Today:
 • Fine grain vs. coarse grain parallelism
 • Manually splitting do loops among threads

Wednesday:
 • Adaptive quadrature, recursive functions
 • Start MPI?

Read: Class notes and references
Fine vs. coarse grain parallelism

Fine grain: Parallelize at the level of individual loops, splitting work for each loop between threads.

Coarse grain: Split problem up into large pieces and have each thread deal with one piece.

May need to synchronize or share information at some points.
Fine vs. coarse grain parallelism

Fine grain: Parallelize at the level of individual loops, splitting work for each loop between threads.

Coarse grain: Split problem up into large pieces and have each thread deal with one piece.

May need to synchronize or share information at some points.

Domain Decomposition: Splitting up a problem on a large domain (e.g. three-dimensional grid) into pieces that are handled separately (with suitable coupling).
Solution of independent ODEs by Euler’s method

Solve $u'_i(t) = c_i u_i(t)$ for $t \geq 0$
with initial condition $u_i(0) = \eta_i$.

R.J. LeVeque, University of Washington

AMath 483/583, Lecture 16, May 2, 2011
Solution of independent ODEs by Euler’s method

Solve $u'_i(t) = c_i u_i(t)$ for $t \geq 0$
with initial condition $u_i(0) = \eta_i$.

Exact solution: $u_i(t) = e^{c_i t} \eta_i$.
Solution of independent ODEs by Euler’s method

Solve $u'_i(t) = c_i u_i(t)$ for $t \geq 0$
with initial condition $u_i(0) = \eta_i$.

Exact solution: $u_i(t) = e^{c_i t} \eta_i$.

Euler method: $u_i(t + \Delta t) \approx u_i(t) + \Delta t c_i u_i(t) = (1 + c_i \Delta t) u_i(t)$.

Implement this for large number of time steps for $i = 1, 2, \ldots, n$ with n large too.
Solution of independent ODEs by Euler’s method

Solve \(u'_i(t) = c_i u_i(t) \) for \(t \geq 0 \)

with initial condition \(u_i(0) = \eta_i \).

Exact solution: \(u_i(t) = e^{c_i t} \eta_i \).

Euler method: \(u_i(t + \Delta t) \approx u_i(t) + \Delta t c_i u_i(t) = (1 + c_i \Delta t) u_i(t) \).

Implement this for large number of time steps for \(i = 1, 2, \ldots, n \) with \(n \) large too.

This problem is embarassingly parallel: Problem for each \(i \) is completely decoupled from problem for any other \(i \). Could solve them all simultaneously with no communication needed.
Fine grain solution with parallel do loops

```fortran
!$omp parallel do
do i=1,n
  u(i) = eta(i)
enddo

do m=1,nsteps
  !$omp parallel do
  do i=1,n
    u(i) = (1.d0 + dt*c(i))*u(i)
  enddo
enddo

Note that threads are forked nsteps+1 times.

Requires shared memory:
don’t know which thread will handle each i.
```
Coarse grain solution of ODEs

Split up $i = 1, 2, \ldots, n$ into n threads disjoint sets.
A set goes from $i=\text{istart}$ to $i=\text{iend}$
These private values are different for each thread.

Each thread handles 1 set for the entire problem.

```c
!$omp parallel private(istart,iend,i,m)
istart = ??
iend = ??
do i=istart,iend
   u(i) = eta(i)
endo
do m=1,nsteps
do i=istart,iend
   u(i) = (1.d0 + dt*c(i))*u(i)
endo
do !$omp end parallel
```

Threads are forked only once,
Each thread only needs subset of data.
Setting istart and iend

Example: If $n=100$ and $nthreads = 2$, we would want:

- **Thread 0:** $istart= 1$ and $iend= 50$,
- **Thread 1:** $istart=51$ and $iend=100$.

If $nthreads$ divides n evenly...

```fortran
points_per_thread = n / nthreads
!$omp parallel private(thread_num, istart, iend, i)
  thread_num = 0 ! needed in serial mode
  !$ thread_num = omp_get_thread_num()
  istart = thread_num * points_per_thread + 1
  iend = (thread_num+1) * points_per_thread
  do i=istart, iend
    ! work on thread’s part of array
    enddo
  ...
!$omp end parallel
```

R.J. LeVeque, University of Washington
AMath 483/583, Lecture 16, May 2, 2011
Setting \texttt{istart} and \texttt{iend} more generally

\textbf{Example:} If \(n=101\) \textbf{and} \(n_{\text{threads}} = 2\), we would want:

\textbf{Thread 0:} \(\text{istart}= 1 \text{ and } \text{iend}= 51\),
\textbf{Thread 1:} \(\text{istart}=52 \text{ and } \text{iend}=101\).

If \(n_{\text{threads}}\) might not divide \(n\) evenly...

\begin{verbatim}
points_per_thread = (n + n_{\text{threads}} - 1) / n_{\text{threads}}
$omp parallel private(thread_num, istart, iend, i)
 thread_num = 0 ! needed in serial mode
 $omp thread_num = omp_get_thread_num()
 istart = thread_num * points_per_thread + 1
 iend = min((thread_num+1) * points_per_thread, n)
 do i=istart,iend
 ! work on thread's part of array
 enddo
...
$omp end parallel
\end{verbatim}
Example: Normalizing a vector

Given a vector (1-dimensional array) x, Compute the normalized vector $x/\|x\|_1$, with $\|x\|_1 = \sum_{i=1}^{n} |x_i|$.

Fine-grain: Using parallel do loops.

```language=fortran
norm = 0.d0
!$omp parallel do reduction(+ : norm)
do i=1,n
    norm = norm + abs(x(i))
  enddo

!$omp parallel do
do i=1,n
do i=1,n
    x(i) = x(i) / norm
  enddo
```

Note: Must finish computing norm before using for any $x(i)$, so we are using the implicit barrier after the first loop.
Another fine-grain approach, forking threads only once:

```fortran
! from $CLASSHG/codes/openmp/normalize1.f90
norm = 0.d0
!$omp parallel private(i)

!$omp do reduction(+ : norm)
do i=1,n
    norm = norm + abs(x(i))
enddo
!$omp barrier ! not needed (implicit)

!$omp do
do i=1,n
    x(i) = x(i) / norm
enddo
!$omp end parallel
```
Example: Normalizing a vector

Compute the normalized vector \(\frac{x}{\|x\|_1} \), with \(\|x\|_1 = \sum_{i=1}^{n} |x_i| \)

Coarse grain version:

Assign blocks of \(i \) values to each thread. Threads must:

- Compute thread’s contribution to \(\|x\|_1 \),
 \[
 \text{norm_thread} = \sum_{\text{istart}}^{\text{iend}} |x_i|,
 \]

- Collaborate to compute total value \(\|x\|_1 \):
 \[
 \|x\|_1 = \sum_{\text{threads}} \text{norm_thread}
 \]

- Loop over \(i = \text{istart}, \text{iend} \) to divide \(x_i \) by \(\|x\|_1 \).
Example: Normalizing a vector

! from $CLASSHG/codes/openmp/normalize2.f90

norm = 0.d0
!$omp parallel private (i,norm_thread, &
!$omp istart,iend,thread_num)
!$ thread_num = omp_get_thread_num()
istart = thread_num * points_per_thread + 1
iend = min((thread_num+1) * points_per_thread, n)
norm_thread = 0.d0
do i=istart,iend
 norm_thread = norm_thread + abs(x(i))
enddo

! update global norm with value from each thread:
!$omp critical
 norm = norm + norm_thread
!$omp end critical

!$omp barrier !! needed here

do i=istart,iend
 y(i) = x(i) / norm
enddo

!$omp end parallel
Normalizing a vector — possible bugs

1. Not declaring proper variables \texttt{private}

R.J. LeVeque, University of Washington
AMath 483/583, Lecture 16, May 2, 2011
1. Not declaring proper variables `private`.

2. Setting `norm = 0.d0` inside parallel block.

 Ok if it’s in a `omp single` block. Otherwise second thread might set to zero after first thread has updated by `norm_thread`.

None of these bugs would give compile or run-time errors! Just wrong results (sometimes).
Normalizing a vector — possible bugs

1. Not declaring proper variables `private`.

2. Setting `norm = 0.d0` inside parallel block.
 Ok if it's in a `omp single` block. Otherwise second thread might set to zero after first thread has updated by `norm_thread`.

3. Not using `omp critical` block to update global `norm`.
 Data race.
Normalizing a vector — possible bugs

1. Not declaring proper variables private

2. Setting \(\text{norm} = 0.\text{d}0 \) inside parallel block.

 Ok if it’s in a \texttt{omp single} block. Otherwise second thread might set to zero after first thread has updated by \texttt{norm_thread}.

3. Not using \texttt{omp critical} block to update global \texttt{norm}.

 Data race.

4. Not having a \texttt{barrier} between updating \texttt{norm} and using it.

 First thread may use \texttt{norm} before other threads have added their contributions.
Normalizing a vector — possible bugs

1. Not declaring proper variables `private`

2. Setting `norm = 0.d0` inside parallel block.

 Ok if it’s in a `omp single` block. Otherwise second thread might set to zero after first thread has updated by `norm_thread`.

3. Not using `omp critical` block to update global `norm`.

 Data race.

4. Not having a `barrier` between updating norm and using it.

 First thread may use `norm` before other threads have added their contributions.

None of these bugs would give compile or run-time errors!

Just wrong results (sometimes).
Solve \(u'_i(t) = c_i u_i(t) \) for \(t \geq 0 \)
with initial condition \(u_i(0) = \eta_i \).

Exact solution: \(u_i(t) = e^{c_i t} \eta_i \).

Euler method: \(u_i(t + \Delta t) \approx u_i(t) + \Delta t c_i u_i(t) = (1 + c_i \Delta t) u_i(t) \).

New wrinkle: Stop time stepping when any of the \(u_i(t) \) values exceeds 100.

(Will certainly happen as long as \(c_j > 0 \) for some \(j \).)
OpenMP example with shared exit criterion

Stop time stepping when any of the $u_i(t)$ values exceeds 100.

Idea:

Each time step, compute $\text{umax} = \text{maximum value of } u_i \text{ over all } i$ and exit the time-stepping if $\text{umax} > 100$.
OpenMP example with shared exit criterion

Stop time stepping when any of the $u_i(t)$ values exceeds 100.

Idea:

Each time step, compute $\text{umax} = \text{maximum value of } u_i$ over all i and exit the time-stepping if $\text{umax} > 100$.

Each thread has a private variable umax_thread for the maximum value of u_i for its values of i. Updated for each i.
Stop time stepping when any of the $u_i(t)$ values exceeds 100.

Idea:

Each time step, compute $\text{umax} = \text{maximum value of } u_i \text{ over all } i$ and exit the time-stepping if $\text{umax} > 100$.

Each thread has a private variable umax_thread for the maximum value of u_i for its values of i. Updated for each i.

Each thread updates shared umax based on its umax_thread. This needs to be done in critical section.
Stop time stepping when any of the $u_i(t)$ values exceeds 100.

Idea:

Each time step, compute $\text{umax} =$ maximum value of u_i over all i and exit the time-stepping if $\text{umax} > 100$.

Each thread has a private variable umax_thread for the maximum value of u_i for its values of i. Updated for each i.

Each thread updates shared umax based on its umax_thread. This needs to be done in critical section.

Also need two barriers to make sure all threads are in synch at certain points.
OpenMP example with shared exit criterion

```fortran
!$omp parallel private(i,m,umax_thread, &
!$omp                    istart,iend,thread_num)
!$ thread_num = omp_get_thread_num()
istart = thread_num * points_per_thread + 1
iend = min((thread_num+1) * points_per_thread, n)
do m=1,nsteps
   umax_thread = 0.d0
   !$omp single
      umax = 0.d0
   !$omp end single
   do i=istart,iend
      u(i) = (1.d0 + c(i)*dt) * u(i)
      umax_thread = max(umax_thread, u(i))
   enddo

   !$omp critical
      umax = max(umax, umax_thread)
   !$omp end critical
   !$omp barrier
   if (umax > 100) exit
   !$omp barrier
endo
!$omp end parallel
```
If there were no barriers, following could happen:

Thread 0 executes critical section first, setting umax to 90.
Thread 0 checks if $\text{umax} > 100$. False, starts next iteration.
Thread 1 executes critical section, updating umax to 110.
Thread 1 checks if $\text{umax} > 100$. True, so it exits.

Thread 0 might never reach $\text{umax} > 100$. Runs forever.
OpenMP example with shared exit criterion

If there were no barriers, following could happen:
- Thread 0 executes critical section first, setting umax to 90.
- Thread 0 checks if $\text{umax} > 100$. False, starts next iteration.
- Thread 1 executes critical section, updating umax to 110.
- Thread 1 checks if $\text{umax} > 100$. True, so it exits.

Thread 0 might never reach $\text{umax} > 100$. Runs forever.

With only first barrier, following could happen:
- $\text{umax} < 100$ in iteration m.
- Thread 0 checks if $\text{umax} > 100$. Go to iteration $m + 1$.
- Thread 0 does iteration on i and sets $\text{umax} > 100$, Stops at first barrier.
- Thread 1 (iteration m) checks if $\text{umax} > 100$. True, Exits.

Thread 1 never reaches first barrier again, code hangs.