Surface-modification enhanced semiconductor-insulator heteroepitaxy

B. R. Schroeder¹, Shuang Meng¹, A. Bostwick¹, E. Rotenberg² and M. A. Olmstead¹

¹Department of Physics, University of Washington, Seattle WA 98195, USA
²Advanced Light Source, Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA

INTRODUCTION
To produce large band-offset (> 5 eV) quantum wells from Si and CaF₂ with atomically abrupt interfaces, it is necessary that the heteroepitaxy of CaF₂ on Si and that of Si on CaF₂ be well understood. Presently, only the growth of CaF₂ on Si(111) can be well controlled [1]. The epitaxy of Si on CaF₂ is hindered by (i) a very large surface energy difference and (ii) a strong chemical reaction between Si adatoms and surface fluorine. These factors have precluded growth of laminar silicon on CaF₂ with an atomically abrupt interface. Rather, growth at elevated temperatures is islanded, with Ca surface-segregation, while growth at low enough temperatures to avoid islanding results in an amorphous film. We used a combination of electron irradiation and surfactant introduction to combat both factors and achieve growth of laminar, crystalline Si on CaF₂.

We first electron-irradiated CaF₂ to remove surface fluorine, creating a high surface energy, Ca-terminated surface. This defected surface is extremely reactive. The reaction with water vapor is very strong and after only 1 hour at 10⁻¹⁰ mbar, a full monolayer of oxygen is present. To stabilize the surface against unwanted reactions, and, primarily, to introduce a surfactant for subsequent Si growth, this surface was then terminated with arsenic. Deposition of Si on this As-terminated surface in the presence of some additional As₄ resulted in ultra-thin (5ML), laminar, crystalline Si on CaF₂(111). We find Si-Ca interface bonds and a type-B interface (Si is rotated 180° with respect to the CaF₂). Further, the As behaves in true surfactant fashion and produces the well known 1x1 surface termination.

As INTERACTION WITH CaF₂
We investigated As₄ interactions with pristine and irradiated CaF₂ to understand arsenic’s proposed role as a surfactant to promote laminar Si growth on CaF₂. We find no As sticks to pristine CaF₂, at or above room temperature: defects are required. After electron irradiation to remove 1 monolayer (ML) fluorine, less than 1 ML of As is adsorbed on the surface (compared to Si(111):As). This may mean (a) As cannot reach sub-surface F vacancies and/or (b) the replacement of F by As is not one-to-one. At higher temperatures, more As is incorporated, primarily below the surface. Arsenic 3d photoemission displays two components, neither of which lies in bulk fluorine sites (see Fig. 1). The high binding energy peak
shows weak XPD structure that is not modeled by sub-surface F sites, even after accounting for the different kinetic energies. The low binding energy peak is consistent with surface As, likely not in an ordered site. Our observation that the surface layer contains less than 1 ML As led us to grow Si on this surface in the presence of an As$_4$ flux.

Si/CaF$_2$/Si INTERFACE AND OVERLAYER PROPERTIES

We deposited silicon on electron-irradiated and arsenic terminated CaF$_2$ in the presence of an arsenic flux at 500°C. The substrate was a thin (3.0 nm) layer of CaF$_2$ on a p-type Si(111) substrate to enable direct current heating and to reduce charging during photoemission. The arsenic-terminated silicon overlayer forms silicon-calcium interface bonds and completely wets the CaF$_2$. The deconvolved Si 2p$_{3/2}$ spectrum at the left of Fig. 2 shows contributions due to the buried substrate (solid line) as well as the overlayer (dashed). Both contain an interface component shifted to lower binding energy, characteristic of Si-Ca bonding. The overlayer additionally shows Si-As bonding at the surface and some sub-surface As. The Fermi level at the top interface lies 0.3 eV closer to Si conduction band, perhaps reflecting the n$^+$ overlayer doping. XPD (Fig. 2, right) shows the local atomic structure is the same in the overlayer and substrate, as is the crystal orientation. The first CaF$_2$/Si interface is type-B, implying a similar 180° rotation at the upper interface. This is in contrast to the type-A orientation observed without surface modification. These results verify our predictions that this combination of electron irradiation and arsenic surfactant would lead to similar interface structure at the Si/CaF$_2$ and CaF$_2$/Si interfaces and promote laminar growth of Si nanostructures.

PHOTON DAMAGE

Both electron and photon irradiation of CaF$_2$ have long been known to remove fluorine, and electron and photon irradiation cause similar effects on photoemission spectra. We used the high brightness and signal to noise ratio of the ALS to acquire spectra before oxidation changed the film, and also to monitor photon-induced changes in the film. We compared rates of photon-
stimulated fluorine desorption, and find electron-irradiated CaF\textsubscript{2} damages faster than pristine CaF\textsubscript{2} under similar conditions: initial defects promote further film erosion. Fortunately, we find Si- and As-covered CaF\textsubscript{2} are much more stable. A typical time variation of Ca 3p and F 2s emission from a pristine 1.0 nm thick CaF\textsubscript{2} film is shown in Fig. 3. As the fluorine is removed, Ca is converted from bulk CaF\textsubscript{2} to metallic Ca; interface Ca is not affected. The Ca and F photoemission intensity is reduced primarily in the “surface” peak (known to be on the high binding energy side of the bulk [1]).

We were able to obtain synchrotron-based XPD from CaF\textsubscript{2} films relatively unaffected by PSD by combining unidirectional defocusing of the beam and lateral movement of the sample in the narrow direction after each spectrum. All data shown above were obtained in that manner.

ACKNOWLEDGEMENTS
The authors are grateful to George Meigs for his technical assistance, patience and good humor.

REFERENCES

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Science Division, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

Principal investigator: Marjorie Olmstead, Department of Physics, University of Washington. Email: olmstead@phys.washington.edu. Telephone: 206 543 7351. Web Page: http://faculty.washington.edu/olmstd