Kinetic Energy

\[T = T(q_1, q_2, \ldots, q_n, \dot{q}_1, \dot{q}_2, \ldots, \dot{q}_n) \]

\[T = \frac{1}{2} \sum_{k=1}^{n} m_k V_k^2 \]

where \[V_k^2 = \dot{x}_k^2 + \dot{y}_k^2 + \dot{z}_k^2 \]

\[x_k = x_k(q_1, q_2, \ldots, q_n), \quad y_k = y_k(q_1, q_2, \ldots, q_n) \]

\[\frac{dx_k}{dt} = \dot{x}_k = \frac{\partial x_k}{\partial q_i} \dot{q}_i + \frac{\partial x_k}{\partial q_j} \dot{q}_j + \ldots \]

\[V_k^2 = \left(\frac{\partial x_k}{\partial q_i} \right)^2 + \left(\frac{\partial y_k}{\partial q_i} \right)^2 + \left(\frac{\partial z_k}{\partial q_i} \right)^2 \dot{q}_i^2 + \left[\text{same wrt } q_j \right] \dot{q}_j^2 + \ldots \]

\[V_k^2 = \left[\left(\frac{\partial x_k}{\partial q_i} \right)^2 \left(\frac{\partial y_k}{\partial q_i} \right)^2 \left(\frac{\partial z_k}{\partial q_i} \right)^2 \right] \dot{q}_i^2 + \ldots \]

\[T = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} m_{ij} \dot{q}_i \dot{q}_j + O(q^3) \]

where \[m_{ij} = \sum_{k=1}^{m_k} \left[\frac{\partial x_k}{\partial q_i} \frac{\partial x_k}{\partial q_j} + \frac{\partial y_k}{\partial q_i} \frac{\partial y_k}{\partial q_j} + \frac{\partial z_k}{\partial q_i} \frac{\partial z_k}{\partial q_j} \right] \]

Expand \(m_{ij} \) about \(q_0 \)

\[m_{ij} = m_{ij} \bigg|_{q_0} + \frac{\partial m_{ij}}{\partial q_l} \bigg|_{q_0} q_l + \frac{1}{2} \sum_{p=1}^{n} \frac{\partial^2 m_{ij}}{\partial q_l \partial q_p} \bigg|_{q_0} q_l q_p + \ldots \]

If we want to keep \(T \) to second order in \(q \) as we have for \(V \) we must neglect all terms in the expansion of higher order than \(O(1) \)
Multi Degree of Freedom

Potential Energy:

\[V = V(q_1, q_2, \ldots, q_n) \]

Select the reference potential \(V_0 = 0 \) and assume that this represents the equilibrium configuration.

Then

\[V = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} k_{ij} q_i q_j \]

where \(k_{ij} = \frac{\partial^2 V}{\partial q_i \partial q_j} \)

Note that \(k_{ij} = k_{ji} \) symmetric.

If \(k_{ij} \neq 0 \) when \(i \neq j \) then the system is said to be statically coupled.
\[
\Rightarrow m_{ij} = m_{ij}|_0 = \text{const} \\
\]
Again note that \(m_{ij} = m_{ji} \)

so

\[
\frac{1}{2} \sum_{i=1}^{n} m_{ij} q_i q_j \\
\]

if \(m_{ij} \rightarrow 0 \) when \(i = j \) the system is said to be dynamically coupled.

Define

\[
k = \text{stiffness matrix } \quad k = \{k_{ij}\} \\
M = \text{mass matrix } \quad M = \{m_{ij}\} \\
q = \text{vector of elements } q_1, q_2, \ldots \\
q = \begin{pmatrix} q_1 \\ q_2 \\ \vdots \\ q_n \end{pmatrix}
We note that the potential energy can be expressed as

$$V = \frac{1}{2} q^T K q \geq 0 \quad \forall q$$

Also

$$T = \frac{1}{2} q^T M q \geq 0 \quad \forall q^*$$

(Both K and M are positive definite)

Substitute into L.E.

$$\frac{d}{dt} \frac{\partial (T-V)}{\partial q_i} - \frac{\partial}{\partial q_i} (T-V) = 0$$

Show

$$M \ddot{q}^0 + K q^0 = 0$$
Solution of $M\ddot{x} + Kx = 0$

Normal Mode Approach

Let $x = Xe^{i\omega t}$

Substitute into $D = 0$:

$$(-\omega^2 M + K)x e^{i\omega t} = 0$$

$$(M^{-1}K - \omega^2 I)X = 0$$ \quad \text{(eigenvalue problem)}

For nontrivial solutions:

$$\text{det}(M^{-1}K - \omega^2 I) = 0 \quad \text{characteristic equation}$$

The characteristic equation will be an n^{th} order polynomial in ω^2 where n is the system.

$(M^{-1}K = H : \text{The Dynamical Matrix})$

Assume that all of the roots of $\text{det}(M^{-1}K - \omega^2 I)$ are distinct.

Then for each root (eigenvalue), ω_r, there will be a corresponding mode vector (eigenvector) \vec{X}_r.

$$(M^{-1}K - \omega_r^2 I)\vec{X}_r = 0$$

Solve for \vec{X}_r to get mode shape.