Today:
- Fortran dynamic memory allocation
- Array operations
- Computer storage
- Binary representation
- Floating point
- Exceptions

Friday:
- Computer arithmetic
- Fortran subroutines and functions

Read: Class notes and references.

Memory management for arrays

Often a program needs to be written to handle arrays whose size is not known until the program is running.

Fortran 77 approaches:
- Allocate arrays large enough for any application,
- Use “work arrays” that are partitioned into pieces.

We will look at some examples from LAPACK since you will probably see this in other software!

The good news:

Fortran 90 allows dynamic memory allocation.

Memory allocation

```fortran
real(kind=8) dimension(:), allocatable :: x
real(kind=8) dimension(:,:), allocatable :: a

allocate(x(10))
allocate(a(30,10))

! use arrays

deallocate(x)
deallocate(a)
```

If you might run out of memory, better to do:

```fortran
real(kind=8), dimension(:,:), allocatable :: a

allocate(a(30000,10000), stat=alloc_error)
if (alloc_error /= 0) then
  print *, "Insufficient memory"
  stop
endif
```

```fortran
! use arrays

deallocate(x)
deallocate(a)
```
Array operations in Fortran

Fortran 90 supports some operations on arrays...

```fortran
! $CLASSHG/codes/fortran/vectorops.f90
program vectorops
  implicit none
  real(kind=8), dimension(3) :: x, y
  x = (/10.,20.,30./) ! initialize
  y = (/100.,400.,900./)
  print *, "x = 
  print *, x
  print *, "x**2 + y = 
  print *, x**2 + y ! componentwise
R.J. LeVeque, University of Washington
```

Note:
- Fortran is case insensitive: `A = a`
- Reshape fills array by columns, so

\[
A = \begin{bmatrix}
 1 & 4 \\
 2 & 5 \\
 3 & 6 \\
\end{bmatrix}.
\]

Array operations in Fortran — Matrices

```fortran
! $CLASSHG/codes/fortran/arrayops.f90
program arrayops
  implicit none
  real(kind=8), dimension(3,2) :: a
  real(kind=8), dimension(2,3) :: b
  real(kind=8), dimension(3,3) :: c
  integer :: i
  print *, "a = 
  do i=1,3
    print *, a(i,:) ! i'th row
  enddo
  b = transpose(a) ! 2x3 array
  c = matmul(a,b) ! 3x3 matrix product
R.J. LeVeque, University of Washington
```

Note:
- Reshape fills array by columns, so
Array operations in Fortran — Matrices

```fortran
! $CLASSHG/codes/fortran/arrayops.f90 (continued)
real(kind=8), dimension(3,2) :: a
real(kind=8), dimension(2) :: x
real(kind=8), dimension(3) :: y
x = (/5,6/)
y = matmul(a,x)  ! matrix-vector product
print *, "x = ",x
print *, "y = ",y
```

Linear systems in Fortran

There is no equivalent of the Matlab backslash operator for solving a linear system \(Ax = b \) (\(b = A\backslash b \)).

Must call a library subroutine to solve a system.

Later we will see how to use LAPACK for this.

Note: Under the hood, Matlab calls LAPACK too!

Computer memory

Memory is subdivided into bytes, consisting of 8 bits each.

One byte can hold \(2^8 = 256 \) distinct numbers:

- 00000000 = 0
- 00000001 = 1
- 00000010 = 2
- \ldots
- 11111111 = 255

Might represent integers, characters, colors, etc.

Usually programs involve integers and real numbers that require more than 1 byte to store.

Often 4 bytes (32 bits) or 8 bytes (64 bits) used for each.

Integers

To store integers, need one bit for the sign (+ or −).
In one byte this would leave 7 bits for binary digits.

Two-complements representation used:

- 10000000 = −128
- 10000001 = −127
- 10000010 = −126
- \ldots
- 11111110 = −2
- 11111111 = −1
- 00000000 = 0
- 00000001 = 1
- 00000010 = 2
- \ldots
- 01111111 = 127

Advantage: Binary addition works directly.
Integers

Integers are typically stored in 4 bytes (32 bits). Values between roughly \(-2^{31}\) and \(2^{31}\) can be stored.

In Python, larger integers can be stored and will automatically be stored using more bytes.

Note: special software for arithmetic, may be slower!

```python
>>> 2**30
1073741824

>>> 2**100
1267650600228229401496703205376L
```

Note L on end!

R.J. LeVeque, University of Washington

AMath 483/583, Lecture 5, April 6, 2011

Integer overflow in gfortran

```fortran
! $CLASSHG/codes/fortran/integers.f90
program integers
implicit none
integer :: i,j

i = 2**30
print *, "i = ",i

j = 4 * i
print *, "j = ",j
end program integers
```

produces the following:

```
i = 1073741824
j = 0 This is wrong!
```

32-bit vs. 64-bit architecture

Each byte in memory has an address, which is an integer. On 32-bit machines, registers can only store

\[2^{32} = 4294967296 \approx 4 \text{ billion} \]

distinct addresses \(\implies\) at most 4GB of memory can be addressed.

Newer machines often have more, leading to the need for 64-bit architectures (8 bytes for addresses).

Note: Integers might still be stored in 4 bytes, for example.

R.J. LeVeque, University of Washington

AMath 483/583, Lecture 5, April 6, 2011

Fixed point notation

Use, e.g. 64 bits for a real number but always assume \(N\) bits in integer part and \(M\) bits in fractional part.

Analog in decimal arithmetic, e.g.:

- 5 digits for integer part and
- 6 digits in fractional part

Could represent, e.g.:

```
00003.141592
00000.000314
31415.926535
```

Disadvantages:

- Precision depends on size of number
- Often many wasted bits (leading 0's)
- Limited range; often scientific problems involve very large or small numbers.
Floating point real numbers

Base 10 scientific notation:

\[0.2345 \times 10^{-18} = 0.2345 \times 10^{-18} = 0.0000000000000002345 \]

Mantissa: 0.2345, Exponent: -18

Binary floating point numbers:

Example: Mantissa: 0.101101, Exponent: -11011 means:

\[0.101101 = 1(2^{-1}) + 0(2^{-2}) + 1(2^{-3}) + 1(2^{-4}) + 0(2^{-5}) + 1(2^{-6}) \]
\[= 0.703125 \text{ (base 10)} \]
\[-11011 = -1(2^4) + 1(2^3) + 0(2^2) + 1(2^1) + 1(2^0) = -27 \text{ (base 10)} \]

So the number is

\[0.703125 \times 2^{-27} \approx 5.2386894822120667 \times 10^{-9} \]

Floating point real numbers

Fortran:

real (kind=4): 4 bytes
This used to be standard single precision real

real (kind=8): 8 bytes
This used to be called double precision real

Python float datatype is 8 bytes.

8 bytes = 64 bits,

53 bits for mantissa and 11 bits for exponent (64 bits = 8 bytes).

We can store 52 binary bits of precision.

\[2^{-52} \approx 2.2 \times 10^{-16} \implies \text{roughly 15 digits of precision.} \]

Overflow

8 bytes floats: 64 bits for each real number with

53 bits for mantissa and

11 bits for exponent.

Exponents range between \(-1022\) and \(1023\), so magnitude of real number must be less than \(N_{max} \approx 2^{1023} \approx 1.8 \times 10^{308} \).

If an operation gives a number outside this range we get an overflow exception.

Or perhaps a special value representing “infinity”.

Since \(2^{-52} \approx 2.2 \times 10^{-16}\) this corresponds to roughly 15 digits of precision.

For example:

```python
>>> from numpy import pi
>>> pi
3.1415926535897931

>>> 1000 * pi
3141.5926535897929
```

Note: storage and arithmetic is done in base 2
Converted to base 10 only when printed!
Real overflow

```fortran
! $CLASSHG/codes/fortran/reals.f90
program reals
  implicit none
  real (kind=8) :: x,y,z
  x = 1.d308
  print *, "x = ",x
  y = 10.d0 * x
  print *, "y = ",y
  z = y / 10.d0
  print *, "z = ",z
end program reals
```

Underflow

Exponents range between -1022 and 1023. Smallest nonzero real number is about $N_{min} = 2^{-1022} \approx 2 \times 10^{-308}$ if we insist it be normalized (i.e., no leading zeros).

Can represent even smaller numbers by using gradual underflow, and subnormal numbers e.g.,

\[0.000005 \times 10^{-308} = 5.0 \times 10^{-314}\]

With 16 digits, can go down to about 10^{-324} in this manner.

Real underflow

```fortran
$CLASSHG/codes/fortran/underflow.f90
program underflow
  implicit none
  real (kind=8) :: x
  x = 1.d-308
  print *, "x = ",x
  do while (x > 0.d0)
    x = x / 10.d0
    print *, "x = ",x
  enddo
end program underflow
```

Gradual underflow \Rightarrow less precision for smaller x

\[
\begin{align*}
x & = 9.999999999999999E-309 \\
x & = 1.000000000000002E-309 \\
x & = 9.999999999999996E-311 \\
x & = 9.9999999999999475E-312 \\
x & = 1.000000000013287E-313 \\
x & = 9.999999999638807E-315 \\
x & = 9.999999836597144E-317 \\
x & = 9.99999736268915E-318 \\
x & = 9.99987484955998E-319 \\
x & = 9.99888671826830E-320 \\
x & = 9.99888671826830E-321 \\
x & = 9.98012604593180E-322 \\
x & = 9.881312916824931E-323 \\
x & = 9.881312916824931E-324 \\
x & = 0.00000000000000
\end{align*}
\]
Not-a-Number (NaN)

Some arithmetic operations give undefined results.

The result of such an operation is often replaced by a special value representing NaN.

Examples:

- $0/0 = \text{NaN}$
- $0 \times \text{Infinity} = \text{NaN}$

Trapping floating point exceptions

Often we want the program to crash instead of continuing with Infinity or NaNs.

Can compile with the fpe-trap flag set to the list of exceptions to trap: overflow, underflow, or divide by zero:

```bash
$ gfortran -ffpe-trap=zero,overflow,underflow \ nan.f90
$ ./a.out
Floating point exception
```

Note: Not at all informative about where it crashed. (Need to use a debugger to figure out where.)