Each part of each problem is worth 8 points (96 points total).

Please show all of your work and justify all your answers.

1. (a) Show that for any \(x \in \mathbb{C}^m \), \(\|x\|_\infty \leq \|x\|_1 \).

 \[
 \|x\|_\infty = \max_i |x_i| \leq \sum_i |x_i| = \|x\|_1.
 \]

(b) Show that for any \(x \in \mathbb{C}^m \), \(\|x\|_1 \leq m \|x\|_\infty \).

 If \(x_j \) is the element of \(x \) with maximum modulus then

 \[
 \|x\|_1 = \sum_i |x_i| \leq m |x_j| = m \|x\|_\infty.
 \]

(c) Show that bounds of the form

 \[
 c_1 \|A\|_1 \leq \|A\|_\infty \leq c_2 \|A\|_1
 \]

hold for any matrix \(A \in \mathbb{C}^{m \times n} \), where the constants \(c_1 \) and \(c_2 \) depend only on \(m \) and \(n \) (not on the particular matrix). Determine these constants (the best possible, using the bounds from parts (a) and (b)). Hint: Tackle each inequality separately.

 \[
 \|A\|_1 = \max_{x \neq 0} \frac{\|Ax\|_1}{\|x\|_1} = \frac{\|Ay\|_1}{\|y\|_1} \leq \frac{m \|Ay\|_\infty}{\|y\|_\infty} \leq m \|A\|_\infty
 \]

 where \(y \) is the vector that maximizes the ratio. So \(c_1 = 1/m \).

 \[
 \|A\|_\infty = \max_{x \neq 0} \frac{\|Ax\|_\infty}{\|x\|_\infty} = \frac{\|Ay\|_\infty}{\|y\|_\infty} \leq \frac{n \|Ay\|_1}{\|y\|_1} \leq n \|A\|_1
 \]

 where \(y \in \mathbb{C}^n \) is the vector that maximizes the ratio. So \(c_2 = n \). This uses

 \[
 \|y\|_1 \leq n \|y\|_\infty \implies \frac{1}{\|y\|_\infty} \leq \frac{n}{\|y\|_1}
 \]

 since \(y \in \mathbb{C}^n \).

2. Let

 \[
 A = \begin{bmatrix}
 1 & 3 \\
 1 & -3 \\
 1 & 3 \\
 1 & -3
 \end{bmatrix}.
 \]

 (a) Determine the reduced QR factorization of the matrix \(A \).

 Normalizing the first column of \(A \) gives

 \[
 q_1 = a_1/\|a_1\| = \frac{1}{2} \begin{bmatrix}
 1 \\
 1 \\
 1 \\
 1
 \end{bmatrix}.
 \]
Since $a_1^T a_2 = 0$ the columns are already orthogonal so we only need to normalize the second column to get q_2 by dividing by $\|a_2\| = 6$.

We find that

$$Q = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \\ 1 & -1 \end{bmatrix}, \quad R = \begin{bmatrix} 2 & 0 \\ 0 & 6 \end{bmatrix}.$$ (b) Using any method you wish, solve the least squares problem $Ax = b$ for

$$b = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}.$$ You can form the normal equations $A^T Ax = A^T b$ or solve the system $Rx = Q^T b$. Either way you need only solve a diagonal system of two equations for

$$x = \begin{bmatrix} 3/4 \\ 1/12 \end{bmatrix}.$$

3. For this problem, let $P \in \mathbb{C}^{m \times m}$ be a nonzero projector, and let $Q \in \mathbb{C}^{m \times n}$ with $n < m$ and $Q^*Q = I_{n \times n}$.

(a) Is Q unitary? (Justify your answer.)

No, only a square matrix can be unitary. $Q^*Q = I$ but $QQ^* \neq I$.

(b) Show that $\|Q\|_2 = 1$.

For any x, $\|Qx\|^2 = x^*Q^*Qx = x^*x = \|x\|^2$ and hence

$$\frac{\|Qx\|}{\|x\|} = 1$$

for all x and so the norm is 1.

(c) Show that $\|P\|_2 \geq 1$.

Any projector satisfies $P^2 = P$. Choose x so that $y = Px \neq 0$. Then $P(Px) = P^2x = Px$ and hence $Py = y$ and $\|Py\|/\|y\| = 1$. The matrix norm is the maximum of this ratio and must be at least this large.

Note the problem stated that P is a nonzero projector. The zero matrix is a projector but has norm 0. The proof above would fail since there is no x for which $Px \neq 0$ in this case.

(d) Suppose P is an orthogonal projector (recall that this means $P = P^*$, not $P^*P = I$). Show that $\|P\|_2 = 1$. Hint: Write P in terms of a matrix with the properties of Q.

Any orthogonal projector can be written as $P = QQ^*$ where the columns of Q are an orthogonal basis for the range of P.

So $\|P\| \leq \|Q\|\|Q^*\|$. We know $\|Q\| \leq 1$ and also $\|A^*\| = \|A\|$ in the 2-norm for any A, so we also have $\|Q^*\| = 1$. 2
Note that in other norms it is not always true that $\|A^*\| = \|A\|$, since, for example $\|A^*\|_1 = \|A\|_\infty$. For the 2-norm you can verify that from the fact that

$$A = U\Sigma V^* \implies A^* = V\Sigma^*,$$

so both matrices have the same $\sigma_1 = \|A\|_2$.

For an orthogonal projector, you could also note that $P = QIQ^*$ is the SVD of P and so $\sigma_1 = 1$.

4. Let $A = e_1e_2^* + 2e_2e_3^* = e_1e_2^T + 2e_2e_3^T \in \mathbb{R}^{3 \times 3}$, where e_1, e_2, and e_3 are the unit vectors in \mathbb{R}^3, i.e. the three columns of the 3×3 identity matrix.

(a) What is the rank of A?

The rank is 2. There are several ways to justify this. For example by noting that the singular values are 2, 1, 0 and only 2 are nonzero.

(b) Determine the full SVD of the matrix A. Hint: U and V will be permutation matrices. Another hint: What are the three singular values of A?

Write $A = 2e_2e_3^* + e_1e_2^* + 0e_3e_1^*$ to see that

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

Remember that the proper SVD form requires the σ_i in decreasing order.

(c) Determine the projection matrix P that orthogonally projects any vector in \mathbb{R}^3 onto the range of A.

$P = \hat{U}\hat{U}^*$ where \hat{U} is the reduced U with only the columns corresponding to nonzero singular values. These columns form an orthogonal basis for the range of A.

$$\hat{U} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix} \implies P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

You could also deduce this from the original form of A given: Ax is a linear combination of e_1 and e_2 for any x, so P must project onto the x_1-x_2 plane.

Note that if you use the full U instead of \hat{U} you would get $P = I$, which can’t be right since it has rank 3 instead of 2. Since U is unitary its columns span all of \mathbb{R}^3.

3