/~claw/applications/shallow/2d/rp/