Problem 1 – Labor market statistics

Suppose that

- the civilian non-institutional population is 100 million
- the employed 60 million
- the unemployed 4 million

Use the information to answer the following questions:

a. what is the size of the labor force

b. how many people are out of the labor force

c. calculate the participation rate

d. calculate the unemployment rate

e. calculate the non-employment rate

f. if every month 600,000 unemployed give up looking for a job while 400,000 find a job, calculate the average duration of unemployment

g. using the data above, calculate the probability for an unemployed worker of finding a job within a month ________________

h. how many new discouraged workers are there every month? ________________

Problem 2 – Labor market model

Suppose that the firm's markup over costs is 15% and that the wage setting equation is

\[W = zP(1-u) \]

where \(W \) is the nominal wage, \(z \) is a positive coefficient representing all the other variables that affect positively the outcome of wage setting, \(P \) is the price level (the price is constant) and \(u \) the unemployment rate (all the percentage are converted into decimal in the equations).

a. Use the price setting equation to calculate the real wage.

\[\text{real wage} = _______________ \]

b. Calculate the corresponding natural rate of unemployment (as a percentage) assuming that \(z \) is initially equal to .90

\[u^* = _______________ \% \]
c. Assume that as a result of legislative actions to reduce the minimum wage, z drops by 2%, calculate the real wage and the natural rate of unemployment (as a percentage).

real wage = _______________ \quad u^u = _______________ \%

d. Show the effect of the increase in z on the labor market graph below using the PS and the WS curves. (Name all the relevant axes and curves)

Problem 3 – IS-LM

An economy is described by the following equations:

- Consumption \quad C = 450 + 0.5(Y-T) - 250i
- Investment \quad I = 450 - 250i
- Government purchases \quad G = 300
- Taxes \quad T = 300
- Real Money Demand \quad L = 0.5Y - 500i
- Real Money Supply \quad M/P = 1000
where \(Y \) is output and \(i \) is the rate of interest expressed in the equations as a decimal number. (\(P, \) the price level, is constant and equal to 1). *Note that the consumption function depends on the interest rate in addition to disposable income.*

a. Derive the **equations for the LM curve** (\(i \) on the left hand) and **for the IS curve** (\(Y \) on the left hand).

\[
\text{LM: } \quad *\text{equation}\ *
\]

\[
\text{IS: } \quad *\text{equation}\ *
\]

b. Calculate the equilibrium level of income and the corresponding equilibrium for interest (as a percentage).

\[
Y^e = *\text{value}\ *
\quad i^e = *\text{value} \% *
\]

Calculate the corresponding levels of consumption \(C = *\text{value}\ *\)

and of investment \(I = *\text{value}\ *\)

and check your results for \(Y^e \) using the equilibrium condition equation.

* * *