Outline:

- Numba and autojit
- Binary vs. ASCII output
- Review / take away messages

See also:

- Numba
- $UWHPSC/codes/io
Standard implementation of Python as interpreted language.

Importing `mymodule.py` creates `mymodule.pyc`, which is Bytecode (portable code or pcode):
- One-byte operators with operands,
- Interpreted by software at runtime.

Runs much slower than compiled code that is machine-specific instructions.
Just-in-time compilers for Python

Standard implementation of Python as interpreted language.

Importing `mymodule.py` creates `mymodule.pyc`, which is Bytecode (portable code or pcode):

One-byte operators with operands,
Interpreted by software at runtime.

Runs much slower than compiled code that is machine-specific instructions.

Just-in-time (JIT) compilation: Converts bytecode at runtime into native machine code.

Can sometimes run faster than pre-compiled code.
Examples:

- **PyPy** — alternative implementation of Python
- **numba** — compiles decorated code to **LLVM** (formerly Low Level Virtual Machine, compiler infrastructure)

Included in the **Anaconda Python distribution**
Numba — autojit decorator

```python
In [1]: def loopsum(n):
    x = 0
    for i in range(n):
        x = x + i

In [2]: %timeit loopsum(10000)

1000 loops, best of 3: 495 us per loop
```
Numba — autojit decorator

In [1]:
```python
def loopsum(n):
    x = 0
    for i in range(n):
        x = x + i
```

In [2]:
```python
@timeit
looppsum(10000)
```

```
1000 loops, best of 3: 495 us per loop
```

In [3]:
```python
from numba import autojit
```

In [4]:
```python
@autojit
def loopsum2(n):
    x = 0
    for i in range(n):
        x = x + i
```

In [5]:
```python
@timeit
looppsum2(10000)
```

```
1000000 loops, best of 3: 1.5 us per loop
```
ASCII vs. binary output

Often need to write out a large array of floats with full precision. For example, one solution value on 3d grid ...

```
  do i=1,n
    do j=1,n
      do k=1,n
        write(21,'(e24.16)') u(i,j,k)
      enddo; enddo; enddo
```

How much disk space does this take?

A single number such as

```
  0.4000000000000000E+01
```

has 24 ASCII characters ⇒ 24 bytes per value.

Total \(24n^3\) bytes. E.g. \(100 \times 100 \times 100\) grid: \(n = 100\) ⇒ 24 MB.

Note: In memory storing one 8-byte float takes only 8 bytes. \(n = 100\) ⇒ 8 MB.) ASCII takes 3 × the space. Also takes additional time to convert to ASCII, \(\approx 10\times\) slower to write ASCII than dumping binary.
Often need to write out a large array of floats with full precision. For example, one solution value on 3d grid ...

```fortran
  do i=1,n
    do j=1,n
      do k=1,n
        write(21,'(e24.16)') u(i,j,k)
      enddo; enddo; enddo
```

How much disk space does this take?

A single number such as `0.400000000000000000E+01` has 24 **ASCII** characters \(\Rightarrow\) 24 bytes per value.

Total \(24n^3\) bytes. E.g. \(100 \times 100 \times 100\) grid: \(n = 100\) \(\Rightarrow\) 24 MB.
Often need to write out a large array of floats with full precision. For example, one solution value on 3d grid ...

```fortran
    do i=1,n
        do j=1,n
            do k=1,n
                write(21,'(e24.16)') u(i,j,k)
            enddo; enddo; enddo
```

How much disk space does this take?

A single number such as \(0.4000000000000000E+01\) has 24 ASCII characters \(\Rightarrow\) 24 bytes per value.

Total \(24n^3\) bytes. E.g. 100 \(\times\) 100 \(\times\) 100 grid: \(n = 100 \Rightarrow\) 24 MB.

Note: In memory storing one 8-byte float takes only 8 bytes.

\((n = 100 \Rightarrow 8\text{MB.})\) ASCII takes \(3 \times\) the space.
ASCII vs. binary output

Often need to write out a large array of floats with full precision. For example, one solution value on 3d grid ...

```fortran
  do i=1,n
    do j=1,n
      do k=1,n
        write(21,'(e24.16)') u(i,j,k)
      enddo; enddo; enddo
```

How much disk space does this take?

A single number such as \(0.4000000000000000E+01\) has 24 ASCII characters \(\implies 24\) bytes per value.

Total \(24n^3\) bytes. E.g. 100 \(\times\) 100 \(\times\) 100 grid: \(n = 100 \implies 24\) MB.

Note: In memory storing one 8-byte float takes only 8 bytes. \((n = 100 \implies 8\)MB.) ASCII takes \(3\times\) the space. Also takes additional time to convert to ASCII, \(\approx 10\times\) slower to write ASCII than dumping binary.
Can use **unformatted** write in Fortran:

```fortran
! $UWHPSC/codes/io/binwrite.f90

open(unit=20, file="u.bin", form="unformatted", &
       status="unknown", access="stream")

do  j=1,100
    do  i=1,500
        u(i,j) = real(m*(j-1) + i, kind=8)
    enddo
endo
do
do
write(20) u    ! writes entire array in binary
close(20)
```

The resulting binary file `u.bin` cannot be edited directly. But we can read it into Python...

R.J. LeVeque, University of Washington
AMath 483/583, Lecture 28
Can use **unformatted** write in Fortran:

```fortran
! $UWHPSC/codes/io/binwrite.f90

open(unit=20, file="u.bin", form="unformatted", &
     status="unknown", access="stream")

do j=1,100
   do i=1,500
      u(i,j) = real(m*(j-1) + i, kind=8)
   enddo
endo
do

do j=1,100
   do i=1,500
      u(i,j) = real(m*(j-1) + i, kind=8)
   enddo
endo

write(20) u  ! writes entire array in binary
close(20)
```

$ ls -l
-rw-r--r-- 1 rjl staff 400000 Jun 6 20:09 u.bin
-rw-r--r-- 1 rjl staff 1200000 Jun 6 20:09 u.txt

The resulting binary file **u.bin** cannot be edited directly.

But we can read it into Python...
To recover U array of dimension $m \times n$ in Python:

```python
# $UWHPSC/codes/io/binread.py
import numpy as np

file = open('u.bin', 'rb')
uvec = np.fromfile(file, dtype=np.float64)

m,n = np.loadtxt('mn.txt',dtype=int)

# now use Fortran ordering to fill u by columns:
u = uvec.reshape((m,n),order='F')
```
Other options for binary data

Binary formats that contain a lot of metadata...

Hierarchical Data Format: HDF, HDF4, HDF5

HDF5 file structure includes two major types of object:

- **Datasets**: multidimensional arrays of a homogenous type
- **Groups**: container structures for datasets and other groups

See also: h5py, PyTables
Other options for binary data

Binary formats that contain a lot of metadata...

Hierarchical Data Format: HDF, HDF4, HDF5

HDF5 file structure includes two major types of object:
 - **Datasets**: multidimensional arrays of a homogenous type
 - **Groups**: container structures for datasets and other groups

See also: h5py, PyTables

NetCDF (Network Common Data Form): Built on top of HDF5.

See also ncdump, netcdf4-python
Summary, take away messages...

- **Version control — git**
 Use for all your projects, collaborations, ...
 Consider contributing to open source projects
 Submit a pull request
Summary, take away messages...

- **Version control — git**
 Use for all your projects, collaborations, ...
 Consider contributing to open source projects
 Submit a pull request

- **Python, NumPy, SciPy, matplotlib, IPython**
 Quickly trying out new ideas, optimize later
 Graphics and visualization
 Scripting to guide big computations
 Combining codes from different languages
 Many capabilities not seen in class, e.g.
 Manipulating text files, regular expressions,
 building web interfaces
Summary, take away messages...

- **Fortran 90**
 Compiled language
 Tightly constrained but can run very fast
 Native multi-dimensional arrays
Summary, take away messages...

- **Fortran 90**
 Compiled language
 Tightly constrained but can run very fast
 Native multi-dimensional arrays

- **Makefiles**
 Dependency checking
 Often used for building software
Summary, take away messages...

- **Fortran 90**
 Compiled language
 Tightly constrained but can run very fast
 Native multi-dimensional arrays

- **Makefiles**
 Dependency checking
 Often used for building software

- **Debugging code**
 Unit tests, nose module
 Print statements, pdb, gdb
Summary, take away messages...

- **Fortran 90**
 - Compiled language
 - Tightly constrained but can run very fast
 - Native multi-dimensional arrays

- **Makefiles**
 - Dependency checking
 - Often used for building software

- **Debugging code**
 - Unit tests, nose module
 - Print statements, pdb, gdb

- **Memory hierarchy, cache considerations**
 - Consider layout of arrays in memory
 - Aim for spatial and temporal locality
Summary, take away messages...

- **Parallel computing**
 - Increasingly necessary for all computing
 - Amdahl’s law — inherently sequential code limits parallelization
 - Weak vs. strong scaling
 - Fine grain vs. coarse grain parallelism
 - Load balancing

R.J. LeVeque, University of Washington
AMath 483/583, Lecture 28
Summary, take away messages...

- **Parallel computing**
 Increasingly necessary for all computing
 Amdahl’s law —
 inherently sequential code limits parallelization
 Weak vs. strong scaling
 Fine grain vs. coarse grain parallelism
 Load balancing

- **OpenMP**
 Assumes shared memory
 Often very easy to add to existing codes
 Need to worry about shared/private variables, race conditions
Summary, take away messages...

- MPI — Message Passing Interface
 - Always assumes distributed memory
 - Sharing data requires message passing
 - SPMD: Single Program Multiple Data
 - Entire program run by each process
 - But different processes may take different branches

- Computer arithmetic
 - Floating point number representation, 4 byte vs. 8 byte
 - IEEE standards
 - Reproducibility still difficult in parallel
 - Relative error and precision possible
 - Condition number of problem / stability of algorithm
Summary, take away messages...

- **MPI — Message Passing Interface**
 - Always assumes distributed memory
 - Sharing data requires message passing
 - SPMD: Single Program Multiple Data
 - Entire program run by each process
 - But different processes may take different branches

- **Computer arithmetic**
 - Floating point number representation, 4 byte vs. 8 byte
 - IEEE standards
 - Reproducibility still difficult in parallel
 - Relative error and precision possible
 - Condition number of problem / stability of algorithm
Summary, take away messages...

- **Linear algebra**
 Matrix norms and condition number of $Ax = b$
 LAPACK, BLAS — optimized code
 Iterative methods for large sparse system
 Poisson problems: $u_{xx} = f(x) \implies$ tridiagonal
 Two-dimensional Poisson problem $u_{xx} + u_{yy} = f(x, y)$
Summary, take away messages...

- **Linear algebra**
 Matrix norms and condition number of $Ax = b$
 LAPACK, BLAS — optimized code
 Iterative methods for large sparse system
 Poisson problems: $u_{xx} = f(x) \implies$ tridiagonal
 Two-dimensional Poisson problem $u_{xx} + u_{yy} = f(x, y)$

- **Quadrature methods / numerical integration**
 Midpoint, Trapezoid, Simpson Rules
 Adaptive Quadrature / Load balancing
 Monte Carlo methods in high dimensions
Summary, take away messages...

- **Linear algebra**
 Matrix norms and condition number of $Ax = b$
 LAPACK, BLAS — optimized code
 Iterative methods for large sparse system
 Poisson problems: $u_{xx} = f(x) \implies$ tridiagonal
 Two-dimensional Poisson problem $u_{xx} + u_{yy} = f(x, y)$

- **Quadrature methods / numerical integration**
 Midpoint, Trapezoid, Simpson Rules
 Adaptive Quadrature / Load balancing
 Monte Carlo methods in high dimensions

- **Monte Carlo methods**
 Pseudo Random Number Generation
 Use of seed for reproducibility
 Random walks
Happy Computing!
Happy Computing!

Thanks for participating.
Happy Computing!

Thanks for participating.

Thanks to TAs: Scott Moe and Susie Sargsyan
Happy Computing!

Thanks for participating.

Thanks to TAs: Scott Moe and Susie Sargsyan

Office hours: See discussion board.
Happy Computing!

Thanks for participating.

Thanks to TAs: Scott Moe and Susie Sargsyan

Office hours: See discussion board.

Have a great summer!