Memory management for arrays

Often a program needs to be written to handle arrays whose size is not known until the program is running.

Fortran 77 approaches:
- Allocate arrays large enough for any application,
- Use “work arrays” that are partitioned into pieces.

We will look at some examples from LAPACK since you will probably see this in other software!

The good news:
Fortran 90 allows dynamic memory allocation.

```fortran
real(kind=8) dimension(:), allocatable :: x
real(kind=8) dimension(:,:), allocatable :: a

allocate(x(10))
allocate(a(30,10))

! use arrays

deallocate(x)
deallocate(a)
```
Memory allocation

If you might run out of memory, better to do:

```fortran
real(kind=8), dimension(:,,:), allocatable :: a
allocate(a(30000,10000), stat=alloc_error)
if (alloc_error /= 0) then
  print *, "Insufficient memory"
  stop
endif
```

Array operations in Fortran

Fortran 90 supports some operations on arrays...

```fortran
! $CLASSHG/codes/fortran/vectorops.f90
program vectorops
  implicit none
  real(kind=8), dimension(3) :: x, y
  x = (/10.,20.,30./) ! initialize
  y = (/100.,400.,900./)
  print *, "x = ", x
  print *, "x**2 + y = ", x**2 + y ! componentwise
  print *, "sqrt(y) = ", sqrt(y) ! componentwise
  print *, "dot_product(x,y) = ", dot_product(x,y) ! scalar product
end program vectorops
```

Array operations in Fortran

```fortran
! $CLASSHG/codes/fortran/vectorops.f90
! continued...
  print *, "x*y = ", x*y ! = (x(1)y(1), x(2)y(2), ...)
  print *, "sqrt(y) = ", sqrt(y) ! componentwise
  print *, "dot_product(x,y) = ", dot_product(x,y) ! scalar product
end program vectorops
```
Array operations in Fortran — Matrices

! $CLASSHG/codes/fortran/arrayops.f90
program arrayops
 implicit none
 real(kind=8), dimension(3,2) :: a

! create a as 3x2 array:
A = reshape((/1,2,3,4,5,6/), (/3,2/))

Note:
• Fortran is case insensitive: A = a
• Reshape fills array by columns, so
 A = \[
 \begin{bmatrix}
 1 & 4 \\
 2 & 5 \\
 3 & 6 \\
 \end{bmatrix}.
 \]

R.J. LeVeque, University of Washington
AMath 483/583, Lecture 5, April 6, 2011

Array operations in Fortran — Matrices

! $CLASSHG/codes/fortran/arrayops.f90 (continued)
real(kind=8), dimension(3,2) :: a
real(kind=8), dimension(2,3) :: b
real(kind=8), dimension(3,3) :: c
integer :: i

print *, "a = "
do i=1,3
 print *, a(i,:), ! i'th row
endo

b = transpose(a) ! 2x3 array

c = matmul(a,b) ! 3x3 matrix product

R.J. LeVeque, University of Washington
AMath 483/583, Lecture 5, April 6, 2011

Array operations in Fortran — Matrices

! $CLASSHG/codes/fortran/arrayops.f90 (continued)
real(kind=8), dimension(3,2) :: a
real(kind=8), dimension(2) :: x
real(kind=8), dimension(3) :: y

x = (/5,6/)
y = matmul(a,x) ! matrix-vector product
print *, "x = ",x
print *, "y = ",y

R.J. LeVeque, University of Washington
AMath 483/583, Lecture 5, April 6, 2011
There is no equivalent of the Matlab backslash operator for solving a linear system $Ax = b$ ($b = A\backslash b$).

Must call a library subroutine to solve a system.

Later we will see how to use LAPACK for this.

Note: Under the hood, Matlab calls LAPACK too!

Memory is subdivided into bytes, consisting of 8 bits each.

One byte can hold $2^8 = 256$ distinct numbers:

- $00000000 = 0$
- $00000001 = 1$
- $00000010 = 2$
- ...
- $11111111 = 255$

Might represent integers, characters, colors, etc.

Usually programs involve integers and real numbers that require more than 1 byte to store.

Often 4 bytes (32 bits) or 8 bytes (64 bits) used for each.

To store integers, need one bit for the sign (+ or −)

In one byte this would leave 7 bits for binary digits.

Two-complements representation used:

- $10000000 = -128$
- $10000001 = -127$
- $10000010 = -126$
- ...
- $11111110 = -2$
- $11111111 = -1$
- $00000000 = 0$
- $00000001 = 1$
- $00000010 = 2$
- ...
- $01111111 = 127$

Advantage: Binary addition works directly.
Integers

Integers are typically stored in 4 bytes (32 bits). Values between roughly -2^{31} and 2^{31} can be stored.

In Python, larger integers can be stored and will automatically be stored using more bytes.

Note: special software for arithmetic, may be slower!

```python
>>> 2**30
1073741824

>>> 2**100
1267650600228229401496703205376L

Note L on end!
```

Integer overflow in gfortran

```fortran
! $CLASSHG/codes/fortran/integers.f90
program integers
    implicit none
    integer :: i,j
    i = 2**30
    print *, "i = ",i

    j = 4 * i
    print *, "j = ",j
end program integers

produces the following:
i = 1073741824
j = 0 This is wrong!
```

32-bit vs. 64-bit architecture

Each byte in memory has an address, which is an integer.
On 32-bit machines, registers can only store

$$2^{32} = 4294967296 \approx 4 \text{ billion}$$

distinct addresses \implies at most 4GB of memory can be addressed.

Newer machines often have more, leading to the need for 64-bit architectures (8 bytes for addresses).

Note: Integers might still be stored in 4 bytes, for example.
Fixed point notation

Use, e.g. 64 bits for a real number but always assume \(N \) bits in integer part and \(M \) bits in fractional part.

Analog in decimal arithmetic, e.g.:
- 5 digits for integer part and
- 6 digits in fractional part

Could represent, e.g.:
- 00003.141592
- 00000.000314
- 31415.926535

Disadvantages:
- Precision depends on size of number
- Often many wasted bits (leading 0's)
- Limited range; often scientific problems involve very large or small numbers.

Floating point real numbers

Base 10 scientific notation:

\[0.2345 \times 10^{-18} = 0.2345 \times 10^{-18} = 0.000000000000000002345 \]

Mantissa: 0.2345, Exponent: -18

Binary floating point numbers:

Example: Mantissa: 0.101101, Exponent: -11011 means:

\[0.101101 = 1(2^{-1}) + 0(2^{-2}) + 1(2^{-3}) + 1(2^{-4}) + 0(2^{-5}) + 1(2^{-6}) = 0.703125 \text{ (base 10)} \]
\[-11011 = -1(2^{4}) + 1(2^{3}) + 0(2^{2}) + 1(2^{1}) + 1(2^{0}) = -27 \text{ (base 10)} \]

So the number is

\[0.703125 \times 2^{-27} \approx 5.2386894822120667 \times 10^{-9} \]

Floating point real numbers

Fortran:
- `real (kind=4)`: 4 bytes
 This used to be standard **single precision real**
- `real (kind=8)`: 8 bytes
 This used to be called **double precision real**

Python `float` datatype is 8 bytes.

8 bytes = 64 bits,
53 bits for mantissa and 11 bits for exponent (64 bits = 8 bytes).
We can store 52 binary bits of **precision**.

\[2^{-52} \approx 2.2 \times 10^{-16} \implies \text{roughly 15 digits of precision.} \]
Floating point real numbers

Since \(2^{-52} \approx 2.2 \times 10^{-16}\) this corresponds to roughly 15 digits of precision.

For example:

```python
>>> from numpy import pi
>>> pi
3.1415926535897931
>>> 1000 * pi
3141.5926535897929
```

Note: storage and arithmetic is done in base 2
Converted to base 10 only when printed!

Overflow

8 bytes floats: 64 bits for each real number with
53 bits for mantissa and
11 bits for exponent.

Exponents range between \(-1022\) and \(1023\), so magnitude of
real number must be less than \(N_{\text{max}} \approx 2^{1023} \approx 1.8 \times 10^{308}\).

If an operation gives a number outside this range we get an
overflow exception.

Or perhaps a special value representing "infinity".

Real overflow

```fortran
! $CLASSHG/codes/fortran/reals.f90
program reals
implicit none
real (kind=8) :: x,y,z
x = 1.d308
print *, "x = ",x
y = 10.d0 * x
print *, "y = ",y
z = y / 10.d0
print *, "z = ",z
end program reals
```

```
x = 1.000000000000000E+308
y = +Infinity
z = +Infinity
```
Underflow

Exponents range between -10^{22} and 10^{23}.
Smallest nonzero real number is about $N_{\text{min}} = 2^{-10^{22}} \approx 2.2 \times 10^{-308}$ if we insist it be normalized (i.e. no leading zeros).

Can represent even smaller numbers by using gradual underflow, and subnormal numbers e.g.,

$$0.000005 \times 10^{-308} = 5.0 \times 10^{-314}$$

With 16 digits, can go down to about 10^{-324} in this manner.

Real underflow

```fortran
$CLASSHG/codes/fortran/underflow.f90
program underflow
implicit none
real (kind=8) :: x
x = 1.d-308
print *, "x = ",x
do while (x > 0.d0)
  x = x / 10.d0
  print *, "x = ",x
enddo
end program underflow
```

Gradual underflow \Rightarrow less precision for smaller x

```fortran
x = 9.999999999999999E-309
x = 1.000000000000002E-309
x = 9.999999999999969E-311
x = 9.999999999999475E-312
x = 1.000000000000000E-313
x = 9.9999999999638807E-315
x = 9.999999998168388E-316
x = 9.99999836597144E-317
x = 9.99999736268915E-318
x = 9.99987484955998E-319
x = 9.99988671826830E-320
x = 9.99988671826830E-321
x = 9.80126045993180E-322
x = 9.881312916824931E-323
x = 9.881312916824931E-324
x = 0.00000000000000
```

Notes:
Not-a-Number (NaN)

Some arithmetic operations give undefined results. The result of such an operation is often replaced by a special value representing NaN.

Examples:

$0/0 = \text{NaN}$

$0 \times \text{Infinity} = \text{NaN}$

! $\text{CLASSHG/codes/fortran/nan.f90}$

```fortran
program nan
    implicit none
    real (kind=8) :: x,y,z
    x = 0.d0
    y = 1.d0 / x
    print *, "y = ", y prints y = +Infinity
    z = 0.d0 / x
    print *, "z = ", z prints z = NaN
    z = 0.d0 * y
    print *, "z = ", z prints z = NaN
end program nan
```

Trapping floating point exceptions

Often we want the program to crash instead of continuing with Infinity or NaNs.

Can compile with fpe-trap flag set to the list of exceptions to trap: overflow, underflow, or divide by zero:

```
$ gfortran -ffpe-trap=zero,overflow,underflow nan.f90
$ ./a.out
```

Floating point exception

Note: Not at all informative about where it crashed. (Need to use a debugger to figure out where.)