1. Gradient of a scalar field and divergence of a vector field: Say you have a 2D pressure field given by \(p(x,y) = A \cos(kx)\cos(l_y) \), where \(A, k, \) and \(l \) are constants.

[4] 1.i. Sketch the vector field \(-\nabla p\). Include a scale arrow for the vectors, and be sure to specify the units of any expressions.

[3] 1.ii. What is the divergence of this field?

[2] 1.iii. If the vector field was the velocity would the flow be incompressible?

2. The material derivative: Assume the temperature \(T(x,y,z,t) \) is conserved following a fluid parcel.

[2] 2.i. What is the equation for the evolution of \(T \)?

If the initial temperature field is given by \(T(x,z,t=0) = \frac{T_a}{L} x + \frac{T_0}{H} z \) and the velocity field is given by \(u = (u,v,w) = \left(\frac{U}{H} z, 0, 0 \right) \).

[1] 2.ii. What is the rate of change of temperature following a fluid parcel?

[3] 2.iii. What is the rate of change of temperature at \(z = H/2 \)?

[4] 2.iv. What is the gradient of the temperature field as a function of time and space?

3. Buoyancy: Say you have a spar buoy of vertical length \(H \) (like in the lab we did) that is at rest at the interface of a two layer fluid. The lower layer has density \(\rho = 1000 \text{ kg m}^{-3} \) and the upper layer has density \(\rho = 999 \text{ kg m}^{-3} \).

[4] 3.i. What is the solution for vertical oscillations if the buoy is always somewhere on the interface? Make sure to simplify your expression for the frequency as much as possible.

[3] 3.ii. What is the frequency if the oscillations (and the long axis of the buoy) are along an angle \(\theta \) relative to the vertical?

[4] 3.iii. What is the solution if \(H \) is negligibly small compared with the amplitude of the oscillations (meaning that the buoy spends most of its time in either the lower or the upper layer)?