Today:
- MPI send and receive
- Heat equation and discretization

Wednesday:
- Iterative methods

Read: Class notes and references
MPI — Simple example

```fortran
program test1
  use mpi
  implicit none
  integer :: ierr, numprocs, proc_num,

  call mpi_init(ierr)
call mpi_comm_size(MPI_COMM_WORLD, numprocs, ierr)
call mpi_comm_rank(MPI_COMM_WORLD, proc_num, ierr)
  print *, 'Hello from Process ', proc_num, ' of ', numprocs, ' processes'

  call mpi_finalize(ierr)
end program test1

Always need to: use mpi,
Start with mpi_init,
End with mpi_finalize.
```
The mpi module includes:

Subroutines such as `mpi_init`, `mpi_comm_size`, `mpi_comm_rank`, ...

Global variables such as
- `MPI_COMM_WORLD`: a communicator,
- `MPI_INTEGER`: used to specify the type of data being sent
- `MPI_SUM`: used to specify a type of reduction

Remember: Fortran is case insensitive:
- `mpi_init` is the same as `MPI_INIT`.
MPI functions

There are 125 MPI functions.

Can write many program with these 8:

- `MPI_INIT(ierr)` Initialize
- `MPI_FINALIZE(ierr)` Finalize
- `MPI_COMM_SIZE(...)` Number of processors
- `MPI_COMM_RANK(...)` Rank of this processor
- `MPI_SEND(...)` Send a message
- `MPI_RCV(...)` Receive a message
- `MPI_BCAST(...)` Broadcast to other processors
- `MPI_REDUCE(...)` Reduction operation
MPI Reduce for vectors

Compute: \[\| A \|_1 = \max_{1 \leq j \leq n} \sum_{i=1}^{m} |a_{ij}| \] for an \(m \times n \) matrix \(A \).

Suppose there are \(m \) processes and the \(i \)th process has a vector \(\text{arow}(1:n) \) containing the \(i \)th row of \(A \).

Sum the row vectors (using Reduce) and then take maximum of resulting vector...

```fortran
real(kind=8) :: arow(n), arow_abs(n), colsum(n)
...
awrow_abs = abs(arow)
call MPI_REDUCE(arow_abs(1), colsum, n, &
               MPI_DOUBLE_PRECISION,MPI_SUM,0, &
               MPI_COMM_WORLD,ierr)
if (proc_num == 0) then
    anorm = 0.d0
    do j=1,n
        anorm = max(anorm, colsum(j))
    enddo
    print "1-norm of A = ", anorm
endif
```

R.J. LeVeque, University of Washington AMath 483/583, Lecture 19, May 9, 2011
MPI AllReduce

To make a reduction available to all processes:

```fortran
  call MPI_REDUCE(xnorm_proc, xnorm, 1, &
                  MPI_DOUBLE_PRECISION, MPI_SUM, 0, &
                  MPI_COMM_WORLD, ierr)

  ! only Process 0 has the value of xnorm

  call MPI_BCAST(xnorm, 1, &
                 MPI_DOUBLE_PRECISION, 0, &
                 MPI_COMM_WORLD, ierr)
```

Or: simpler and perhaps more efficient...

```fortran
  call MPI_ALLREDUCE(xnorm_proc, xnorm, 1, &
                    MPI_DOUBLE_PRECISION, MPI_SUM, &
                    MPI_COMM_WORLD, ierr)
```
MPI BCAST sends from one process to all processes.

Often want to send selectively from Process i to Process j.

Use MPI_SEND and MPI_RECV.
MPI BCAST sends from one process to all processes.

Often want to send selectively from Process i to Process j.

Use MPI SEND and MPI_RECV.

Need a way to tag messages so they can be identified.

The parameter tag is an integer that can be matched to identify a message.

Tag can also be used to provide information about what is being sent, for example if a Master process sends rows of a matrix to other processes, the tag might be the row number.
MPI Send

Send value(s) from this Process to Process \textit{dest}.

General form:

\begin{verbatim}
call MPI_SEND(start, count, &
 datatype, dest, &
 tag, comm, ierr)
\end{verbatim}

where:

- \textit{start}: starting address (variable, array element)
- \textit{count}: number of elements to send
- \textit{datatype}: type of each element
- \textit{dest}: destination process
- \textit{tag}: identifier tag (integer between 0 and 32767)
- \textit{comm}: communicator
MPI Receive

Receive value(s) from Process source with label tag.

General form:

call MPI_RECV(start, count, &
 datatype, source, &
 tag, comm, status, ierr)

where:

• source: source process
• tag: identifier tag (integer between 0 and 32767)
• comm: communicator
• status: integer array of length MPI_STATUS_SIZE.
MPI Receive

Receive value(s) from Process *source* with label *tag*.

General form:

```call MPI_RECV(start, count, &
datatype, source, &
tag, comm, status, ierr)```

where:

- **source**: source process
- **tag**: identifier tag (integer between 0 and 32767)
- **comm**: communicator
- **status**: integer array of length `MPI_STATUS_SIZE`

*source* could be `MPI_ANY_SOURCE` to match any source.

*tag* could be `MPI_ANY_TAG` to match any tag.
MPI Send and Receive — simple example

if (proc_num == 4) then
  i = 55
  call MPI_SEND(i, 1, MPI_INTEGER, 3, 21, &
               MPI_COMM_WORLD, ierr)
endif
if (proc_num == 3) then
  call MPI_RECV(j, 1, MPI_INTEGER, 4, 21, &
                MPI_COMM_WORLD, status, ierr)
  print *, "j = ", j
endif

Processor 3 will print  j = 55
if (proc_num == 4) then
  i = 55
  call MPI_SEND(i, 1, MPI_INTEGER, 3, 21, &
                MPI_COMM_WORLD, ierr)
endif
if (proc_num == 3) then
  call MPI_RECV(j, 1, MPI_INTEGER, 4, 21, &
                MPI_COMM_WORLD, status, ierr)
  print *, "j = ", j
endif

Processor 3 will print  j = 55

The tag is 21. (Arbitrary integer between 0 and 32767)
MPI Send and Receive — simple example

if (proc_num == 4) then
    i = 55
    call MPI_SEND(i, 1, MPI_INTEGER, 3, 21, &
                  MPI_COMM_WORLD, ierr)
endif

if (proc_num == 3) then
    call MPI_RECV(j, 1, MPI_INTEGER, 4, 21, &
                  MPI_COMM_WORLD, status, ierr)
    print *, "j = ", j
endif

Processor 3 will print j = 55

The tag is 21. (Arbitrary integer between 0 and 32767)

Blocking Receive: Processor 3 won’t return from MPI_RECV until message is received.
MPI Send and Receive — simple example

```fortran
if (proc_num == 4) then
 i = 55
 call MPI_SEND(i, 1, MPI_INTEGER, 3, 21, &
 MPI_COMM_WORLD, ierr)
endif
if (proc_num == 3) then
 call MPI_RECV(j, 1, MPI_INTEGER, 4, 21, &
 MPI_COMM_WORLD, status, ierr)
 print *, "j = ", j
endif

Processor 3 will print j = 55

The tag is 21. (Arbitrary integer between 0 and 32767)

Blocking Receive: Processor 3 won’t return from MPI_RECV
until message is received.

Run-time error if num_procs <= 4 (Procs are 0,1,2,3)
```

R.J. LeVeque, University of Washington
AMath 483/583, Lecture 19, May 9, 2011
Send/Receive example

Pass value of \texttt{i} from Processor 0 to 1 to 2 \ldots to \texttt{num_procs-1}

if (\texttt{proc_num} == 0) then
  \texttt{i} = 55
  call MPI\_SEND(\texttt{i}, 1, MPI\_INTEGER, 1, 21, &
  MPI\_COMM\_WORLD, ierr)
endif

else if (\texttt{proc_num} < \texttt{num_procs} - 1) then
  call MPI\_RECV(\texttt{i}, 1, MPI\_INTEGER, \texttt{proc_num-1}, 21, &
  MPI\_COMM\_WORLD, status, ierr)
  call MPI\_SEND(\texttt{i}, 1, MPI\_INTEGER, \texttt{proc_num+1}, 21, &
  MPI\_COMM\_WORLD, ierr)

else if (\texttt{proc_num} == \texttt{num_procs} - 1) then
  call MPI\_RECV(\texttt{i}, 1, MPI\_INTEGER, \texttt{proc_num-1}, 21, &
  MPI\_COMM\_WORLD, status, ierr)
  print *, "\texttt{i} = ", \texttt{i}
endif
MPI Receive

Receive value(s) from Process source with label tag.

General form:

```call MPI_RECV(start, count, &
 datatype, source, &
 tag, comm, status, ierr)```

where:

- **source**: source process
- **tag**: identifier tag (integer between 0 and 32767)
- **comm**: communicator
- **status**: integer array of length MPI_STATUS_SIZE.
MPI Receive

Receive value(s) from Process source with label tag.

General form:

```fortran
    call MPI_RECV(start, count, &
            datatype, source, &
            tag, comm, status, ierr)
```

where:

- **source**: source process
- **tag**: identifier tag (integer between 0 and 32767)
- **comm**: communicator
- **status**: integer array of length `MPI_STATUS_SIZE`.

source could be `MPI_ANY_SOURCE` to match any source.

tag could be `MPI_ANY_TAG` to match any tag.
call MPI_RECV(start, count, &
 datatype, source, &
 tag, comm, status, ierr)

Elements of the status array give additional useful information about the message received.

In particular,

status(MPI_SOURCE) is the source of the message,
 May be needed if source = MPI_ANY_SOURCE.

status(MPI_TAG) is the tag of the message received,
 May be needed if tag = MPI_ANY_TAG.
Master (Processor 0) sends jth column to Worker Processor j, gets back 1-norm to store in $\text{anorm}(j)$, $j = 1, \ldots, \text{ncols}$

```
! code for Master (Processor 0):
if (proc_num == 0) then
  do j=1,ncols
    call MPI_SEND(a(1,j), nrows, MPI_DOUBLE_PRECISION, &
                j, j, MPI_COMM_WORLD, ierr)
  enddo
  do j=1,ncols
    call MPI_RECV(colnorm, 1, MPI_DOUBLE_PRECISION, &
                  MPI_ANY_SOURCE, MPI_ANY_TAG, &
                  MPI_COMM_WORLD, status, ierr)
    jj = status(MPI_TAG)
    anorm(jj) = colnorm
  enddo
endif
```

Note: Master may receive back in any order!

`MPI_ANY_SOURCE` will match first to arrive.

The tag is used to tell which column’s norm has arrived (jj).
Master (Processor 0) sends \(j \)th column to Worker Processor \(j \), gets back 1-norm to store in \(\text{anorm}(j) \), \(j = 1, \ldots, \text{ncols} \)

! code for Workers (Processors 1, 2, \ldots):
if (proc_num /= 0) then
 call MPI_RECV(colvect, nrows, MPI_DOUBLE_PRECISION,&
 0, MPI_ANY_TAG, &MPI_COMM_WORLD, status, ierr)

 j = status(MPI_TAG) ! this is the column number
 colnorm = 0.d0
 do i=1,nrows
 colnorm = colnorm + abs(colvect(i))
 enddo

 call MPI_SEND(colnorm, 1, MPI_DOUBLE_PRECISION, &
 0, j, MPI_COMM_WORLD, ierr)
endif

Note: Sends back with tag \(j \).
Send may be blocking

if (proc_num == 4) then
 i = 55
 call MPI_SEND(i, 1, MPI_INTEGER, 3, 21, &MPI_COMM_WORLD, ierr)
 call MPI_RECV(j, 1, MPI_INTEGER, 3, 22, &MPI_COMM_WORLD, status, ierr)
endif

if (proc_num == 3) then
 j = 66
 call MPI_SEND(j, 1, MPI_INTEGER, 4, 22, &MPI_COMM_WORLD, ierr)
 call MPI_RECV(i, 1, MPI_INTEGER, 4, 21, &MPI_COMM_WORLD, status, ierr)
endif

Both processors might get stuck in MPI_SEND!

Implementation-dependent: waits for send buffer to be free.

Blocking send: MPI_SSEND. See documentation
Send may be blocking

if (proc_num == 4) then
i = 55
call MPI_SEND(i, 1, MPI_INTEGER, 3, 21, &
MPI_COMM_WORLD, ierr)
call MPI_RECV(j, 1, MPI_INTEGER, 3, 22, &
MPI_COMM_WORLD, status, ierr)
endif

if (proc_num == 3) then
j = 66
call MPI_SEND(j, 1, MPI_INTEGER, 4, 22, &
MPI_COMM_WORLD, ierr)
call MPI_RECV(i, 1, MPI_INTEGER, 4, 21, &
MPI_COMM_WORLD, status, ierr)
endif

Both processors might get stuck in **MPI_SEND**!

Implementation-dependent: waits for send buffer to be free.

Blocking send: **MPI_SSEND**. See documentation

There are also non-blocking sends and receives:

MPI_ISEND, MPI_Irecv
Heat Equation / Diffusion Equation

Partial differential equation for $u(x,t)$ in one space dimension and time.

u represents temperature in a 1-dimensional metal rod, for example.

Or concentration (density) of a chemical diffusing in a tube of water.
Partial differential equation for \(u(x, t) \) in one space dimension and time.

\(u \) represents temperature in a 1-dimensional metal rod, for example.

Or concentration (density) of a chemical diffusing in a tube of water.

The PDE is

\[
u_t(x, t) = Du_{xx}(x, t) + f(x, t)
\]

where subscripts represent partial derivatives,

\(D = \text{diffusion coefficient} \),

\(f(x, t) = \text{source term} \).
If \(f(x,t) = f(x) \) does not depend on time and if the boundary conditions don’t depend on time, then \(u(x,t) \) will converge towards steady state distribution satisfying

\[
0 = Du_{xx}(x) + f(x)
\]

(by setting \(u_t = 0 \).)

This is now an **ordinary differential equation (ODE)** for \(u(x) \).
Steady state diffusion

If \(f(x, t) = f(x) \) does not depend on time and if the boundary conditions don’t depend on time, then \(u(x, t) \) will converge towards steady state distribution satisfying

\[
0 = Du_{xx}(x) + f(x)
\]

(by setting \(u_t = 0 \).)

This is now an **ordinary differential equation (ODE)** for \(u(x) \).

We can solve this on an interval, say \(0 \leq x \leq 1 \) with

Boundary conditions:

\[
u(0) = \alpha, \quad u(1) = \beta.
\]
Steady state diffusion

More generally: Take $D = 1$ or absorb in f,

$$u_{xx}(x) = -f(x) \quad \text{for } 0 \leq x \leq 1,$$

Boundary conditions:

$$u(0) = \alpha, \quad u(1) = \beta.$$

Can be solved exactly if we can integrate f twice and use boundary conditions to choose the two constants of integration.
Steady state diffusion

More generally: Take $D = 1$ or absorb in f,

$$u_{xx}(x) = -f(x) \quad \text{for } 0 \leq x \leq 1,$$

Boundary conditions:

$$u(0) = \alpha, \quad u(1) = \beta.$$

Can be solved exactly if we can integrate f twice and use boundary conditions to choose the two constants of integration.

Example: $f(x) = 0, \quad \alpha = 20, \quad \beta = 60$:

Solution: $u(x) = \alpha + x(\beta - \alpha)$.

No heat source \implies linear variation in steady state ($u_{xx} = 0$).
More generally: Take $D = 1$ or absorb in f,

$$u_{xx}(x) = -f(x) \quad \text{for } 0 \leq x \leq 1,$$

Boundary conditions:

$$u(0) = \alpha, \quad u(1) = \beta.$$

Can be solved exactly if we can integrate f twice and use boundary conditions to choose the two constants of integration.

More interesting example:

Example: $f(x) = 100e^x$, $\alpha = 20$, $\beta = 60$:

Solution: $u(x) = -100e^x + (100e - 60)x + 120$.
Steady state diffusion

For more complicated equations, numerical methods must generally be used, giving approximations at discrete points.
For more complicated equations, numerical methods must generally be used, giving approximations at discrete points.
Define grid points $x_i = i \Delta x$ in interval $0 \leq x \leq 1$, where

$$\Delta x = \frac{1}{n + 1}$$

So $x_0 = 0$, $x_{n+1} = 1$, and the n grid points x_1, x_2, \ldots, x_n are equally spaced inside the interval.
Define grid points \(x_i = i\Delta x \) in interval \(0 \leq x \leq 1 \), where

\[
\Delta x = \frac{1}{n + 1}
\]

So \(x_0 = 0, \ x_{n+1} = 1 \), and the \(n \) grid points \(x_1, x_2, \ldots, x_n \) are equally spaced inside the interval.

Let \(U_i \approx u(x_i) \) denote approximate solution.

We know \(U_0 = \alpha \) and \(U_{m+1} = \beta \) from boundary conditions.
Finite difference method

Define grid points \(x_i = i \Delta x \) in interval \(0 \leq x \leq 1 \), where

\[
\Delta x = \frac{1}{n + 1}
\]

So \(x_0 = 0 \), \(x_{n+1} = 1 \), and the \(n \) grid points \(x_1, x_2, \ldots, x_n \) are equally spaced inside the interval.

Let \(U_i \approx u(x_i) \) denote approximate solution.

We know \(U_0 = \alpha \) and \(U_{m+1} = \beta \) from boundary conditions.

Idea: Replace differential equation for \(u(x) \) by system of \(n \) algebraic equations for \(U_i \) values \((i = 1, 2, \ldots, n) \).
Finite difference method

\[U_i \approx u(x_i) \]

\[u_x(x_{i+1/2}) \approx \frac{U_{i+1} - U_i}{\Delta x} \]

\[u_x(x_{i-1/2}) \approx \frac{U_i - U_{i-1}}{\Delta x} \]
Finite difference method

\[U_i \approx u(x_i) \]

\[u_x(x_{i+1/2}) \approx \frac{U_{i+1} - U_i}{\Delta x} \]

\[u_x(x_{i-1/2}) \approx \frac{U_i - U_{i-1}}{\Delta x} \]

So we can approximate second derivative at \(x_i \) by:

\[
\begin{align*}
 u_{xx}(x_i) & \approx \frac{1}{\Delta x} \left(\frac{U_{i+1} - U_i}{\Delta x} - \frac{U_i - U_{i-1}}{\Delta x} \right) \\
 & = \frac{1}{\Delta x^2} (U_{i-1} - 2U_i + U_{i+1})
\end{align*}
\]
Finite difference method

\[U_i \approx u(x_i) \]
\[u_x(x_{i+1/2}) \approx \frac{U_{i+1} - U_i}{\Delta x} \]
\[u_x(x_{i-1/2}) \approx \frac{U_i - U_{i-1}}{\Delta x} \]

So we can approximate second derivative at \(x_i \) by:

\[u_{xx}(x_i) \approx \frac{1}{\Delta x} \left(\frac{U_{i+1} - U_i}{\Delta x} - \frac{U_i - U_{i-1}}{\Delta x} \right) \]
\[= \frac{1}{\Delta x^2} (U_{i-1} - 2U_i + U_{i+1}) \]

This gives coupled system of \(n \) linear equations:

\[\frac{1}{\Delta x^2} (U_{i-1} - 2U_i + U_{i+1}) = -f(x_i) \]

for \(i = 1, 2, \ldots, n \). With \(U_0 = \alpha \) and \(U_{m+1} = \beta \).
Tridiagonal linear system

For $n = 5$:

\[
\begin{bmatrix}
-2 & 1 & 0 & 0 & 0 \\
1 & -2 & 1 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 \\
0 & 0 & 1 & -2 & 1 \\
0 & 0 & 0 & 1 & -2 \\
\end{bmatrix}
\begin{bmatrix}
U_1 \\
U_2 \\
U_3 \\
U_4 \\
U_5 \\
\end{bmatrix}
= -\Delta x^2
\begin{bmatrix}
f(x_1) \\
f(x_2) \\
f(x_3) \\
f(x_4) \\
f(x_5) \\
\end{bmatrix}
- \begin{bmatrix}
\alpha \\
0 \\
0 \\
0 \\
\beta \\
\end{bmatrix}.
\]
Tridiagonal linear system

For \(n = 5 \):

\[
\begin{bmatrix}
-2 & 1 & 0 & 0 & 0 \\
1 & -2 & 1 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 \\
0 & 0 & 1 & -2 & 1 \\
0 & 0 & 0 & 1 & -2 \\
\end{bmatrix}
\begin{bmatrix}
U_1 \\
U_2 \\
U_3 \\
U_4 \\
U_5 \\
\end{bmatrix}
\begin{bmatrix}
f(x_1) \\
f(x_2) \\
f(x_3) \\
f(x_4) \\
f(x_5) \\
\end{bmatrix}
- \Delta x^2
\begin{bmatrix}
\alpha \\
0 \\
0 \\
0 \\
\beta \\
\end{bmatrix}.
\]

General \(n \times n \) system requires \(O(n^3) \) flops to solve.

Tridiagonal \(n \times n \) system requires \(O(n) \) flops to solve.

Could use LAPACK routine \(\text{dgtsv} \).