Today:
- Nonlinear systems of conservation laws
- Shallow water equations
- Characteristics
- Rankine-Hugoniot condition, Hugoniot locus
- Solving Riemann problems

Friday:
- Integral curves, rarefaction waves

Reading: Chapter 13

Shallow water equations

\[h(x, t) = \text{depth} \]
\[u(x, t) = \text{velocity (depth averaged, varies only with } x) \]

Conservation of mass and momentum \(hu \) gives system of two equations.

mass flux = \(hu \),
momentum flux = \((hu)u + p \) where \(p = \text{hydrostatic pressure} \)

\[
\begin{align*}
\frac{h_t + (hu)_x}{(hu)_t + \left(hu^2 + \frac{1}{2}gh^2 \right)_x} &= 0
\end{align*}
\]

Jacobian matrix:
\[
f'(q) = \begin{bmatrix} 0 & 1 \\ gh - u^2 & 2u \end{bmatrix}, \quad \lambda = u \pm \sqrt{gh}.
\]

Two-shock Riemann solution for shallow water

Initially \(h_l = h_r = 1, \ u_l = -u_r = 0.5 > 0 \)

Solution at later time:
Two-shock Riemann solution for shallow water

Characteristic curves \(X'(t) = u(X(t), t) \pm \sqrt{gh(X(t), t)} \)

Slope of characteristic is constant in regions where \(q \) is constant. (Shown for \(g = 1 \) so \(\sqrt{gh} = 1 \) everywhere initially.)

Note that 1-characteristics impinge on 1-shock, 2-characteristics impinge on 2-shock.

An isolated shock

If an isolated shock with left and right states \(q_l \) and \(q_r \) is propagating at speed \(s \)

then the Rankine-Hugoniot condition must be satisfied:

\[
 f(q_r) - f(q_l) = s(q_r - q_l)
\]

For a system \(q \in \mathbb{R}^m \) this can only hold for certain pairs \(q_l, q_r \):

For a linear system, \(f(q_r) - f(q_l) = A q_r - A q_l = A(q_r - q_l) \).

So \(q_r - q_l \) must be an eigenvector of \(f'(q) = A \).

\(A \in \mathbb{R}^{m \times m} \Longrightarrow \) there will be \(m \) rays through \(q_l \) in state space in the eigen-directions, and \(q_r \) must lie on one of these.

For a nonlinear system, there will be \(m \) curves through \(q_l \) called the Hugoniot loci.

Hugoniot loci for shallow water

\[
 q = \begin{bmatrix} h \\ hu \end{bmatrix}, \quad f(q) = \begin{bmatrix} hu \\ hu^2 + \frac{1}{2} gh^2 \end{bmatrix},
\]

Fix \(q_* = (h_*, u_*) \).

What states \(q \) can be connected to \(q_* \) by an isolated shock?

The Rankine-Hugoniot condition \(s(q - q_*) = f(q) - f(q_*) \) gives:

\[
 s(h_* - h) = h_* u_* - hu,
 s(h_* u_* - hu) = h_* u_*^2 - hu^2 + \frac{1}{2} g(h_*^2 - h^2).
\]

Two equations with 3 unknowns \((h, u, s) \), so we expect 1-parameter families of solutions.
Hugoniot loci for shallow water

Rankine-Hugoniot conditions:

\[
s(h^* - h) = h^*u^* - hu,
\]

\[
s(h^*u^* - hu) = h^*u^*2 - hu^*2 + \frac{1}{2} g(h^*2 - h^2).
\]

For any \(h > 0 \) we can solve for

\[
u(h) = u^* \pm \sqrt{\frac{g}{2} \left(\frac{h^*}{h} - \frac{h}{h^*} \right) (h^* - h)}.
\]

\[s(h) = (h^*u^* - hu)/(h^* - h).
\]

This gives 2 curves in \(h-hu \) space (one for +, one for −).

Notes:

For any \(h > 0 \) we have a possible shock state. Set \(h = h^* + \alpha \), so that \(h = h^* \) at \(\alpha = 0 \), to obtain

\[
hu = h^*u^* + \alpha \left[u^* \pm \sqrt{gh^* + \frac{1}{2}g\alpha(3 + \alpha/h^*)} \right].
\]

Hence we have

\[
\begin{bmatrix}
h \\
hu
\end{bmatrix} = \begin{bmatrix}
h^* \\
h^*u^*
\end{bmatrix} + \alpha \begin{bmatrix}
1 \\
\sqrt{gh^* + O(\alpha)}
\end{bmatrix}
\]

as \(\alpha \to 0 \).

Close to \(q_* \), the curves are tangent to eigenvectors of \(f'(q_*) \).

Expected since \(f(q) - f(q_*) \approx f'(q_*)(q - q_*) \).

Hugoniot loci for one particular \(q_* \)

States that can be connected to \(q_* \) by a “shock”

Note: Might not satisfy entropy condition.
Hugoniot loci for two different states

“All-shock” Riemann solution:
From q_l along 1-wave locus to q_m,
From q_r along 2-wave locus to q_m,

R.J. LeVeque, University of Washington
AMath 574, February 23, 2011 [FVMHP Sec. 13.7]
2-shock Riemann solution for shallow water

Given arbitrary states \(q_l \) and \(q_r \), we can solve the Riemann problem with two shocks.

Choose \(q_m \) so that \(q_m \) is on the 1-Hugoniot locus of \(q_l \) and also \(q_m \) is on the 2-Hugoniot locus of \(q_r \).

This requires

\[
u_m = u_r + (h_m - h_r) \sqrt{\frac{g}{2} \left(\frac{1}{h_m} + \frac{1}{h_r} \right)}
\]

and

\[
u_m = u_l - (h_m - h_l) \sqrt{\frac{g}{2} \left(\frac{1}{h_m} + \frac{1}{h_l} \right)}.
\]

Equate and solve single nonlinear equation for \(h_m \).

Hugoniot loci for one particular \(q^* \)

Green curves are contours of \(\lambda^1 \)

Note: Increases in one direction only along blue curve.

Hugoniot locus for shallow water

States that can be connected to the given state by a 1-wave or 2-wave satisfying the R-H conditions:

Solid portion: states that can be connected by shock satisfying entropy condition.

Dashed portion: states that can be connected with R-H condition satisfied but not the physically correct solution.
2-shock Riemann solution for shallow water

Colliding with \(u_l = -u_r > 0 \):

Entropy condition: Characteristics should impinge on shock:
- \(\lambda_1 \) should decrease going from \(q_l \) to \(q_m \),
- \(\lambda_2 \) should increase going from \(q_r \) to \(q_m \),

This is satisfied along solid portions of Hugoniot loci above, not satisfied on dashed portions (entropy-violating shocks).

Notes:

Two-shock Riemann solution for shallow water

Characteristic curves \(X'(t) = u(X(t), t) \pm \sqrt{gh(X(t), t)} \)

Slope of characteristic is constant in regions where \(q \) is constant. (Shown for \(g = 1 \) so \(\sqrt{gh} = 1 \) everywhere initially.)

Note that 1-characteristics impinge on 1-shock, 2-characteristics impinge on 2-shock.

Notes:

2-shock Riemann solution for shallow water

Colliding with \(u_l = -u_r > 0 \):

Entropy condition: Characteristics should impinge on shock:
- \(\lambda_1 \) should decrease going from \(q_l \) to \(q_m \),
- \(\lambda_2 \) should increase going from \(q_r \) to \(q_m \),

This is satisfied along solid portions of Hugoniot loci above, not satisfied on dashed portions (entropy-violating shocks).

Notes:
Entropy-violating Riemann solution for dam break

Characteristic curves

\[X'(t) = u(X(t), t) \pm \sqrt{gh(X(t), t)} \]

Slope of characteristic is constant in regions where \(q \) is constant.

Note that 1-characteristics do not impinge on 1-shock, 2-characteristics impinge on 2-shock.

The Riemann problem

Dam break problem for shallow water equations

\[h_t + (hu)_x = 0 \]
\[(hu)_t + \left(hu^2 + \frac{1}{2}gh^2 \right)_x = 0 \]