Today:
- Nonlinear systems of conservation laws
- Shallow water equations
- Characteristics
- Rankine-Hugoniot condition, Hugoniot locus
- Solving Riemann problems

Friday:
- Integral curves, rarefaction waves

Reading: Chapter 13
Shallow water equations

\(h(x, t) \) = depth
\(u(x, t) \) = velocity (depth averaged, varies only with \(x \))

Conservation of mass and momentum \(hu \) gives system of two equations.

mass flux = \(hu \),
momentum flux = \((hu)u + p \) where \(p \) = hydrostatic pressure

\[
\begin{align*}
ht + (hu)_x &= 0 \\
(hu)_t + \left(hu^2 + \frac{1}{2}gh^2 \right)_x &= 0
\end{align*}
\]

Jacobian matrix:

\[
f'(q) = \begin{bmatrix}
0 & 1 \\
gh - u^2 & 2u
\end{bmatrix}, \quad \lambda = u \pm \sqrt{gh}.
\]
Two-shock Riemann solution for shallow water

Initially $h_l = h_r = 1$, $u_l = -u_r = 0.5 > 0$

Solution at later time:
Two-shock Riemann solution for shallow water

Characteristic curves $X'(t) = u(X(t), t) \pm \sqrt{gh(X(t), t)}$

Slope of characteristic is constant in regions where q is constant. (Shown for $g = 1$ so $\sqrt{gh} = 1$ everywhere initially.)

Note that 1-characteristics impinge on 1-shock, 2-characteristics impinge on 2-shock.
An isolated shock

If an isolated shock with left and right states q_l and q_r is propagating at speed s

then the **Rankine-Hugoniot** condition must be satisfied:

\[
f(q_r) - f(q_l) = s(q_r - q_l)
\]

For a system $q \in \mathbb{R}^m$ this can only hold for certain pairs q_l, q_r:

For a **linear system**, $f(q_r) - f(q_l) = Aq_r - Aq_l = A(q_r - q_l)$.

So $q_r - q_l$ must be an eigenvector of $f'(q) = A$.
If an isolated shock with left and right states q_l and q_r is propagating at speed s

then the **Rankine-Hugoniot** condition must be satisfied:

$$f(q_r) - f(q_l) = s(q_r - q_l)$$

For a system $q \in \mathbb{R}^m$ this can only hold for certain pairs q_l, q_r:

For a **linear system**, $f(q_r) - f(q_l) = Aq_r - Aq_l = A(q_r - q_l)$.

So $q_r - q_l$ must be an eigenvector of $f'(q) = A$.

$A \in \mathbb{R}^{m \times m} \implies$ there will be m rays through q_l in state space in the eigen-directions, and q_r must lie on one of these.
An isolated shock

If an isolated shock with left and right states \(q_l \) and \(q_r \) is propagating at speed \(s \)

then the **Rankine-Hugoniot** condition must be satisfied:

\[
f(q_r) - f(q_l) = s(q_r - q_l)
\]

For a system \(q \in \mathbb{R}^m \) this can only hold for certain pairs \(q_l, q_r \):

For a **linear system**, \(f(q_r) - f(q_l) = Aq_r - Aq_l = A(q_r - q_l) \).

So \(q_r - q_l \) must be an eigenvector of \(f'(q) = A \).

\(A \in \mathbb{R}^{m \times m} \) \(\implies \) there will be \(m \) rays through \(q_l \) in state space in the eigen-directions, and \(q_r \) must lie on one of these.

For a **nonlinear system**, there will be \(m \) curves through \(q_l \) called the **Hugoniot loci**.
Hugoniot loci for shallow water

\[\begin{align*}
q &= \left[\begin{array}{c}
h \\
h u
\end{array} \right], \\
\mathbf{f}(q) &= \left[\begin{array}{c}
h u \\
h u^2 + \frac{1}{2}gh^2
\end{array} \right].
\end{align*} \]

Fix \(q^* = (h^*, u^*) \).

What states \(q \) can be connected to \(q^* \) by an isolated shock?

The Rankine-Hugoniot condition \(s(q - q^*) = \mathbf{f}(q) - \mathbf{f}(q^*) \) gives:

\[\begin{align*}
s(h^* - h) &= h^*u^* - hu, \\
s(h^*u^* - hu) &= h^*u^2 - hu^2 + \frac{1}{2}g(h^2 - h^2).
\end{align*} \]

Two equations with 3 unknowns \((h, u, s)\), so we expect 1-parameter families of solutions.
Hugoniot loci for shallow water

Rankine-Hugoniot conditions:

\[s(h_\ast - h) = h_\ast u_\ast - hu, \]
\[s(h_\ast u_\ast - hu) = h_\ast u_\ast^2 - hu^2 + \frac{1}{2}g(h_\ast^2 - h^2). \]

For any \(h > 0 \) we can solve for

\[u(h) = u_\ast \pm \sqrt{\frac{g}{2}} \left(\frac{h_\ast}{h} - \frac{h}{h_\ast} \right) (h_\ast - h) \]
\[s(h) = (h_\ast u_\ast - hu)/(h_\ast - h). \]

This gives 2 curves in \(h-hu \) space (one for \(+ \), one for \(- \)).
For any $h > 0$ we have a possible shock state. Set

$$h = h_* + \alpha,$$

so that $h = h_*$ at $\alpha = 0$, to obtain

$$hu = h_* u_* + \alpha \left[u_* \pm \sqrt{gh_* + \frac{1}{2}g\alpha(3 + \alpha/h_*)} \right].$$
For any $h > 0$ we have a possible shock state. Set

$$h = h_* + \alpha,$$

so that $h = h_*$ at $\alpha = 0$, to obtain

$$hu = h_* u_* + \alpha \left[u_* \pm \sqrt{gh_* + \frac{1}{2}g\alpha(3 + \alpha/h_*)} \right].$$

Hence we have

$$\begin{bmatrix} h \\ hu \end{bmatrix} = \begin{bmatrix} h_* \\ h_* u_* \end{bmatrix} + \alpha \left[u_* \pm \sqrt{gh_* + O(\alpha)} \right]$$

as $\alpha \to 0$.

Close to q_* the curves are tangent to eigenvectors of $f'(q_*)$.

Expected since $f(q) - f(q_*) \approx f'(q_*)(q - q_*)$.

R.J. LeVeque, University of Washington

AMath 574, February 23, 2011 [FVMHP Sec. 13.7]
Hugoniot loci for one particular q_*

States that can be connected to q_* by a “shock”

Note: Might not satisfy entropy condition.
Hugoniot loci for two different states

“All-shock” Riemann solution:

From q_l along 1-wave locus to q_m,
From q_r along 2-wave locus to q_m,
All-shock Riemann solution

From q_l along 1-wave locus to q_m,
From q_r along 2-wave locus to q_m.

Hugoniot loci in phase plane
All-shock Riemann solution

From q_l along 1-wave locus to q_m,
From q_r along 2-wave locus to q_m,
Given arbitrary states q_l and q_r, we can solve the Riemann problem with two shocks.

Choose q_m so that q_m is on the 1-Hugoniot locus of q_l and also q_m is on the 2-Hugoniot locus of q_r.

This requires

$$u_m = u_r + (h_m - h_r) \sqrt{\frac{g}{2} \left(\frac{1}{h_m} + \frac{1}{h_r} \right)}$$

and

$$u_m = u_l - (h_m - h_l) \sqrt{\frac{g}{2} \left(\frac{1}{h_m} + \frac{1}{h_l} \right)}.$$

Equate and solve single nonlinear equation for h_m.

R.J. LeVeque, University of Washington
AMath 574, February 23, 2011 [FVMHP Sec. 13.7]
Hugoniot loci for one particular q_*

Green curves are contours of λ^1

Note: Increases in one direction only along blue curve.
Hugoniot locus for shallow water

States that can be connected to the given state by a 1-wave or 2-wave satisfying the R-H conditions:

Solid portion: states that can be connected by shock satisfying entropy condition.

Dashed portion: states that can be connected with R-H condition satisfied but not the physically correct solution.

R.J. LeVeque, University of Washington
AMath 574, February 23, 2011 [FVMHP Fig. 13.9]
Colliding with $u_l = -u_r > 0$:

![Diagram showing Hugoniot loci and entropy condition](FVMHP Fig. 13.10)
Colliding with $u_l = -u_r > 0$:

Entropy condition: Characteristics should impinge on shock:
- λ^1 should decrease going from q_l to q_m,
- λ^2 should increase going from q_r to q_m,

This is satisfied along solid portions of Hugoniot loci above, not satisfied on dashed portions (entropy-violating shocks).
Two-shock Riemann solution for shallow water

Characteristic curves $X'(t) = u(X(t), t) \pm \sqrt{gh(X(t), t)}$

Slope of characteristic is constant in regions where q is constant. (Shown for $g = 1$ so $\sqrt{gh} = 1$ everywhere initially.)

Note that 1-characteristics impinge on 1-shock, 2-characteristics impinge on 2-shock.
2-shock Riemann solution for shallow water

Colliding with $u_l = -u_r > 0$: Entropy condition: Characteristics should impinge on shock:

λ_1 should decrease going from q_l to q_m,
λ_2 should increase going from q_r to q_m,

This is satisfied along solid portions of Hugoniot loci above, not satisfied on dashed portions (entropy-violating shocks).

R.J. LeVeque, University of Washington
AMath 574, February 23, 2011 [FVMHP Fig. 13.10]
2-shock Riemann solution for shallow water

Colliding with \(u_l = -u_r > 0 \):

Entropy condition: Characteristics should impinge on shock:
- \(\lambda^1 \) should decrease going from \(q_l \) to \(q_m \),
- \(\lambda^2 \) should increase going from \(q_r \) to \(q_m \),

This is satisfied along solid portions of Hugoniot loci above, not satisfied on dashed portions (entropy-violating shocks).

R.J. LeVeque, University of Washington

AMath 574, February 23, 2011 [FVMHP Fig. 13.10]
Characteristic curves \(X'(t) = u(X(t), t) \pm \sqrt{gh(X(t), t)} \)

Slope of characteristic is constant in regions where \(q \) is constant.

Note that 1-characteristics do not impinge on 1-shock, 2-characteristics impinge on 2-shock.
The Riemann problem

Dam break problem for shallow water equations

\[h_t + (hu)_x = 0 \]

\[(hu)_t + (hu^2 + \frac{1}{2}gh^2)_x = 0 \]
The Riemann problem

Dam break problem for shallow water equations

\[h_t + (hu)_x = 0 \]

\[(hu)_t + (hu^2 + \frac{1}{2}gh^2)_x = 0 \]
The Riemann problem

Dam break problem for shallow water equations

\[h_t + (hu)_x = 0 \]

\[(hu)_t + (hu^2 + \frac{1}{2}gh^2)_x = 0 \]
The Riemann problem

Dam break problem for shallow water equations

\[h_t + (hu)_x = 0 \]

\[(hu)_t + (hu^2 + \frac{1}{2}gh^2)_x = 0 \]
The Riemann problem

Dam break problem for shallow water equations

$$h_t + (hu)_x = 0$$

$$(hu)_t + (hu^2 + \frac{1}{2}gh^2)_x = 0$$