Sequences

October 1, 2011
Sequences are used in many areas in mathematics, computer science, economics and almost all sciences.
Sequences are used in many areas in mathematics, computer science, economics and almost all sciences.

Definition

A sequence is a function \(f : \mathbb{N} \rightarrow A \).
Sequences are used in many areas in mathematics, computer science, economics and almost all sciences.

Definition

A sequence is a function $f : \mathbb{N} \rightarrow A$.

- A common notation for a sequence is $a_1, a_2, \ldots, a_n, \ldots$.
Sequences are used in many areas in mathematics, computer science, economics and almost all sciences.

Definition

A sequence is a function $f : N \rightarrow A$.

- A common notation for a sequence is $a_1, a_2, \ldots a_n, \ldots$.
- a_n is usually called the general term.
Sequences are used in many areas in mathematics, computer science, economics and almost all sciences.

Definition

A sequence is a function $f : \mathbb{N} \to A$.

- A common notation for a sequence is $a_1, a_2, \ldots a_n, \ldots$.
- a_n is usually called the general term.
- Sequences do not necessarily start with a_1. They may start with any other number.
Basics

Sequences are used in many areas in mathematics, computer science, economics and almost all sciences.

Definition

A sequence is a function \(f : \mathbb{N} \rightarrow A. \)

- A common notation for a sequence is \(a_1, a_2, \ldots a_n, \ldots \).
- \(a_n \) is usually called the general term.
- Sequences do not necessarily start with \(a_1 \). They may start with any other number.
- A sequence may be finite or infinite.
Describing sequences

There are three common ways to describe sequences:

Explicitly:

1, 3, 5, 7, ..., \(2^n - 1\), ...

\(a_n = 2^n - 1\)

Can you suggest an explicit expression for the general term \(a_n\)?

By a “rule”:

1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, ...

\(a_n = ?\)

Answer: \(a_n\) is “The \(n\)th non perfect square.”

\(a_n\) is the number of different ways to write \(n\) as a sum of no more than \(\lfloor \sqrt{n} \rfloor\) positive integers.
Describing sequences

There are three common ways to describe sequences:

Explicitely:

\[a_n = 2^n - 1 \]

Can you suggest an explicit expression for the general term \(a_n \)?

A sequence:

\[a_n = n^2 + 2n + 1 \]

Answer:

\(a_n \) is "The \(n \)th non perfect square."

\(a_n \) is the number of different ways to write \(n \) as a sum of no more than \(\lfloor \sqrt{n} \rfloor \) positive integers.
Describing sequences

There are three common ways to describe sequences:

Explicitely:

\[1, 3, 5, 7, \ldots, (2n - 1), \ldots\]

Can you suggest an explicit expression for the general term \(a_n\)?

By a “rule”:

\[a_n = \left\lfloor \sqrt{n} \right\rfloor^2.\]

\(a_n\) is the number of different ways to write \(n\) as a sum of no more than \(\left\lfloor \sqrt{n} \right\rfloor\) positive integers.
Describing sequences

There are three common ways to describe sequences:

Explicitly:
1, 3, 5, 7, \ldots, (2n - 1), \ldots

\[a_n = 2n - 1 \]
Describing sequences

There are three common ways to describe sequences:

Explicitly:

1, 3, 5, 7, ..., (2n − 1), ...

\[a_n = 2n - 1 \]

0, 3, 8, 15, ...

Can you suggest an explicit expression for the general term \(a_n \)?

By a "rule":

1, 1, 4, 1, 9, 1, 16, ...

\[a_n = \frac{1}{n} \]

Answer:

\(a_n \) is "The \(n \)th non perfect square."
Describing sequences

There are three common ways to describe sequences:

Explicitely:

1, 3, 5, 7, \ldots, (2n − 1), \ldots

\[a_n = 2n − 1 \]

0, 3, 8, 15, \ldots

Can you suggest an explicit expression for the general term \(a_n \)?
Describing sequences

There are three common ways to describe sequences:

Explicitely:

1, 3, 5, 7, \ldots, (2n - 1), \ldots

\[a_n = 2n - 1 \]

0, 3, 8, 15, \ldots

Can you suggest an explicit expression for the general term \(a_n \)?

1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \frac{1}{25}, \ldots
Describing sequences

There are three common ways to describe sequences:

Explicitely:

1, 3, 5, 7, ... , (2n - 1), ...

\(a_n = 2n - 1 \)

0, 3, 8, 15, ...

Can you suggest an explicit expression for the general term \(a_n \)?

1, \(\frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \frac{1}{25}, \ldots \)

\(a_n = \frac{1}{n^2} \).
Describing sequences

There are three common ways to describe sequences:

Explicitely:

\[1, 3, 5, 7, \ldots, (2n - 1), \ldots \]
\[a_n = 2n - 1 \]

0, 3, 8, 15, \ldots
Can you suggest an explicit expression for the general term \(a_n \)?

\[1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \frac{1}{25}, \ldots \]
\[a_n = \frac{1}{n^2} \]

By a “rule”:
There are three common ways to describe sequences:

Explicitely:
1, 3, 5, 7, ..., (2n−1), ...
\[a_n = 2n - 1\]

0, 3, 8, 15, ...
Can you suggest an explicit expression for the general term \(a_n\)?

1, \(\frac{1}{4}\), \(\frac{1}{9}\), \(\frac{1}{16}\), \(\frac{1}{25}\), ...
\[a_n = \frac{1}{n^2}.\]

By a “rule”:
1 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, ... \(a_n = ?\)
Describing sequences

There are three common ways to describe sequences:

Explicitely:

1, 3, 5, 7, \ldots, (2n - 1), \ldots

\[a_n = 2n - 1 \]

0, 3, 8, 15, \ldots

Can you suggest an explicit expression for the general term \(a_n \)?

\[1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \frac{1}{25}, \ldots \]

\[a_n = \frac{1}{n^2}. \]

By a “rule”:

1. 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, \ldots \ a_n = ?

2. Answer: \(a_n \) is “The \(n^{th} \) non perfect square.”
Describing sequences

There are three common ways to describe sequences:

Explicitely:
1, 3, 5, 7, \ldots, (2n – 1), \ldots
\[a_n = 2n – 1 \]

0, 3, 8, 15, \ldots
Can you suggest an explicit expression for the general term \(a_n \)?
1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \frac{1}{25}, \ldots
\[a_n = \frac{1}{n^2} . \]

By a “rule”:
1. 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, \ldots \ a_n = ?
2. Answer: \(a_n \) is “The \(n^{th} \) non perfect square.”
3. \(a_n \) is the number of different ways to write \(n \) as a sum of no more than \(\lfloor \sqrt{n} \rfloor \) positive integers.
Recursively:

- $1, 2, 6, 24, 120, \ldots \quad a_1 = 0, a_n = n a_{n-1}$.

Remark

The process of constructing a sequence from a given collection C, that is building a bijection between \mathbb{Z}^+ and C is called enumeration or sequencing.

Example

$(0,0), (0,1), (1,0), (0,2), (1,1), (2,0), (0,3), (1,2), (2,1), (3,0), \ldots$ is an enumeration of $\mathbb{N} \times \mathbb{N}$.

Sequences
Recursively:

1. 1, 2, 6, 24, 120, ... \(a_1 = 0, a_n = n a_{n-1} \).
2. 1, 2, 3, 5, 8, ... \(a_{n+2} = a_{n+1} + a_n, \ a_1 = 1, \ a_2 = 2 \)

Remark
The process of constructing a sequence from a given collection \(C \), that is building a bijection between \(\mathbb{Z}^+ \) and \(C \) is called enumeration or sequencing.

Example
(0, 0), (0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3), (1, 2), (2, 1), (3, 0), ... is an enumeration of \(\mathbb{N} \times \mathbb{N} \).
Recursively:

1. $1, 2, 6, 24, 120, \ldots \quad a_1 = 0, a_n = na_{n-1}$.
2. $1, 2, 3, 5, 8, \ldots, \quad a_{n+2} = a_{n+1} + a_n, \ a_1 = 1, a_2 = 2$
3. $a_{n,k} = a_{n-1,k-1} + a_{n-k,k}, \quad a_{n,0} = 0, a_{n,n} = a_{n,1} = 1 \ n \geq k$
Recursively:

1. $1, 2, 6, 24, 120, \ldots \quad a_1 = 0, a_n = na_{n-1}$.
2. $1, 2, 3, 5, 8, \ldots, \quad a_{n+2} = a_{n+1} + a_n, \ a_1 = 1, a_2 = 2$
3. $a_{n,k} = a_{n-1,k-1} + a_{n-k,k}, \quad a_{n,0} = 0, a_{n,n} = a_{n,1} = 1 \ n \geq k$
4. $a_n = (n - 1)(a_{n-1} + a_{n-2}), \quad a_1 = 0, a_2 = 1$.

Remark
The process of constructing a sequence from a given collection C, that is building a bijection between \mathbb{Z}^+ and C is called enumeration or sequencing.

Example
$(0,0), (0,1), (1,0), (0,2), (1,1), (2,0), (0,3), (1,2), (2,1), (3,0), \ldots$ is an enumeration of $\mathbb{N} \times \mathbb{N}$.

Sequences
Recursively:

1. $1, 2, 6, 24, 120, \ldots \quad a_1 = 0, a_n = na_{n-1}$.
2. $1, 2, 3, 5, 8, \ldots, \quad a_{n+2} = a_{n+1} + a_n, \quad a_1 = 1, a_2 = 2$
3. $a_{n,k} = a_{n-1,k-1} + a_{n-k,k}, \quad a_{n,0} = 0, a_{n,n} = a_{n,1} = 1 \quad n \geq k$
4. $a_n = (n - 1)(a_{n-1} + a_{n-2}), \quad a_1 = 0, a_2 = 1$
5. $a_{n,k} = a_{n-1,k} + a_{n-1,k-1}, \quad a_{1,1} = 1, \quad a_{n,k} = 0$ if $n < k$.
Recursively:

1. $1, 2, 6, 24, 120, \ldots \quad a_1 = 0, a_n = na_{n-1}$.
2. $1, 2, 3, 5, 8, \ldots, \quad a_{n+2} = a_{n+1} + a_n, \quad a_1 = 1, a_2 = 2$
3. $a_{n,k} = a_{n-1,k-1} + a_{n-k,k}, \quad a_{n,0} = 0, a_{n,n} = a_{n,1} = 1 \quad n \geq k$
4. $a_n = (n - 1)(a_{n-1} + a_{n-2}), \quad a_1 = 0, a_2 = 1.$
5. $a_{n,k} = a_{n-1,k} + a_{n-1,k-1}, \quad a_{1,1} = 1, \; a_{n,k} = 0 \text{ if } n < k.$
6. Do you recognize this sequence?
Recursively:

1. \(a_1 = 0, a_n = na_{n-1} \)
2. \(a_1 = 1, a_2 = 2 \)
3. \(a_{n+k} = a_{n-1+k-1} + a_{n-k} \), \(a_{n,0} = 0, a_{n,n} = a_{n,1} = 1 \) if \(n \geq k \)
4. \(a_n = (n - 1)(a_{n-1} + a_{n-2}) \), \(a_1 = 0, a_2 = 1 \).
5. \(a_{n,k} = a_{n-1,k} + a_{n-1,k-1} \), \(a_{1,1} = 1, a_{n,k} = 0 \) if \(n < k \).
6. Do you recognize this sequence?

Remark

The process of constructing a sequence from a given collection \(\mathbb{C} \), that is building a bijection between \(\mathbb{Z}^+ \) and \(\mathbb{C} \) is called enumeration or sequencing.
Recursively:

1. \[a_1 = 0, a_n = na_{n-1}. \]
2. \[1, 2, 3, 5, 8, \ldots, \quad a_{n+2} = a_{n+1} + a_n, \quad a_1 = 1, \ a_2 = 2 \]
3. \[a_{n,k} = a_{n-1,k-1} + a_{n-k,k}, \quad a_{n,0} = 0, a_{n,n} = a_{n,1} = 1 \ n \geq k \]
4. \[a_n = (n - 1)(a_{n-1} + a_{n-2}), \quad a_1 = 0, a_2 = 1. \]
5. \[a_{n,k} = a_{n-1,k} + a_{n-1,k-1}, \quad a_{1,1} = 1, a_{n,k} = 0 \text{ if } n < k. \]
6. Do you recognize this sequence?

Remark

The process of constructing a sequence from a given collection \(\mathbb{C} \), that is building a bijection between \(\mathbb{Z}^+ \) and \(\mathbb{C} \) is called \textbf{enumeration} or \textbf{sequencing}.

Example

\((0, 0), (0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3), (1, 2), (2, 1), (3, 0), \ldots\) is an enumeration of \(\mathbb{N} \times \mathbb{N} \).
Throughout this class and in many other classes you will be using sequences to model and solve problems.
1. Throughout this class and in many other classes you will be using sequences to model and solve problems.

2. One major goal is to find “simple” rules for given sequences.
Throughout this class and in many other classes you will be using sequences to model and solve problems.

One major goal is to find “simple” rules for given sequences.

Another goal is to build sequences that will help solve problems.
Goals

1. Throughout this class and in many other classes you will be using sequences to model and solve problems.
2. One major goal is to find “simple” rules for given sequences.
3. Another goal is to build sequences that will help solve problems.
4. For instance calculating integrals is based on building sequences and finding their limit.
Goals

1. Throughout this class and in many other classes you will be using sequences to model and solve problems.
2. One major goal is to find “simple” rules for given sequences.
3. Another goal is to build sequences that will help solve problems.
4. For instance calculating integrals is based on building sequences and finding their limit.
5. Calculating the number of rabbits starting with one pair is done using the Fibonacci sequence.
Goals

1. Throughout this class and in many other classes you will be using sequences to model and solve problems.
2. One major goal is to find “simple” rules for given sequences.
3. Another goal is to build sequences that will help solve problems.
4. For instance calculating integrals is based on building sequences and finding their limit.
5. Calculating the number of rabbits starting with one pair is done using the Fibonacci sequence.
6. There are many other “named sequences”. We shall study some of them.
1. Throughout this class and in many other classes you will be using sequences to model and solve problems.

2. One major goal is to find "simple" rules for given sequences.

3. Another goal is to build sequences that will help solve problems.

4. For instance calculating integrals is based on building sequences and finding their limit.

5. Calculating the number of rabbits starting with one pair is done using the Fibonacci sequence.

6. There are many other "named sequences". We shall study some of them.

7. We shall start by examining a number of examples.
Examples

For the following sequences try to find a “simple” explicit rule:

1. 1.0.1.0.1.0.... \(a_n = ? \)

Remark
Consider the last example. It was not too difficult to see that \(a_n = 3n - 2 \).
You are probably still struggling with the sequence preceding it. Do you see any relation between it and the last sequence? Can you see it now once your attention was called to it?
Examples

For the following sequences try to find a “simple” explicit rule:

1. 1.0.1.0.1.0. . . . \(a_n=?\)
2. 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, . . . \(a_n=?\)

Remark
Consider the last example. It was not too difficult to see that \(a_n = 3^n - 2^n\)
You are probably still struggling with the sequence preceding it.
Do you see any relation between it and the last sequence?
Can you see it now once your attention was called to it?
Examples

For the following sequences try to find a “simple” explicit rule:

1. 1.0.1.0.1.0. . . . \(a_n =? \)
2. 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, . . . \(a_n =? \)
3. 3, 6, 11, 18, 27, 38, 51, . . . \(a_n =? \)

Remark
Consider the last example. It was not too difficult to see that \(a_n = 3^n - 2^n \)
You are probably still struggling with the sequence preceding it.
Do you see any relation between it and the last sequence?
Can you see it now once your attention was called to it?
For the following sequences try to find a “simple” explicit rule:

1. 1.0.1.0.1.0.…. $a_n =$?
2. 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, … $a_n =$?
3. 3, 6, 11, 18, 27, 38, 51, … $a_n =$?
4. 2, 4, 16, 256, 65536, 4294967296, … $a_n =$?

Remark
Consider the last example. It was not too difficult to see that $a_n = 3^n - 2^n$.
You are probably still struggling with the sequence preceding it. Do you see any relation between it and the last sequence? Can you see it now once your attention was called to it?
Examples

For the following sequences try to find a “simple” explicit rule:

1. 1.0.1.0.1.0. . . . \(a_n = ? \)
2. 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, . . . \(a_n = ? \)
3. 3, 6, 11, 18, 27, 38, 51, . . . \(a_n = ? \)
4. 2, 4, 16, 256, 65536, 4294967296, . . . \(a_n = ? \)
5. 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, . . . \(a_n = ? \)
Examples

For the following sequences try to find a “simple” explicit rule:

1. 1.0.1.0.1.0. . . . \(a_n = ?\)
2. 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, . . . \(a_n = ?\)
3. 3, 6, 11, 18, 27, 38, 51, . . . \(a_n = ?\)
4. 2, 4, 16, 256, 65536, 4294967296, . . . \(a_n = ?\)
5. 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, . . . \(a_n = ?\)
6. 1, 2, 4, 8, 14, 25, 45, 79, 138, 240, . . . \(a_n = ?\)

Remark
Consider the last example. It was not too difficult to see that \(a_n = 3^n - 2^n\)
You are probably still struggling with the sequence preceding it.
Do you see any relation between it and the last sequence?
Can you see it now once your attention was called to it?
Examples

For the following sequences try to find a “simple” explicit rule:

1. 1.0.1.0.1.0. . . . \(a_n = ? \)
2. 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, . . . \(a_n = ? \)
3. 3, 6, 11, 18, 27, 38, 51, . . . \(a_n = ? \)
4. 2, 4, 16, 256, 65536, 4294967296, . . . \(a_n = ? \)
5. 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, . . . \(a_n = ? \)
6. 1, 2, 4, 8, 14, 25, 45, 79, 138, 240, . . . \(a_n = ? \)
7. 1, 5, 19, 65, 211, 665, 2059, 6305, 19171, 58025 . . . \(a_n = ? \)

Remark
Consider the last example. It was not too difficult to see that \(a_n = 3^n - 2^n \)
You are probably still struggling with the sequence preceding it. Do you see any relation between it and the last sequence? Can you see it now once your attention was called to it?
Examples

For the following sequences try to find a “simple” explicit rule:

1. 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, ... \(a_n = ? \)
2. 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, ... \(a_n = ? \)
3. 3, 6, 11, 18, 27, 38, 51, ... \(a_n = ? \)
4. 2, 4, 16, 256, 65536, 4294967296, ... \(a_n = ? \)
5. 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, ... \(a_n = ? \)
6. 1, 2, 4, 8, 14, 25, 45, 79, 138, 240, ... \(a_n = ? \)
7. 1, 5, 19, 65, 211, 665, 2059, 6305, 19171, 58025 ... \(a_n = ? \)

Remark

Consider the last example. It was not too difficult to see that
\[a_n = 3^n - 2^n \]
You are probably still struggling with the sequence preceding it.
Do you see any relation between it and the last sequence?
Can you see it now once your attention was called to it?
In general, if a finite number of terms of a given sequence are given, we may have multiple rules that will conform to the given data.

Example

What are the rules that will satisfy the sequence 1, 2, 4, ...?

Here are a few rules:

1. \(a_n = 2^n - 1\)
2. \(a_n = \left(\frac{n^2}{2}\right) + 1\)
3. \(a_n = \text{the (smallest prime > } n) - 1\)

Question

So which one is the "correct" answer?

Answer

All three are correct.

We can find a polynomial \(p(x)\) of degree 2 such that \(p(1) = 1\), \(p(2) = 2\), \(p(3) = 4\).
In general, if a finite number of terms of a given sequence are given, we may have multiple rules that will conform to the given data.

Example

What are the rules that will satisfy the sequence 1, 2, 4, . . .?

Here are a few rules:

1. \(a_n = 2^{n-1} \).
In general, if a finite number of terms of a given sequence are given, we may have multiple rules that will conform to the given data.

Example

What are the rules that will satisfy the sequence 1, 2, 4, . . .?

Here are a few rules:

1. \(a_n = 2^{n-1} \).
2. \(a_n = \binom{n}{2} + 1 \)

Question

So which one is the “correct” answer?

Answer

All three are correct.
In general, if a finite number of terms of a given sequence are given, we may have multiple rules that will conform to the given data.

Example

What are the rules that will satisfy the sequence 1, 2, 4, . . .?

Here are a few rules:

1. \(a_n = 2^{n-1} \).
2. \(a_n = \binom{n}{2} + 1 \)
3. \(a_n = \text{the (smallest prime > } n) - 1 \).
In general, if a finite number of terms of a given sequence are given, we may have multiple rules that will conform to the given data.

Example

What are the rules that will satisfy the sequence 1, 2, 4, . . .?

Here are a few rules:

1. \(a_n = 2^{n-1} \).
2. \(a_n = \binom{n}{2} + 1 \)
3. \(a_n = \text{the (smallest prime > } n\text{)} - 1 \).

Question

So which one is the “correct” answer?
In general, if a finite number of terms of a given sequence are given, we may have multiple rules that will conform to the given data.

Example

What are the rules that will satisfy the sequence 1, 2, 4, ...?

Here are a few rules:

1. \(a_n = 2^{n-1} \).
2. \(a_n = \binom{n}{2} + 1 \).
3. \(a_n = \text{the (smallest prime } > n) - 1. \)

Question

So which one is the “correct” answer?

Answer

All three are correct.

*We can find a polynomial \(p(x) \) of degree 2 such that \(p(1) = 1, \ p(2) = 2, \ p(3) = 4. \)
Common Sequences

1. Arithmetic progression: \(a_n = \alpha + (n - 1)d, \quad (a_n - a_{n-1} = d) \)
Common Sequences

1. Arithmetic progression: $a_n = \alpha + (n - 1)d$, \hspace{1em} (\(a_n - a_{n-1} = d\))

2. Geometric progression: $a_n = a_0 \cdot q^{n-1}$ \hspace{1em} (\(\frac{a_n}{a_{n-1}} = q\))
Common Sequences

1. **Arithmetic progression:** \(a_n = \alpha + (n - 1)d, \quad (a_n - a_{n-1} = d) \)

2. **Geometric progression:** \(a_n = a_0 \cdot q^{n-1}, \quad \left(\frac{a_n}{a_{n-1}} = q\right) \)

3. **Binomial coefficients:** \(a_{n,k} = \binom{n}{k} \)
Common Sequences

1. Arithmetic progression: \(a_n = \alpha + (n - 1)d, \quad (a_n - a_{n-1} = d) \)
2. Geometric progression: \(a_n = a_0 \cdot q^{n-1} \quad (\frac{a_n}{a_{n-1}} = q) \)
3. Binomial coefficients: \(a_{n,k} = \binom{n}{k} \)
4. 2, 3, 5, 7, 11, ... the prime numbers.
Common Sequences

1. Arithmetic progression: \(a_n = \alpha + (n - 1)d, \quad (a_n - a_{n-1} = d) \)
2. Geometric progression: \(a_n = a_0 \cdot q^{n-1} \quad (\frac{a_n}{a_{n-1}} = q) \)
3. Binomial coefficients: \(a_{n,k} = \binom{n}{k} \)
4. 2, 3, 5, 7, 11, ... the prime numbers.
5. Given a sequence \(a_n \) define a new sequence: \(s_n = \sum_{k=1}^{n} a_k \).
Let $a_n = \alpha + (n - 1)d$, $s_n = \sum_{i=1}^{n} a_n$. What is s_n?
Question

Let \(a_n = \alpha + (n - 1)d \), \(s_n = \sum_{i=1}^{n} a_n \).
What is \(s_n \)?
Sums

Question

Let $a_n = \alpha + (n - 1)d$, $s_n = \sum_{i=1}^{n} a_n$.

What is s_n?

Let $b_n = \alpha \cdot q^{n-1}$, $S_n = \sum_{i=1}^{n} b_i$.

What is S_n?

1. Let $\{a_n\} = \{\frac{1}{2}, \frac{1}{6}, \frac{1}{12}, \frac{1}{20}, \ldots\}$.
Sums

Question

Let \(a_n = \alpha + (n - 1)d \), \(s_n = \sum_{i=1}^{n} a_n \).

What is \(s_n \)?

Let \(b_n = \alpha \cdot q^{n-1} \), \(S_n = \sum_{i=1}^{n} b_i \).

What is \(S_n \)?

1. Let \(\{a_n\} = \left\{ \frac{1}{2}, \frac{1}{6}, \frac{1}{12}, \frac{1}{20}, \ldots \right\} \).
2. **What is** \(a_n \)?
Question

Let \(a_n = \alpha + (n - 1)d \), \(s_n = \sum_{i=1}^{n} a_n \).
What is \(s_n \)?
Let \(b_n = \alpha \cdot q^{n-1} \), \(S_n = \sum_{i=1}^{n} b_i \).
What is \(S_n \)?

1. Let \(\{a_n\} = \{\frac{1}{2}, \frac{1}{6}, \frac{1}{12}, \frac{1}{20}, \ldots\} \).
2. What is \(a_n \)?
3. What is \(s_n = \sum_{i=1}^{n} a_n \)?
Question

Let \(a_n = \alpha + (n - 1)d \), \(s_n = \sum_{i=1}^{n} a_n \).

What is \(s_n \)?

Let \(b_n = \alpha \cdot q^{n-1} \), \(S_n = \sum_{i=1}^{n} b_i \).

What is \(S_n \)?

1. Let \(\{a_n\} = \{\frac{1}{2}, \frac{1}{6}, \frac{1}{12}, \frac{1}{20}, \ldots\} \).
2. What is \(a_n \)?
3. What is \(s_n = \sum_{i=1}^{n} a_n \)?
4. What is \(\sum_{i=1}^{n} \frac{1}{n^2} \)?

Sums
Let $a_n = \alpha + (n - 1)d$, $s_n = \sum_{i=1}^{n} a_n$. What is s_n?

Let $b_n = \alpha \cdot q^{n-1}$, $S_n = \sum_{i=1}^{n} b_i$. What is S_n?

1. Let $\{a_n\} = \{\frac{1}{2}, \frac{1}{6}, \frac{1}{12}, \frac{1}{20}, \ldots\}$.
2. What is a_n?
3. What is $s_n = \sum_{i=1}^{n} a_n$?
4. What is $\sum_{i=1}^{n} \frac{1}{n^2}$?
5. An interesting sequence: (it has a limit!) $\gamma_n = \log n - \sum_{i=1}^{n} \frac{1}{i}$
Question

Let \(a_n = \alpha + (n - 1)d \), \(s_n = \sum_{i=1}^{n} a_n \).

What is \(s_n \)?

Let \(b_n = \alpha \cdot q^{n-1} \), \(S_n = \sum_{i=1}^{n} b_i \).

What is \(S_n \)?

1. Let \(\{a_n\} = \{\frac{1}{2}, \frac{1}{6}, \frac{1}{12}, \frac{1}{20}, \ldots\} \).

2. What is \(a_n \)?

3. What is \(s_n = \sum_{i=1}^{n} a_n \)?

4. What is \(\sum_{i=1}^{n} \frac{1}{n^2} \)?

5. An interesting sequence: (it has a limit!) \(\gamma_n = \log n - \sum_{i=1}^{n} \frac{1}{i} \)
Question

Let $a_n = \alpha + (n - 1)d$, $s_n = \sum_{i=1}^{n} a_n$.
What is s_n?

Let $b_n = \alpha \cdot q^{n-1}$, $S_n = \sum_{i=1}^{n} b_i$.
What is S_n?

1. Let $\{a_n\} = \{\frac{1}{2}, \frac{1}{6}, \frac{1}{12}, \frac{1}{20}, \ldots\}$.
2. What is a_n?
3. What is $s_n = \sum_{i=1}^{n} a_n$?
4. What is $\sum_{i=1}^{n} \frac{1}{n^2}$?
5. An interesting sequence: (it has a limit!) $\gamma_n = \log n - \sum_{i=1}^{n} \frac{1}{i}$

You will see many more sequences throughout this class and in many other classes.
Definition

Let \(n_1 < n_2 < \ldots n_k \subset \mathbb{N} \). \(a_{n_1}, a_{n_2}, \ldots, a_{n_k} \) is a subsequence of the sequence \((a_i)\).
Definition

Let $n_1 < n_2 < \ldots < n_k \subset \mathbb{N}$. $a_{n_1}, a_{n_2}, \ldots, a_{n_k}$ is a subsequence of the sequence (a_i).

Example

Let $(a_n) = 2, 5, 10, 17, \ldots n^2 + 1$. The sequence $2, 5, 17, 37$ is a subsequence of (a_n) of length 4.

$n_1 = 1, n_2 = 2, n_3 = 4, n_4 = 6$.

Sequences
Definition

Let \(n_1 < n_2 < \ldots n_k \subset \mathbb{N} \). \(a_{n_1}, a_{n_2}, \ldots, a_{n_k} \) is a subsequence of the sequence \((a_i)\).

Example

Let \((a_n) = 2, 5, 10, 17, \ldots n^2 + 1\). The sequence 2, 5, 17, 37 is a subsequence of \((a_n)\) of length 4.

\[n_1 = 1, \ n_2 = 2, \ n_3 = 4, \ n_4 = 6. \]
Definition

Let \(n_1 < n_2 < \ldots n_k \subset \mathbb{N} \). \(a_{n_1}, a_{n_2}, \ldots, a_{n_k} \) is a subsequence of the sequence \((a_i)\).

Example

Let \((a_n) = 2, 5, 10, 17, \ldots n^2 + 1\). The sequence 2, 5, 17, 37 is a subsequence of \((a_n)\) of length 4.

\[n_1 = 1, n_2 = 2, n_3 = 4, n_4 = 6. \]

If we wanted to extend this subsequence (can you propose a “rule”?) what will be \(n_5 \)?
Definition

Let \(n_1 < n_2 < \ldots n_k \subset \mathbb{N} \). \(a_{n_1}, a_{n_2}, \ldots, a_{n_k} \) is a subsequence of the sequence \((a_i)\).

Example

Let \((a_n) = 2, 5, 10, 17, \ldots n^2 + 1\). The sequence 2, 5, 17, 37 is a subsequence of \((a_n)\) of length 4.

\[
n_1 = 1, \quad n_2 = 2, \quad n_3 = 4, \quad n_4 = 6.
\]

If we wanted to extend this subsequence (can you propose a “rule”?) what will be \(n_5\)?

Definition

A sequence \((a_i)\) is monotonically increasing if \(a_{i+1} > a_i\). (Monotonically, decreasing \((<)\), non-decreasing \((\geq)\), non-increasing \((\leq)\) are defined similarly).
Definition

Let \(n_1 < n_2 < \ldots < n_k \subset \mathbb{N} \). \(a_{n_1}, a_{n_2}, \ldots, a_{n_k} \) is a subsequence of the sequence \((a_i) \).

Example

Let \((a_n) = 2, 5, 10, 17, \ldots n^2 + 1 \). The sequence 2, 5, 17, 37 is a subsequence of \((a_n) \) of length 4.

\[n_1 = 1, \; n_2 = 2, \; n_3 = 4, \; n_4 = 6. \]

If we wanted to extend this subsequence (can you propose a “rule”?) what will be \(n_5 \)?

Definition

A sequence \((a_i) \) is monotonically increasing if \(a_{i+1} > a_i \).

(Monotonically, decreasing \((<)\), non-decreasing \((\geq)\), non-increasing \((\leq)\) are defined similarly).

Question

A little puzzle: 10 policemen stand in a line. Can you prove that there are at least four policemen whose heights are monotonic?
Binary Sequences

Binary sequences play important roles in many areas such as electronics, medicine, economics, engineering, computer science and of course mathematics.

1. Integers have a binary representation.

2. There are 2^n distinct binary sequences of length n.

3. In many applications we look for binary sequences with particular properties.

Example 1: How many binary sequences of length 2^n have exactly n 0's?

Example 2: How many binary sequences of length n do not contain the pattern 010?

Example 3: Can you construct a circular binary sequence of length 32 so that each binary sequence of length 5 is a segment of it? (01001 is a segment of 1001001101).
Binary Sequences

1. Binary sequences play important roles in many areas such as electronics, medicine, economics, engineering, computer science and of course mathematics.

2. Integers have a binary representation.
Binary Sequences

1. Binary sequences play important roles in many areas such as electronics, medicine, economics, engineering, computer science and of course mathematics.

2. Integers have a binary representation.

3. There are 2^n distinct binary sequences of length n.
Binary Sequences

1. Binary sequences play important roles in many areas such as electronics, medicine, economics, engineering, computer science and of course mathematics.

2. Integers have a binary representation.

3. There are 2^n distinct binary sequences of length n.

4. In many applications we look for binary sequences with particular properties.

Example 1: How many binary sequences of length $2n$ have exactly n 0's?

Example 2: How many binary sequences of length n do not contain the pattern 010?

Example 3: Can you construct a circular binary sequence of length 32 so that each binary sequence of length 5 is a segment of it? (01001 is a segment of 1001001101).
Binary Sequences

1. Binary sequences play important roles in many areas such as electronics, medicine, economics, engineering, computer science and of course mathematics.

2. Integers have a binary representation.

3. There are 2^n distinct binary sequences of length n.

4. In many applications we look for binary sequences with particular properties.

Example
Binary Sequences

1. Binary sequences play important roles in many areas such as electronics, medicine, economics, engineering, computer science and of course mathematics.

2. Integers have a binary representation.

3. There are 2^n distinct binary sequences of length n.

4. In many applications we look for binary sequences with particular properties.

Example

1. *How many binary sequences of length $2n$ have exactly n 0’s?*
Binary Sequences

1. Binary sequences play important roles in many areas such as electronics, medicine, economics, engineering, computer science and of course mathematics.
2. Integers have a binary representation.
3. There are 2^n distinct binary sequences of length n.
4. In many applications we look for binary sequences with particular properties.

Example

1. How many binary sequences of length $2n$ have exactly n 0’s?
2. How many binary sequences of length n do not contain the pattern 010?
Binary Sequences

1. Binary sequences play important roles in many areas such as electronics, medicine, economics, engineering, computer science and of course mathematics.
2. Integers have a binary representation.
3. There are 2^n distinct binary sequences of length n.
4. In many applications we look for binary sequences with particular properties.

Example

1. How many binary sequences of length $2n$ have exactly n 0’s?
2. How many binary sequences of length n do not contain the pattern 010?
3. Can you construct a circular binary sequence of length 32 so that each binary sequence of length 5 is a segment of it? (01001 is a segment of 1001001101).