Today:
• MPI send and receive
• Heat equation and discretization

Wednesday:
• Iterative methods

Read: Class notes and references

MPI — Simple example

```fortran
program test1
  use mpi
  implicit none
  integer :: ierr, numprocs, proc_num,
  call mpi_init(ierr)
  call mpi_comm_size(MPI_COMM_WORLD, numprocs, ierr)
  call mpi_comm_rank(MPI_COMM_WORLD, proc_num, ierr)
  print *, 'Hello from Process ', proc_num, ' of ', numprocs, ' processes'
  call mpi_finalize(ierr)
end program test1
```

Always need to: use mpi,
Start with mpi_init,
End with mpi_finalize.

mpi module

The mpi module includes:

Subroutines such as mpi_init, mpi_comm_size,
mpi_comm_rank, ...

Global variables such as
MPI_COMM_WORLD: a communicator,
MPI_INTEGER: used to specify the type of data being sent
MPI_SUM: used to specify a type of reduction

Remember: Fortran is case insensitive:
mpi_init is the same as MPI_INIT.
MPI functions

There are 125 MPI functions.

Can write many program with these 8:

- MPI_INIT(ierr) Initialize
- MPI_FINALIZE(ierr) Finalize
- MPI_COMM_SIZE(...) Number of processors
- MPI_COMM_RANK(...) Rank of this processor
- MPI_SEND(...) Send a message
- MPI_RCV(...) Receive a message
- MPI_BCAST(...) Broadcast to other processors
- MPI_REDUCE(...) Reduction operation

MPI Reduce for vectors

Compute: \[\|A\|_1 = \max_{1 \leq j \leq n} \sum_{i=1}^{m} |a_{ij}| \] for an \(m \times n \) matrix \(A \).

Suppose there are \(m \) processes and the \(i \)th process has a vector \(\text{arow}(1:n) \) containing the \(i \)th row of \(A \).

Sum the row vectors (using Reduce) and then take maximum of resulting vector...

```fortran
real(kind=8) :: arow(n), arow_abs(n), colsum(n)

! Convert arow to absolute values
arow_abs = abs(arow)

! Perform reduction
call MPI_REDUCE(arow_abs(1), colsum, n, &
                MPI_DOUBLE_PRECISION,MPI_SUM,0, &
                MPI_COMM_WORLD,ierr)

if (proc_num == 0) then
    anorm = 0.d0
    do j=1,n
       anorm = max(anorm, colsum(j))
    enddo
    print *,'1-norm of A = ', anorm
endif
```

MPI AllReduce

To make a reduction available to all processes:

```fortran
! Only available to processes 1 to m
call MPI_REDUCE(xnorm_proc, xnorm, 1, &
                MPI_DOUBLE_PRECISION,MPI_SUM,0, &
                MPI_COMM_WORLD,ierr)
```

Or: simpler and perhaps more efficient...

```fortran
call MPI_ALLREDUCE(xnorm_proc, xnorm, 1, &
                    MPI_DOUBLE_PRECISION,MPI_SUM, &
                    MPI_COMM_WORLD,ierr)
```
MPI Send and Receive

MPI_BCAST sends from one process to all processes.

Often want to send selectively from Process i to Process j.

Use MPI_SEND and MPI_RECV.

Need a way to tag messages so they can be identified.
The parameter tag is an integer that can be matched to identify a message.

Tag can also be used to provide information about what is being sent, for example if a Master process sends rows of a matrix to other processes, the tag might be the row number.

MPI Send

Send value(s) from this Process to Process $dest$.

General form:

```call MPI_SEND(start, count, &
datatype, dest, &
tag, comm, ierr)```

where:

- **start**: starting address (variable, array element)
- **count**: number of elements to send
- **datatype**: type of each element
- **dest**: destination process
- **tag**: identifier tag (integer between 0 and 32767)
- **comm**: communicator

MPI Receive

Receive value(s) from Process $source$ with label $tag$.

General form:

```call MPI_RECV(start, count, &
datatype, source, &
tag, comm, status, ierr)```

where:

- **source**: source process
- **tag**: identifier tag (integer between 0 and 32767)
- **comm**: communicator
- **status**: integer array of length MPI_STATUS_SIZE.

$source$ could be MPI_ANY_SOURCE to match any source.

tag could be MPI_ANY_TAG to match any tag.
MPI Send and Receive — simple example

if (proc_num == 4) then
 i = 55
 call MPI_SEND(i, 1, MPI_INTEGER, 3, 21, &
 MPI_COMM_WORLD, ierr)
endif
if (proc_num == 3) then
 call MPI_RECV(j, 1, MPI_INTEGER, 4, 21, &
 MPI_COMM_WORLD, status, ierr)
 print *, "j = ", j
endif

Processor 3 will print j = 55

The tag is 21. (Arbitrary integer between 0 and 32767)

Blocking Receive: Processor 3 won’t return from MPI_RECV
until message is received.

Run-time error if num_procs <= 4 (Procs are 0,1,2,3)

Send/Receive example

Pass value of i from Processor 0 to 1 to 2 ... to num_procs-1

if (proc_num == 0) then
 i = 55
 call MPI_SEND(i, 1, MPI_INTEGER, 1, 21, &
 MPI_COMM_WORLD, ierr)
endif
else if (proc_num < num_procs - 1) then
 call MPI_RECV(i, 1, MPI_INTEGER, proc_num-1, 21, &
 MPI_COMM_WORLD, status, ierr)
 call MPI_SEND(i, 1, MPI_INTEGER, proc_num+1, 21, &
 MPI_COMM_WORLD, ierr)
else if (proc_num == num_procs - 1) then
 call MPI_RECV(i, 1, MPI_INTEGER, proc_num-1, 21, &
 MPI_COMM_WORLD, status, ierr)
 print *, "i = ", i
endif

MPI Receive

Receive value(s) from Process source with label tag.

General form:

call MPI_RECV(start, count, &
 datatype, source, &
 tag, comm, status, ierr)

where:

- source: source process
- tag: identifier tag (integer between 0 and 32767)
- comm: communicator
- status: integer array of length MPI_STATUS_SIZE.

source could be MPI_ANY_SOURCE to match any source.
tag could be MPI_ANY_TAG to match any tag.
MPI Receive — status argument

```
call MPI_RECV(start, count, &
datatype, source, &
tag, comm, status, ierr)
```

Elements of the status array give additional useful information about the message received.

In particular,

- `status(MPI_SOURCE)` is the source of the message,
 May be needed if `source = MPI_ANY_SOURCE`.
- `status(MPI_TAG)` is the tag of the message received,
 May be needed if `tag = MPI_ANY_TAG`.

Another Send/Receive example

Master (Processor 0) sends \(j \)th column to Worker Processor \(j \),
gets back 1-norm to store in \(\text{anorm}(j) \), \(j = 1, \ldots, \text{ncols} \)

```fortran
! code for Master (Processor 0):
if (proc_num == 0) then
  do j=1,ncols
    call MPI_SEND(a(1,j), nrows, MPI_DOUBLE_PRECISION,&
      j, j, MPI_COMM_WORLD, ierr)
  enddo
  do j=1,ncols
    call MPI_RECV(colnorm, 1, MPI_DOUBLE_PRECISION, &
      MPI_ANY_SOURCE, MPI_ANY_TAG, &
      MPI_COMM_WORLD, status, ierr)
    jj = status(MPI_TAG) ! this is the column number
    anorm(jj) = colnorm
  enddo
endif
```

Note: Master may receive back in any order!

`MPI_ANY_SOURCE` will match first to arrive.

The tag is used to tell which column's norm has arrived (\(jj \)).

Send and Receive example — worker code

Master (Processor 0) sends \(j \)th column to Worker Processor \(j \),
gets back 1-norm to store in \(\text{anorm}(j) \), \(j = 1, \ldots, \text{ncols} \)

```fortran
! code for Workers (Processors 1, 2, ...):
if (proc_num /= 0) then
  call MPI_RECV(colvect, nrows, MPI_DOUBLE_PRECISION,&
    0, MPI_ANY_TAG, &
    MPI_COMM_WORLD, status, ierr)
  j = status(MPI_TAG) ! this is the column number
  colnorm = 0.d0
  do i=1,nrows
    colnorm = colnorm + abs(colvect(i))
  enddo
  call MPI_SEND(colnorm, 1, MPI_DOUBLE_PRECISION, &
    0, j, MPI_COMM_WORLD, ierr)
endif
```

Note: Sends back with tag \(j \).
Send may be blocking

```fortran
if (proc_num == 4) then
    i = 55
    call MPI_SEND(i, 1, MPI_INTEGER, 3, 21, &MPI_COMM_WORLD, ierr)
    call MPI_RECV(j, 1, MPI_INTEGER, 3, 22, &MPI_COMM_WORLD, status, ierr)
end if
if (proc_num == 3) then
    j = 66
    call MPI_SEND(j, 1, MPI_INTEGER, 4, 22, &MPI_COMM_WORLD, ierr)
    call MPI_RECV(i, 1, MPI_INTEGER, 4, 21, &MPI_COMM_WORLD, status, ierr)
end if
```

Both processors might get stuck in MPI_SEND!

Implementation-dependent: waits for send buffer to be free.

Blocking send: MPI_SSEND. See documentation

There are also non-blocking sends and receives:

MPI_ISEND, MPI_IRECV

Notes:

Heat Equation / Diffusion Equation

Partial differential equation for \(u(x,t) \) in one space dimension and time.

\(u \) represents temperature in a 1-dimensional metal rod, for example.

Or concentration (density) of a chemical diffusing in a tube of water.

The PDE is

\[
 u_t(x,t) = D u_{xx}(x,t) + f(x,t)
\]

where subscripts represent partial derivatives,

\(D = \) diffusion coefficient,
\(f(x,t) = \) source term.

Steady state diffusion

If \(f(x,t) = f(x) \) does not depend on time and if the boundary conditions don’t depend on time, then \(u(x,t) \) will converge towards steady state distribution satisfying

\[
 0 = D u_{xx}(x) + f(x)
\]

(by setting \(u_t = 0 \).)

This is now an ordinary differential equation (ODE) for \(u(x) \).

We can solve this on an interval, say \(0 \leq x \leq 1 \) with

Boundary conditions:

\[
 u(0) = \alpha, \quad u(1) = \beta.
\]
Steady state diffusion

More generally: Take $D = 1$ or absorb in f,

$$u_{xx}(x) = -f(x) \quad \text{for} \ 0 \leq x \leq 1,$$

Boundary conditions:

$$u(0) = \alpha, \quad u(1) = \beta.$$

Can be solved exactly if we can integrate f twice and use boundary conditions to choose the two constants of integration.

Example: $f(x) = 0, \ \alpha = 20, \ \beta = 60$:

Solution: $u(x) = \alpha + x(\beta - \alpha)$.

No heat source \implies linear variation in steady state ($u_{xx} = 0$).

For more complicated equations, numerical methods must generally be used, giving approximations at discrete points.
Finite difference method

Define grid points \(x_i = i\Delta x\) in interval \(0 \leq x \leq 1\), where

\[
\Delta x = \frac{1}{n+1}
\]

So \(x_0 = 0\), \(x_{n+1} = 1\), and the \(n\) grid points \(x_1, x_2, \ldots, x_n\) are equally spaced inside the interval.

Let \(U_i \approx u(x_i)\) denote approximate solution.

We know \(U_0 = \alpha\) and \(U_{m+1} = \beta\) from boundary conditions.

Idea: Replace differential equation for \(u(x)\) by system of \(n\) algebraic equations for \(U_i\) values (\(i = 1, 2, \ldots, n\)).

For \(n = 5\):

\[
\begin{bmatrix}
-2 & 1 & 0 & 0 & 0 \\
1 & -2 & 1 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 \\
0 & 0 & 1 & -2 & 1 \\
0 & 0 & 0 & 1 & -2 \\
\end{bmatrix}
\begin{bmatrix}
U_1 \\
U_2 \\
U_3 \\
U_4 \\
U_5 \\
\end{bmatrix} =
\begin{bmatrix}
f(x_1) \\
f(x_2) \\
f(x_3) \\
f(x_4) \\
f(x_5) \\
\end{bmatrix} =
\begin{bmatrix}
\alpha \\
0 \\
0 \\
0 \\
\beta \\
\end{bmatrix}
\]

This gives coupled system of \(n\) linear equations:

\[
\frac{1}{\Delta x^2} (U_{i-1} - 2U_i + U_{i+1}) = -f(x_i)
\]

for \(i = 1, 2, \ldots, n\). With \(U_0 = \alpha\) and \(U_{m+1} = \beta\).

Tridiagonal linear system

General \(n \times n\) system requires \(O(n^3)\) flops to solve.

Tridiagonal \(n \times n\) system requires \(O(n)\) flops to solve.

Could use LAPACK routine \texttt{dgtsv}.