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Summary

Modern medicine has graduated from broad spectrum treatments to targeted therapeutics. New

drugs recognize the recently discovered heterogeneity of many diseases previously considered to

be fairly homogeneous. These treatments attack specific genetic pathways which are only dysreg-

ulated in some smaller subset of patients with the disease. Often this subset is only rudimentarily

understood until well into large scale clinical trials. As such, standard practice has been to enroll

a broad range of patients and run post-hoc subset analysis to determine those who may particu-

larly benefit. This unnecessarily exposes many patients to hazardous side effects, and may vastly

decrease the efficiency of the trial (especially if only a small subset benefit). In this manuscript

we propose a class of adaptive enrichment designs which allow the eligibility criteria of a trial

to be adaptively updated during the trial, restricting entry to patients likely to benefit from the

new treatment. We show that our designs both preserve type 1 error, and in a variety of cases

provide a substantial increase in power.
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1. Introduction

The literature on adaptive clinical trial design has focused on sample-size re-estimation, changing

the plan for interim analyses, or modifying randomization weights (Chow and Chang (2007),

Muller and Schafer (2001), Rosenberger and Lachin (1993), Karrison, Huo, and Chappell (2003),

and Kim et al. (2011)). In oncology therapeutics development, attention has turned towards

discovery of baseline predictive biomarkers to identify patients likely to benefit from the new

treatment (Papadopoulos, Kinzler, and Vogelstein (2006), Schilsky (2007), and Sawyers (2008)).

Tumors of most body sites have been found to be biologically heterogeneous with regard to their

causal mutations and molecularly targeted drugs are unlikely to benefit most patients in the

broad diagnostic categories traditionally included in clinical trials. When the pathophysiology of

the disease and the mechanism of action of the drug are well understood, a binary predictive

biomarker can be identified prior to or early in clinical development and used to restrict entry

of patients to the pivotal phase 3 clinical trials comparing the new drug to a suitable control.

Such “enrichment” designs can serve to magnify the treatment effect and thereby improve the

efficiency of the clinical trial (Simon and Maitournam (2005), Maitournam and Simon (2005),

and Mandrekar and Sargent (2009)).

Because of the complexity of cancer biology, it is frequently impossible to identify a single

candidate predictive biomarker and a known threshold by the time the phase 3 trials are initiated

(Sikorski and Yao (2009) and Sher et al. (2011)) Often, several candidate biomarkers are available

and phase 2 information is not adequate to reliably select among them. Rather than making

arbitrary decisions based on inadequate phase 2 data, we will describe a phase 3 design which

begins without restricting entry based on any of the candidate biomarkers, and sequentially

restricts entry in an adaptive manner. This gives much of the efficiency of the “enrichment”

approach without the need to choose a subset beforehand.

There has been relatively little previous methodological work on adaptively changing the
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eligibility criteria during a clinical trail. The phase II Bayesian adaptive methods of Kim et al.

(2011) involved a randomized comparison of several treatments within each of several biomarker

strata. Although patient eligibility for the trial was not modified, in some cases a treatment arm

would be discontinued from use within a stratum. Wang, O’Neill, and Hung (2007) considered a

design which compared treatment to control with a single binary biomarker, allowing termination

of the biomarker negative cohort at an interim analysis. Liu et al. (2009) and Follman (1997)

describe designs for a single binary marker and a single interim analysis. Rosenblum and Van Der

Laan (2011) permit several disjoint strata with a single interim analysis but assume that there

are no data dependent period effects. We will consider the problem in greater generality.

In practice, changes to eligibility criteria are not unusual. Eligibility is sometimes narrowed

as a result of toxicity experience or broadened to increase accrual rate. The eligibility criteria

for a phase 3 clinical trial is often thought of as defining the target population for future use of

the new treatment. This viewpoint is, however, problematic. The eligibility criteria, even without

changes, may not adequately reflect the group of patients who actually participated in the trial.

Also, many clinical trials establish a small average treatment effect for the eligible patients as

a whole. Even an improvement in 5-year disease free survival from 70 percent to 80 percent for

surgery with chemotherapy compared to surgery alone means that 70 percent of the patients

did not need the new treatment and of the 30 percent of patients who did need some additional

treatment, two-thirds did not benefit from the chemotherapy. Given the considerable expense

and potentially serious adverse effects of many new treatments, using the eligibility criteria as a

basis for indicating who should receive therapeutics is increasingly unsatisfactory.

In the next section we will present a general framework for adaptive enrichment. We will

introduce two methods of analysis for binary response clinical trials which are guaranteed to pre-

serve the type I error. In the section following that, we describe a simulation study we performed

to evaluate adaptive enrichment of the threshold of positivity for a single biomarker/classifier
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and compare it to a standard design without adaptive enrichment. We then present methods of

analysis that are available when adaption takes place in a group sequential manner. We discuss

application of the methods to other endpoints and discuss generalization of the results to future

patients.

2. Preserving type I error with adaptive enrichment for binary outcome

We first consider binary outcome. Assume we have a single new treatment we are comparing to

control (or standard of care). We randomize each patient that we accrue with equal probability

to one of the two arms. Let yi be the treatment assignment for patient i: yi = 1 for the new

treament and yi = 0 for control. Let xi denote a vector of covariates measured on patient i.

Finally, let zi be the outcome for patient i where zi = 1 for response and zi = 0 for non-response.

As we accrue more patients we would like to restrict enrollment to those patients who will

benefit from the treatment. Let f(x) be the map from our covariate space to {0, 1} which indicates

whether a patient with covariate vector x will perform better on treatment or control:

f(x) = I{pT (x) > pC(x)}

where pT (x) and pc(x) are the probabilities of response for a patient with covariate vector x

under treatment and control. For each m, let f̂m(x) be our estimate of f(x), computed after

accrual of m patients. The data available for developing f̂m(x) are x1, . . . , xm−1, y1, . . . , ym−1

and z1, . . . , zm−1.

Consider the following procedure:

1. Randomize the first m0 patients without exclusions to treatment or control to get a baseline

estimate of f̂m0
. Now for each m > m0:

2. Find f̂m based on previous patients (covariates, treatment status, outcome).

3. Restrict entry into the clinical trial to only patients with f̂m(x) = 1.
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4. Repeat until a total of n patients have been enrolled.

The enrichment classifier can be re-computed after each new outcome is obtained or in a

group sequential manner. It can be based on modeling the unknown pT (x) and pC(x) functions

or using other classification strategies. Our focus will not be on determining how best to estimate

f(x) but on demonstrating how to preserve the type I error when using adaptive enrichment.

The null hypothesis for this setup is that no sub-populations benefits more from treatment than

control; i.e.

pT (x) = pC(x) for all x

Because the prognosis of patients included in the clinical trial may change sequentially due

to our changing enrollment criteria, and because our change in enrollment criteria is outcome

dependent, standard methods of analysis are not guaranteed to control the type 1 error. For

example, in Section 6 we show in a simulation how a standard permutation test can give type 1

error in excess of 15%.

Here we propose using the test statistic

S =

n∑
i=1

[yizi + (1− yi)(1− zi)]. (2.1)

S is just the number of successes on the new treatment plus the number of failures on the

control. It is straightforward to see that under the null, regardless of the values of pT (x) = pC(x)

and of how enrollment criteria change, we have

yizi + (1− yi)(1− zi) ∼ Ber(0.5).

Thus, under the null

S ∼ binomial (n, 0.5)

Comparing S to the tails of this binomial is a valid test that protects the type 1 error regardless

of the method used for adaptively modifying enrollment criteria.
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If patients are accepted and randomized in pairs, one to each treatment arm, and enrollment

criteria f̂ updated no more frequently than after each pair, then the test statistic we proposed

above has a familiar form. If we let zi,C and zi,T be the outcome for the control observation and

treatment observation respectively from pair i, our statistic (2.1) after n pairs is equivalent to

S̃ =

n∑
i=1

{I {zi,T > zi,C} − I {zi,T < zi,C}} (2.2)

This is the number of untied pairs favoring treatment minus the number of untied pairs favoring

control. Under the null hypothesis, each untied pair is equally likely to favor treatment or control.

If we continue to enroll patients until we have a prespecified number, u, of untied pairs, then

under the null

S̃ + u

2
∼ binomial (u, 0.5) .

The hypothesis test based on this statistic is exactly McNemar’s test.

Several extensions to the above formulations are possible, some of which will be pursued later

in this paper. For example, the paired approach is easily generalizable to non-binary endpoints

using the same test statistic S̃. Our assumption that a single statistical significance test will be

performed after a pre-specified n patients are randomized is also inessential. One can pre-specify

K interim analysis points after nk, k = 1, . . . ,K patients or untied pairs have been treated on

each arm and an interim analysis plan that allocates the type I error among the interim analyses

(Pocock (1982), Lan and DeMets (1983), and Jennison and Turnbull (1999)).

3. Application - Adaptive Threshold Enrichment Design

One important application of adaptive enrichment is to the frequently occurring setting where a

single candidate predictive biomarker is available but no cut-point has been determined (Jiang,

Freidlin, and Simon, 2007). Drug developers would often like to use an “enrichment design” in

which test negative patients are excluded, but early phase clinical trials are frequently too limited
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in size to reliably determine an acceptable cut-point. Regulators would also often prefer that the

clinical trial not restrict entry initially based on the biomarker so that the value of the test can be

more adequately evaluated. In such settings there are often a discrete set of candidate cut-points

which we will denote by ξ1, . . . , ξK . These may represent possible values of semi-numerical assays

or quantiles of numerical assays (e.g. 0th, 25th, 50th, 75th quantiles).

There are several reasonable ways of modeling the f(x) function for this single biomarker

setting. We will describe one approach here for a simple alternative — that the treatment effect

pT (x)−pC(x) for a patient with biomarker value x is either 0 or δ and that the treatment effect is

monotone non-decreasing in x with a jump only at one of the candidate cut-points. At an interim

analysis during the study, let l(ξk) denote the log likelihood of the data maximized with regard

to the unknown constants p0 6 p1 subject to the constraints pC(x) = p0 for all x, pT (x) = p0 for

x 6 ξk and pT (x) = p1 for x > ξk. We take the candidate cut-point ξk at which the log likelihood

is maximized as an estimate of the true cutpoint, x∗ and restrict subsequent accrual to patients

whose biomarker is greater than that value.

To illustrate our approach, We ran a simulation of the adaptive enrichment design under the

single biomarker model above. The biomarker was uniformly distributed on (0,1) with K equally

spaced potential cutpoints (at 1/(K + 1), · · · , K/(K + 1)). We used a single interim analysis

at which change of enrollment criteria was considered. Before the interim analysis, n1 simulated

patients were randomly allocated to treatment T or control C with equal probability. Outcome

was binary, 0 (non-response) or 1 (response) with response probability of p0 for both the control

group and patients in the treatment group with biomarker value below the true cut-point x∗ and

p1 for patients on treatment with biomarker value above x∗.

At the interim analysis we found the candidate cut-point x̂∗ which maximized the log-

likelihood with the restriction that p0 6 p1. If this log-likelihood did not exceed the null log

likelihood (i.e. cut-point 1.0) by at least 0.25, accrual was teminated. Otherwise, accrual was
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restricted to patients with biomarker values greater than x̂∗ for the remainder of the trial. The

number of total patients N was determined in advance and N − n1 patients were accrued after

the interim analysis. The trial was analyzed using the test statistic (2.1) and a one-tailed 5%

rejection region.

Column 5 of Table 1 shows the statistical power for the adaptive enrichment design as assessed

by computer simulation for 10,000 replications of clinical trials with a total of 200 patients and 100

at the time of interim analysis. We vary p0, p1, x∗, and K (the number of candidate cut-points).

Note that the marker values were U(0, 1), so x∗ = 0.25 indicates that 75 percent of patients are

more likely to benefit from treatment. We used our adaptive procedure with statistic (2.1) and a

single interim analysis. As shown in rows 1 and 2, however, the actual size of the test is somewhat

less than the nominal 5 percent. Column 6 shows the simulated power of a contingency chi-square

test with continuity correction for trials based on 200 patients but without adaptive modification

of the eligibility criteria.

The adaptive enrichment procedure has much greater power than the standard clinical trial

for most conditions addressed in Table 1. For example, in the simulations shown in the fourth

row of the table the power for the adaptive enrichment approach with one interim analysis was

89.3% as compared to a power of 72.2% for a standard clinical trial without adaptive enrichment.

Table 2 shows the results for simulated clinical trials when the response probabilities for the

control group and the new treatment group are different for patients entered prior to and following

the interim analysis Under the null hypothesis that there is no treatment effect before or after the

interim analysis, the type I error is preserved using the test statistic (2.1) . The large advantage

of the adaptive enrichment procedure over the standard clinical trial is about the same in Table 2

as it was in Table 1.

While our simulations show a significant increase in power with adaptive enrichment, the more

you restrict the eligibility criteria, the longer patient accrual will take. Adaptive enrichment is
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most powerful relative to the standard non-adaptive approach when only a small subset of patients

benefit, however this is exactly when the accrual rate is most decreased. Column 7 of Table 1

shows the mean accrual time for the simulated adaptive trials assuming a total accrual rate of 100

unselected patients per year. The final column shows the accrual time for a standard non-adaptive

clinical trial that has the same power as the adaptive design (column 5 of the corresponding row).

The added sample size required for the non-adaptive design to achieve equivalent power in many

cases negates the potential advantage of the standard design with regard to duration of accrual,

but the standard design retains an advantage for some cases. The total sample size required for

the non-adaptive design can be computed by multiplying the final column by 100.

4. Group Sequential Analysis

In large multi-center clinical trials continual re-analysis of the data is generally not practical

even if it were desirable and the group sequential approach to interim analysis has been very

popular (Pocock (1982), Lan and DeMets (1983), and Jennison and Turnbull (1999)). The group

sequential approach was utilized in the previous section where there was a single interim analysis

time at which the eligibility criteria could be modified as a function of the interim data. We

showed in an earlier section that for any adaptive enrichment strategy, using the number of total

responses on the new treatment plus the number of non-responses on the control as test statistic

preserved the type I error. When the adaptiveness is performed in a group sequential manner,

there are other analysis strategies that preserve type I error.

4.1 General Statistics

We will begin with a short discussion of a general class of statistics (and tests) which preserve

the type 1 error. We start with some notation. For each block, k, let tk be some statistic based on

the data in that block. We will combine all of these statistics with some function G (t1, . . . , tK).



10 N. Simon and R. Simon

Let Lk denote all the data, outcomes, covariate vectors and treatment assignments, for blocks

1, . . . , k.

If we are careful to select our statistics, tk, so that under the null the distribution of each

tk is known and independent of Lk−1, then we may choose any G and construct a valid test

which preserves the type 1 error. This test is straightforward to construct. Because tk uses only

observations from block k and its null distribution is independent of Lk−1, it is independent of

all previous ti. Thus, under the null, we have t1, . . . , tk independent with known distributions.

This in turn will induce a known null distribution for G.

One must define the tk carefully to achieve independence of Lk−1. For example, suppose

outcomes are binary with equal numbers nk/2 of subjects on each treatment in block k. Let rTk

denote the number of responses on treatment T in block k and let rCk denote the number of

responses on control. One might naively want to use

tk = rTk − rCk (4.3)

However, while under the null this will have mean 0, the variance will depend on the overall

prognosis of the patients in the kth block (which may depend on Lk−1).

There are, however, some tk which do satisfy this requirement. For continuous response data,

the Mann-Whitney-Wilcoxon u statistic (within-block) is independent of Lk−1. Also, any valid

p-value based on continuous outcomes in the kth block is distributed uniformly on 0 to 1 inde-

pendently of Lk−1. In the next sections we discuss specific choices which we recommend for tk

and G in several scenarios.

4.2 Continuous Data

For continuous data with only a single block, it is standard practice to use either a t-test or a

Mann-Whitney-Wilcoxon test for comparing treatments. There are simple analogs to these for

the adaptive enrichment design.
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In a standard non-adaptive design one may use the t-statistic

t =
ȳT − ȳC√

σ̂2
T /nT + σ̂2

C/nC
. (4.4)

where ȳT and ȳC denote the overall average outcomes on the new treatment and control and the

denominator is the standard error of the difference between these two averages. For our adaptive

design we instead propose

1√
n

∑
k6K

√
nk

 ȳ(T,k) − ȳ(C,k)√
σ̂2
(T,k)/nT,k + σ̂2

(C,k)/nC,k

 (4.5)

where ȳ(T,k), ȳ(C,k), σ̂
2
(T,k), σ̂

2
(C,k), nT,k and nC,k denote the treatment and control sample means,

variances and sample sizes in the kth block. nk denotes the total sample size in the kth block and

the n is the total overall sample size.

The difference between the standard t statistic (4.4) and our statistic (4.5) is that we stan-

dardize by the variance in each block, rather than by the “pooled” variance. One might note that

even if we assume a common variance for all of the blocks (which we definitely do not), (4.4) is

still a poor choice. The estimate σ̂2
T in (4.4) is

σ̂2
T =

1

n− 1

∑
i6n

(
y(T,i) − ȳT

)2
=

1

n− 1

∑
k6K

∑
i6nk

(
y(T,k(i)) − ȳ(T,k)

)2
+

n

n− 1

∑
k6K

(
ȳ(T,k) − ȳT

)2
.

Even in the common variance case this is an overestimate by roughly
∑

k6K

(
ȳ(T,k) − ȳT

)2
. If

the overall prognosis varies among blocks, this may be a very large quantity.

One may also think of our statistic as the weighted sum of t statistics. For a given block, k,

with nk sufficiently large, we have

√
nk

 ȳ(T,k) − ȳ(C,k)√
σ̂2
(T,k)/nT,k + σ̂2

(C,k)/nC,k

 ∼̇tnk

√
nk

under the null (under very general regularity conditions) regardless of σ2
(T,k), σ

2
(C,k), and µ(T,k) =

µ(C,k). This is key as the value of these parameters (even under the null) may depend on observed
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outcomes and assignments of patients in previous blocks. The null distribution of our test statistic

is thus a linear combination of t statistics with weights fixed by the number of patients per block.

For each nk sufficiently large, under the null, our statistic is distributed 1√
n

∑
k6K

tnk

√
nk

 ∼̇N(0, 1)

We would reject our null hypothesis for particularly large or small values of our statistic.

One should also note that under a full-population alternative (ie. all sub-populations have

the same distribution under the null, and identical change under the alternative) under suitable

weak conditions for a fixed K (with nk →∞ for all k) this statistic is asymptotically as efficient

as the standard t-statistic against a mean shift. For the case of balanced treatment assignments

where nT,k = nC,k = nk/2, we can write eq (4.5) as

1√
n

∑
k6K

(
nk/
√

2
) ȳ(T,k) − ȳ(C,k)√

σ̂2
(T,k) + σ̂2

(C,k)


We also know that σ̂2

(T,k) → σ2
T , the common treatment variance, in probability and similarly

σ̂2
(C,k) → σ2

C (even under local alternatives). Thus by applying Slutsky’s theorem (with local

alternatives) we see that

1√
n

∑
k6K

(
nk/
√

2
) ȳ(T,k) − ȳ(C,k)√

σ̂2
(T,k) + σ̂2

(C,k)


∼ 1√

n

∑
k6K

(
nk/
√

2
)( ȳ(T,k) − ȳ(C,k)√

σ2
T + σ2

C

)

=
√
n/2

(
ȳT − ȳC√
σ2
T + σ2

C

)

This last line is exactly what we get from applying Slutsky’s Theorem to our usual t statistic —

thus, the two statistics have the same limiting distribution for full-population [local] alternatives

(and under the null). From this we see that our adaptive t-test is asymptotically efficient.

Although we have omitted some of the details for our application of Slutsky’s theorem (to be
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fully precise one needs to discuss the limiting distribution of the numerator under local alterna-

tives), these details are straightforward.

If we do not want to resort to asymptotic normality, as an alternative one could use a block

Mann-Whitney-Wilcoxon test. If we assume the strong null hypothesis that treatment and control

observations have the same distribution within each block and are absolutely continuous with

respect to Lebesgue measure, then the ranks within a block are uniformly distributed (ties are a

probability 0 event), independent of the exact distribution of the observations. Thus, one might

use as a statistic

u =
∑
k6K

wkuk

where uk is the Mann-Whitney statistic for only block k, and wk is a predefined weight. As we

said, under the null, any ranking of the variables within a block is equally probable. This induces

a null distribution for u, and can be used to construct a test which strictly controls type 1 error.

4.3 Binary Data

For binary data we would like to compare sample proportions between treatment and control.

Again, we assume a balanced design with n total patients, and nk in each block (though this can

be generalized to unbalanced designs). In a non-adaptive design one often uses the statistic

z =
p̂T − p̂C

2
√
p̂pool (1− p̂pool) /n

(4.6)

where p̂T and p̂C are sample success proportions in treatment and control respectively, and

p̂pool = (p̂T + p̂C) /2. For our adaptive design we propose

z =
1√
n/2

∑
k6K

√
nk/2

 p̂(T,k) − p̂(C,k)

2
√
p̂(pool,k)

(
1− p̂(pool,k)

)
/nk

 (4.7)

This is the binary analog to (4.5) and is asymptotically N(0, 1) (though it can be better ap-

proximated in small samples as a linear combination of t-distributions). These asymptotics are

independent of the actual value of p(T,k) = p(C,k) (so long as they are non-degenerate).
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As before, one can use Slutsky’s theorem to show that this statistic asymptotically loses no

efficiency versus the non-adaptive z-statistic for full-population alternatives.

4.4 Survival Data

Time-to-event data can also be handled fairly simply but one must take care to account for the

fact that the probability of censoring in later blocks may be a function of earlier outcomes and

assignments.

Let `k (β) denote the log-likelihood of the Cox model for the kth strata (with β the coefficient

for the treatment indicator), with first and second derivatives `
′

k and `
′′

k . Now we may use as a

statistic

T =
∑
k

wk
`
′

k (0)√
−`′′k (0)

where the wk are pre-specified non-negative weights. This is just the sum of the weighted, signed,

normalized scores of each block. Since each of these scores is asymptotically N(0, 1), we have a

valid N(0,W) test where W is the sum of squares of the weights.

Updating eligibility criteria is less effective for survival data because censoring reduces the

information available at interim analysis points. The enrichment classifier can be based on an

observed intermediate endpoint while the final analysis remains based on the survival endpoint.

While the statistics proposed up to this point seem very straightforward, as discussed earlier

we have been careful to choose only statistics whose distributions are invariant under the null. In

the next section we will discuss permutation methods and illustrate why our previous approach

was key for protecting type 1 error.

5. Failure of the Permutation Test

In general, permutation tests provide a flexible, robust way to test hypotheses with few paramet-

ric assumptions. One might consider permuting class labels within each block to find a conditional
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null distribution of any statistic of interest. While this seems like a reasonable approach, unfor-

tunately, in this case it does not strictly protect type 1 error.

The permutation test is derived by conditioning on the outcomes and considering the in-

duced distribution of treatment assignments under the null. In examples where observations are

independent, the induced distribution on the assignments under the null is the permutation dis-

tribution — every set of assignments with nC patients randomized to control and nT patients

randomized to treatment is equally likely. This in turn induces a null distribution on our test

statistic, and we can compare the original value of the statistic to the tails of this “permutation

null”.

In our case, however, even under the null, the outcomes in the later blocks are dependent

on the treatment assignments and outcomes of the earlier patients — eg. some combinations in

block 1 may make us choose a better prognosis sub-population for block 2, while others may not.

So simple rerandomization tests (even within block) do not preserve type 1 error control. This is

particularly pronounced when interim differences in outcome between the treatment groups lead

to major changes in the prognosis of subsequent patients.

To illustrate we ran several simulations. We assumed binary outcomes with an initial probabil-

ity of response p0 for both treatment groups. Patients were accrued in a group sequential manner

with a balanced n patients per block for each treatment. At the end of each block of accrual the

difference in cumulative number of responses on each treatment divided by the standard error

of the difference was computed. In computing the standard error, the underlying true response

rate for the block was used. If the absolute value of this standardized difference was greater than

a pre-specified critical value z∗, then the common response probability for patients accrued in

the next block changed to p00; otherwise it remained as p0. The statistic used for testing the

null hypothesis was the total number of successes on the new treatment. The null hypothesis was

rejected if the test statistic was greater than the 97.5th percentile or less than the 2.5th percentile
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of the permutation distribution. Treatment labels were permuted within block. For each clinical

trial simulated, 1000 permutations were performed. For each set of parameters considered, 5000

clinical trials were simulated.

We simulated clinical trials with 5 blocks and 20 patients per block for each treatment, with

p0 = 0.5, p00 = 0.01 and z∗ = 1.5. The two-sided type I error of the permutation test under

these conditions, based on 5000 simulations was estimated as 17.32% instead of the nominal 5%.

If the patients were accrued in 10 blocks of 10 patients per treatment instead of 5 blocks of

20 patients, the estimated type I error of the permutation test increased to 21.46%. With less

extreme changes in the prognostic makeup of the patients, the degree of anti-conservatism of the

permutation test was reduced. The simulation demonstrated, however, that with interim outcome

dependent changes in eligibility, the permutation test is not guaranteed to preserve type I error.

6. Identifying the Target Population

The adaptive enrichment approach can provide substantial improvements in power for detecting

whether a new treatment is effective for some subset of the patients initially eligible for the clinical

trial. However at the end of the trial there is a question of which subset actually benefits? This

is a difficult question, and providing recommendations for future use of the new treatment may

depend on additional analyses.

It is important to note, however, that this is just as big a problem in a standard clinical trials

where the analysis is based on the initially eligible population supplemented by post-hoc subset

analysis. The problem is more explicit with adaptive enrichment and is more tractable because

the algorithm for calculating the enrichment classifier is pre-specified. In standard trials “global

efficacy” is frequently driven by a small subset of patients who benefit, and yet the medication

becomes broadly approved with many or most of the patients achieving no benefit.

In order to minimize uncertainty in the intended population, we recommend use of the group
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sequential approach with a small number (1-2) of interim eligibility changes. The function f̂m(x)

used for the final stage of accrual might be taken as the indication for future use. Table 3

shows that for the adaptive threshold enrichment designs described earlier this approach is quite

effective when the number of candidate cut-points is limited. We believe that the rejection of the

global null hypothesis and the development of an ”indication classifier” for providing guidance

for future use of the new treatment should be seen as two different aspects of the analysis of

phase III clinical trials. The multiple testing framework is not necessarily the most appropriate

one for developing a classifier to guide future use of a new regimen to maximize net benefit for a

population of patients (Zhang et al., 2012).

As for methods for estimating f̂m(x), we have given some suggestions in the threshold case.

For stratified populations without covariates, classification can be based on the estimates of

treatment effect for each stratum. Development of enrichment classifiers with low or high dimen-

sional covariates is an important topic for further research. The classifiers should be evaluated

with regard to their effect on the operating characteristics of the clinical trial, their accuracy of

classification and their net effect on outcomes for future patients.

7. Discussion

We have introduced an adaptive enrichment strategy for randomized clinical trials that enables

eligibility criteria to adapt to exclude patients who appear unlikely to benefit from the new

treatment. Such designs can both increase the efficiency of the clinical trial and protect patients

from exposure to treatments with serious toxicities to which they may have little likelihood of

benefit. It is well known that the statistical power of a clinical trial is critically dependent on the

size of the treatment effect in the eligible population. The sample size or number of events required

often varies as the reciprocal of the square of the treatment effect. That relationship is responsible

for the potential efficiency of the enrichment design. The fixed eligibility enrichment design has
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limited applicability — it is difficult to have available at the start of a phase III trial a single

candidate predictive classifier and a well documented appropriate cut-point. Often, phase I and

II trials may provide one or more candidate predictive biomarkers but without adequate data

to confidently define cut-points of positivity. The framework we have developed here enables

the refinement of this information during the course of the phase III trial. When benefit of a

drug is restricted to a small, but initially undetermined, sub-population we have shown that our

adaptive enrichment design can preserve studywise type I error, provide substantial improvements

in statistical power, and suffer little statistical power loss against global alternatives.

We have described a broad class of significance tests that will preserve type I error for group

sequential adaptive enrichment designs with binary, continuous, and time-to-event outcomes,

and given examples of common, intuitive tests which are not level preserving. There are many

significance tests that do preserve type I error under adaptive enrichment and future research

should evaluate them from the perspective of statistical power. The generality of the formulation

under which we have demonstrated preservation of studywise type I error also suggests important

future research on the types of enrichment classifiers to use for interim and final analyses.
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8. tables



REFERENCES 21

p0 p1 K x∗ Power Adapt Power nonAdapt Adapt Accrual Equiv Accrual
0.2 0.2 5 0.5 0.034 0.033 2.42
0.5 0.5 5 0.5 0.035 0.038 2.49
0.2 0.5 1 0.5 0.898 0.717 2.48 3.25
0.2 0.5 3 0.5 0.893 0.722 3.07 3.25
0.2 0.5 5 0.5 0.897 0.726 3.19 3.25
0.2 0.5 9 0.5 0.892 0.724 3.25 3.25
0.2 0.5 3 0.25 0.971 0.952 2.47 2.25
0.2 0.5 5 0.25 0.968 0.955 2.55 2.25
0.2 0.5 5 0.75 0.768 0.281 3.97 4.75
0.2 0.45 5 0.5 0.761 0.579 3.23 3.0
0.2 0.45 3 0.5 0.761 0.582 3.05 3.0
0.2 0.45 3 0 0.959 0.979 2.22 1.7
0.4 0.7 5 0.5 0.896 0.637 3.12 4.0
0.1 0.3 5 0.5 0.581 0.568 3.22 2.1
0.1 0.25 5 0.5 0.376 0.385 3.22 2.0

Table 1. Power and duration for adaptive vs nonadaptive methods in a variety of scenarios. “Power
Adapt” and “Power nonadapt” are the simulated power estimates for the adaptive and non-adaptive
procedures. Power was calculated by simulation (with 10, 000 replications). p0 is the response probability
for all patients on control, and for patients on treatment with biomarker value x < x∗ (where x is
marginally U(0, 1)). p1 is the response probability for patients on treatment with x > x∗. K is the
number of candidate cutpoints. Adapt Accrual, is the average adaptive trial duration measured in years
based on an accrual rate of 100 patients per year. Equiv Accrual is the accrual time for a non-adaptive
design based on increasing the sample size to match power for the adaptive design.

p(C,before) p(T,before) p(C,after) p(T,after) Power Adapt Power nonadapt
0.2 0.2 0.5 0.5 0.035 0.037
0.5 0.5 0.2 0.2 0.035 0.033
0.2 0.5 0.5 0.8 0.897 0.646
0.2 0.45 0.5 0.75 0.757 0.502
0.1 0.3 0.5 0.7 0.590 0.347

Table 2. Power and type one error for adaptive and nonadaptive tests when the population changes after
interim analysis. p(C,before) and p(C,after) are the simulated response probabilities before and after interim
analyses for patients on control. p(T,before) and p(T,after) are the response probabilities before and after
interim analyses for patients on treatment.
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# of Candidate Cutpoints x∗ Distribution of Selected Cutpoints
0 0.33 0.5 0.67

1 0 0.93 0.07
1 0.5 0.08 0.92
2 0 0.87 0.10 0.03
2 0.33 0.12 0.79 0.09
2 0.67 0.05 0.09 0.86

Table 3. Simulated estimate of how often each cutpoint is chosen with a single interim check. Preselection
block has 100 patients. Biomarker is uniform (0, 1). Control patients and treated patients with biomarker
below x∗ have response probability of 0.2. Treated patients with biomarker above x∗ have response
probability of 0.5.


