Today:

- Multi-dimensional unsplit methods
- Donor Cell and Corner Transport Upwind
- Variable coefficient advection
- Stream functions
- \texttt{aux arrays and b4step2}.

Monday:

- Multi-dimensional acoustics and elasticity

Reading: Chapter 21
2d finite volume method for $q_t + f(q)_x + g(q)_y = 0$

Evolution of total mass due to fluxes through cell edges:

$$\frac{d}{dt} \int \int_{C_{i,j}} q(x, y, t) \, dx \, dy = \int_{y_{j-1/2}}^{y_{j+1/2}} f(q(x_{i+1/2}, y, t)) \, dy$$

$$- \int_{y_{j-1/2}}^{y_{j+1/2}} f(q(x_{i-1/2}, y, t)) \, dy$$

$$+ \int_{x_{i-1/2}}^{x_{i+1/2}} g(q(x, y_{j+1/2}, t)) \, dx$$

$$- \int_{x_{i-1/2}}^{x_{i+1/2}} g(q(x, y_{j-1/2}, t)) \, dx.$$
2d finite volume method for $q_t + f(q)_x + g(q)_y = 0$

Evolution of total mass due to fluxes through cell edges:

$$\frac{d}{dt} \iint_{C_{ij}} q(x, y, t) \, dx \, dy = \int_{y_{j-1/2}}^{y_{j+1/2}} f(q(x_{i+1/2}, y, t)) \, dy$$

$$- \int_{y_{j-1/2}}^{y_{j+1/2}} f(q(x_{i-1/2}, y, t)) \, dy$$

$$+ \int_{x_{i-1/2}}^{x_{i+1/2}} g(q(x, y_{j+1/2}, t)) \, dx$$

$$- \int_{x_{i-1/2}}^{x_{i+1/2}} g(q(x, y_{j-1/2}, t)) \, dx.$$

Suggests:

$$\frac{\Delta x \Delta y Q_{ij}^{n+1} - \Delta x \Delta y Q_{ij}^n}{\Delta t} = -\Delta y [F_{i+1/2,j}^n - F_{i-1/2,j}^n]$$

$$- \Delta x [G_{i,j+1/2}^n - G_{i,j-1/2}^n],$$

R.J. LeVeque, University of Washington

AMath 574, February 4, 2011 [FVMHP Chap. 19]
2d finite volume method for $q_t + f(q)_x + g(q)_y = 0$

$$\Delta x \Delta y Q_{i,j}^{n+1} = \Delta x \Delta y Q_{i,j}^n - \Delta t \Delta y [F_{i+1/2,j}^n - F_{i-1/2,j}^n]$$
$$- \Delta t \Delta x [G_{i,j+1/2}^n - G_{i,j-1/2}^n],$$

Where we define numerical fluxes:

$$F_{i-1/2,j}^n \approx \frac{1}{\Delta t \Delta y} \int_{t_n}^{t_{n+1}} \int_{y_{j-1/2}}^{y_{j+1/2}} f(q(x_{i-1/2}, y, t)) \, dy \, dt,$$

$$G_{i,j-1/2}^n \approx \frac{1}{\Delta t \Delta x} \int_{t_n}^{t_{n+1}} \int_{x_{i-1/2}}^{x_{i+1/2}} g(q(x, y_{j-1/2}, t)) \, dx \, dt.$$
2d finite volume method for $q_t + f(q)_x + g(q)_y = 0$

\[
\Delta x \Delta y Q_{ij}^{n+1} = \Delta x \Delta y Q_{ij}^n - \Delta t \Delta y [F_{i+1/2,j}^n - F_{i-1/2,j}^n] \\
- \Delta t \Delta x [G_{i,j+1/2}^n - G_{i,j-1/2}^n],
\]

Where we define numerical fluxes:

\[
F_{i-1/2,j}^n \approx \frac{1}{\Delta t \Delta y} \int_{t_n}^{t_{n+1}} \int_{y_{j-1/2}}^{y_{j+1/2}} f(q(x_{i-1/2}, y, t)) \, dy \, dt,
\]

\[
G_{i,j-1/2}^n \approx \frac{1}{\Delta t \Delta x} \int_{t_n}^{t_{n+1}} \int_{x_{i-1/2}}^{x_{i+1/2}} g(q(x, y_{j-1/2}, t)) \, dx \, dt.
\]

Rewrite by dividing by $\Delta x \Delta y$:

\[
Q_{ij}^{n+1} = Q_{ij}^n - \frac{\Delta t}{\Delta x} [F_{i+1/2,j}^n - F_{i-1/2,j}^n] \\
- \frac{\Delta t}{\Delta y} [G_{i,j+1/2}^n - G_{i,j-1/2}^n].
\]
2d finite volume method

\[Q_{ij}^{n+1} = Q_{ij}^n - \frac{\Delta t}{\Delta x} [F_{i+1/2,j}^n - F_{i-1/2,j}^n] \]
\[- \frac{\Delta t}{\Delta y} [G_{i,j+1/2}^n - G_{i,j-1/2}^n]. \]

Fluctuation form:

\[Q_{ij}^{n+1} = Q_{ij}^n - \frac{\Delta t}{\Delta x} (A^+ \Delta Q_{i-1/2,j} + A^- \Delta Q_{i+1/2,j}) \]
\[- \frac{\Delta t}{\Delta y} (B^+ \Delta Q_{i,j-1/2} + B^- \Delta Q_{i,j+1/2}) \]
\[- \frac{\Delta t}{\Delta x} (\tilde{F}_{i+1/2,j} - \tilde{F}_{i-1/2,j}) - \frac{\Delta t}{\Delta y} (\tilde{G}_{i,j+1/2} - \tilde{G}_{i,j-1/2}). \]

The \(\tilde{F} \) and \(\tilde{G} \) are correction fluxes to go beyond Godunov’s upwind method.

Incorporate approximations to second derivative terms in each direction (\(q_{xx} \) and \(q_{yy} \)) and mixed term \(q_{xy} \).
Advection: Donor Cell Upwind

With no correction fluxes, Godunov’s method for advection is Donor Cell Upwind:

\[
Q_{ij}^{n+1} = Q_{ij} - \frac{\Delta t}{\Delta x} [u^+ (Q_{ij} - Q_{i-1,j}) + u^- (Q_{i+1,j} - Q_{ij})] \\
- \frac{\Delta t}{\Delta y} [v^+ (Q_{ij} - Q_{i,j-1}) + v^- (Q_{i,j+1} - Q_{ij})].
\]

Stable only if \(\left| \frac{u \Delta t}{\Delta x} \right| + \left| \frac{v \Delta t}{\Delta y} \right| \leq 1 \).
Correction fluxes can be added to advect waves correctly.

Corner Transport Upwind:

Stable for \(\max \left(\left| \frac{u \Delta t}{\Delta x} \right|, \left| \frac{v \Delta t}{\Delta y} \right| \right) \leq 1 \).
Advection: Corner Transport Upwind (CTU)

Need to transport triangular region from cell \((i, j)\) to \((i, j + 1)\):

\[
\text{Area} = \frac{1}{2} (u\Delta t)(v\Delta t) \implies \left(\frac{1}{2}uv(\Delta t)^2 \right) \left(Q_{ij} - Q_{i-1,j} \right).
\]

Accomplished by correction flux:

\[
\tilde{G}_{i,j+1/2} = -\frac{1}{2} \frac{\Delta t}{\Delta x} uv(Q_{ij} - Q_{i-1,j})
\]

\[
\frac{\Delta t}{\Delta y} (\tilde{G}_{i,j+1/2} - \tilde{G}_{i,j-1/2}) \text{ gives approximation to } \frac{1}{2} \Delta t^2 uvq_{xy}.
\]

\[
\frac{\Delta t}{\Delta x} (\tilde{F}_{i+1/2,j} - \tilde{F}_{i-1/2,j}) \text{ gives similar approximation.}
\]
Wave propagation algorithms in 2D

Clawpack requires:

Normal Riemann solver \texttt{rpn2.f}

Solves 1d Riemann problem \(q_t + A q_x = 0 \)

Decomposes \(\Delta Q = Q_{ij} - Q_{i-1,j} \) into \(A^+ \Delta Q \) and \(A^- \Delta Q \).

For \(q_t + A q_x + B q_y = 0 \), split using eigenvalues, vectors:

\[
A = R \Lambda R^{-1} \quad \implies \quad A^- = R \Lambda^- R^{-1}, \; A^+ = R \Lambda^+ R^{-1}
\]

Input parameter \(i_{xy} \) determines if it’s in \(x \) or \(y \) direction.

In latter case splitting is done using \(B \) instead of \(A \).

This is all that’s required for dimensional splitting.
Wave propagation algorithms in 2D

Clawpack requires:

Normal Riemann solver `rpn2.f`
Solves 1d Riemann problem $q_t + Aq_x = 0$
Decomposes $\Delta Q = Q_{ij} - Q_{i-1,j}$ into $A^+ \Delta Q$ and $A^- \Delta Q$.
For $q_t + Aq_x + Bq_y = 0$, split using eigenvalues, vectors:

$$A = R\Lambda R^{-1} \implies A^- = R\Lambda^- R^{-1}, A^+ = R\Lambda^+ R^{-1}$$

Input parameter i_{xy} determines if it’s in x or y direction.
In latter case splitting is done using B instead of A.
This is all that’s required for dimensional splitting.

Transverse Riemann solver `rpt2.f`
Decomposes $A^+ \Delta Q$ into $B^- A^+ \Delta Q$ and $B^+ A^+ \Delta Q$ by splitting
this vector into eigenvectors of B.

(Or splits vector into eigenvectors of A if $i_{xy}=2$.)
Wave propagation algorithm for \(q_t + A q_x + B q_y = 0 \)

Decompose \(A = A^+ + A^- \) and \(B = B^+ + B^- \).

For \(\Delta Q = Q_{ij} - Q_{i-1,j} \):
Wave propagation algorithm for $q_t + Aq_x + Bq_y = 0$

Decompose $A = A^+ + A^-$ and $B = B^+ + B^-$.

For $\Delta Q = Q_{ij} - Q_{i-1,j}$:
Wave propagation algorithm for \(q_t + Aq_x + Bq_y = 0 \)

Decompose \(A = A^+ + A^- \) and \(B = B^+ + B^- \).

For \(\Delta Q = Q_{ij} - Q_{i-1,j} \):

\[
\begin{aligned}
& B^- A^+ \Delta Q \\
&
\end{aligned}
\]
Wave propagation algorithm for \(q_t + A q_x + B q_y = 0 \)

Decompose \(A = A^+ + A^- \) and \(B = B^+ + B^- \).

For \(\Delta Q = Q_{ij} - Q_{i-1,j} \):

\[B^+ A^+ \Delta Q \]

\[B^- A^+ \Delta Q \]
Wave propagation algorithm for $q_t + A q_x + B q_y = 0$

Decompose $A = A^+ + A^-$ and $B = B^+ + B^-$.

For $\Delta Q = Q_{ij} - Q_{i-1,j}$:

\[B^+ A^- \Delta Q \hspace{1cm} B^+ A^+ \Delta Q \]

\[B^- A^- \Delta Q \hspace{1cm} B^- A^+ \Delta Q \]
Wave propagation algorithm on a quadrilateral grid
Wave propagation algorithm on a quadrilateral grid

\[
\begin{align*}
B^+ A^- & \quad \Delta Q \\
B^- A^- & \quad \Delta Q \\
B^+ A^+ & \quad \Delta Q \\
B^- A^+ & \quad \Delta Q
\end{align*}
\]
Variable-coefficient advection

Assume incompressible: \(u_x + v_y = 0 \).

Same formulas work, but replace \(u \) and \(v \) by

\[
\begin{align*}
u_{i-1/2,j} &= \frac{1}{\Delta y} \int_{y_{j-1/2}}^{y_{j+1/2}} u(x_{i-1/2}, y) \, dy, \\
v_{i,j-1/2} &= \frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} v(x, y_{j-1/2}) \, dx.
\end{align*}
\]

These satisfy discrete divergence-free property:

\[
\frac{1}{\Delta x} (u_{i+1/2,j} - u_{i-1/2,j}) + \frac{1}{\Delta y} (v_{i,j+1/2} - v_{i,j-1/2}) = 0
\]
Variable-coefficient advection

Stream function: $\psi(x, y)$ such that $u = \psi_y$, $v = -\psi_x$.

Then $u_x + v_y = 0$ and contours of ψ are streamlines.

The flux per unit time across any curve C in $x-y$ plane is

$$\int_C \nabla \psi(x(s), y(x)) \cdot ((x'(s), y'(s)) \, dx$$

In particular,

$$u_{i-1/2,j} = \frac{1}{\Delta y} (\psi(x_{i-1/2}, y_{j+1/2}) - \psi(x_{i-1/2}, y_{j-1/2})),$$

$$v_{i,j-1/2} = -\frac{1}{\Delta x} (\psi(x_{i+1/2}, y_{j-1/2}) - \psi(x_{i-1/2}, y_{j-1/2})).$$
Stream function: $\psi(x, y) = \omega(x^2 + y^2)$.

Streamlines are circles about origin.

Velocity field: $u(x, y) = 2\omega y, \quad v(x, y) = -2\omega x$.

Solution is periodic with period π/ω.

See Figures 20.5, 20.6.
Swirling flow

Stream function: $\psi(x, y, t) = \cos(2\pi t)(\sin^2(\pi x) + \cos^2(\pi y))/\pi$.

Variation in time causes reversal of flow.

See $\$CLAW/apps/advection/2d/swirl$
In Clawpack, \(q(i, j, m), \ m = 1, \ldots, meqn \) holds the solution.

Often there is spatially varying data that describes the problem:

- Edge velocities for advection,
- Density \(\rho_0(x, y) \), bulk modulus \(K_0(x, y) \) for acoustics,
- Topography or bathymetry for shallow water.
- Edge lengths, angles, and cell areas for mapped grids,
In Clawpack, $q(i,j,m)$, $m=1,\ldots,meqn$ holds the solution.

Often there is spatially varying data that describes the problem:

- Edge velocities for advection,
- Density $\rho_0(x,y)$, bulk modulus $K_0(x,y)$ for acoustics,
- Topography or bathymetry for shallow water,
- Edge lengths, angles, and cell areas for mapped grids,

These can be stored in $aux(i,j,m)$, $m=1,2,\ldots,maux$.

The Fortran function `setaux` is called every time a new grid is created (when AMR is used).

To use this, copy library version (which does nothing) to application directory and modify this file and `Makefile`.

R.J. LeVeque, University of Washington
AMath 574, February 4, 2011
The \texttt{setaux} function is only called when grids are created.

The \texttt{b4stepN} function (in N dimensions) is called before each time step.

Can use this for example to:

- Change aux arrays for time-dependent velocities,
- Print something out every time step (e.g. total mass),

To use this, copy library version (which does nothing) to application directory and modify this file and \texttt{Makefile}.

See:

\begin{verbatim}
$CLAW/apps/advection/2d/swirl/b4step2.f
$CLAW/apps/advection/2d/swirl/setaux.f
$CLAW/apps/advection/2d/swirl/psi.f
\end{verbatim}