1. Consider a particle of charge e traveling in electromagnetic potentials given by $A(r, t) = -\nabla \Lambda(r, t)$, $\phi(r, t) = \frac{1}{\bar{c}} \frac{\partial \Lambda(r, t)}{\partial t}$, where $\Lambda(r, t)$ is an arbitrary, well-behaved function.

(a) Determine the electromagnetic fields described by these potentials.

(b) Show that the wave function of the particle is given by

$$
\psi(r, t) = \exp \left[-\frac{i e}{\hbar} \Lambda(r, t) \right] \psi^{(0)}(r, t),
$$

where $\psi^{(0)}$ is the solution to the Schrödinger equation with $\Lambda = 0$.

(c) Let $V(r, t) = e\phi(r, t)$ be a spatially-uniform, time-varying potential. Show that

$$
\psi(r, t) = \exp \left[-\frac{i e}{\hbar} \int_{-\infty}^{t} \phi(t') dt' \right] \psi^{(0)}(r, t).
$$

Explain the meaning of the lower limit of the integral.

2. Supersymmetric WKB approximation. In lowest order the WKB quantization condition for the one-dimensional potential $V(x)$ is given by

$$
\int_{x_1}^{x_2} \sqrt{2mE_n - V(x)} \, dx = (n + 1/2)\hbar \pi, \quad n = 0, 1, 2, \cdots,
$$

where $x_{1,2}$ are the classical turning points defined by $E_n = V(x_1) = V(x_2)$.

(a) Write this quantization condition for the potential $V_1(x)$ corresponding to the superpotential $W(x)$ in terms of $W(x)$ and the eigenenergies $E_n^{(1)}$. Note that the values of m and \hbar must be kept explicitly here. You may also assume that there is a normalized ground state $\psi^{(1)}_0$. This is said to mean that SUSY is unbroken.

(b) Assume that $W(x)$ is of order \hbar^0, Expand your expression from part (a) in powers of \hbar and keep the terms of zeroth and first order in \hbar.

(c) Show that the order \hbar term can be written as $\frac{\hbar}{2} \sin^{-1} \left[\frac{W(x)}{\sqrt{E_n^{(1)}}} \right]^b_a$, where a and b are the classical turning points defined by $E_n^{(1)} = W^2(a) = W^2(b)$ and that the order \hbar term is exactly given by $\hbar \pi / 2$.

(d) Show that the resulting SWKB approximation is given by

$$
\int_a^b \sqrt{2m(E_n^{(1)} - W^2(x))} \, dx = n\hbar \pi, \quad n = 0, 1, 2, \cdots,
$$

The article by Cooper et al. shows examples for which the SWKB approximation works better than the WKB approximation.

3. Continuation of problem 7 from last week. Consider a superpotential $W(x) = \frac{\hbar}{\sqrt{2m}} (x/L)^5$. Use the SWKB approximation to determine the energy levels of the Hamiltonians $H_{1,2}$

4. Degeneracy of one-dimensional Hermitian potentials, $V(x)$. The aim of this problem is to show that for a one-dimensional potential that is finite everywhere, every bound state wave function is non-degenerate and real (except for a possible constant phase factor).

(a) Consider two solutions u and w corresponding to the same energy, E. Show that $wu'' - w''u = 0$. and $wu' - uw' = \text{const}$.

(b) Show that u and w obey $u = kw$, where k is a constant (not const of previous equation). This means that u and w are basically the same function. There is only one function that has an eigenvalue E, therefore no degeneracies.

(c) Show that u must be real except for a possible constant phase factor.
5. Whereas the Aharonov-Bohm (AB) effect concerns the wave function of a charged particle in the presence of a vector potential \(\mathbf{A} \), the Aharonov-Casher (AC) effect is related to the behavior of a neutral particle with a spin magnetic moment (e.g. a neutron) that moves in an electric field. The AC effect has been demonstrated experimentally by means of a neutron interferometer in a setup shown schematically in the figure.

A neutron wave is split into two coherent parts at \(P \), one of which takes the path \(C \) and the other \(C' \). The spin of the neutron is perpendicular to the page. A very long line charge is normal to the page. The charge per unit length, \(\lambda \), generates an electric field \(\mathbf{E} \). Find a non-relativistic Lagrangian \(L \) that describes the motion of the neutron in this field. The term \(L \) should be linear in \(\mathbf{E} \) and should contain the neutron mass, velocity and spin magnetic moment \(\mu_n \). Show that the phase shift between the two neutron waves at \(Q \) arising from \(\lambda \) is given by

\[
\delta = \pm \frac{\lambda \mu_n}{\hbar c}.
\]

Discuss the signs.

6. Find the Hamiltonian, constants of the motion, energy levels and normalized wave functions of the stationary states of a charged (e), spinless particle moving in a uniform magnetic field \(B \) directed along the \(z \)-axis. Use the vector potential \(A_x = 0, A_y = B x \). You may express your answer in terms of known special functions. Note that this is a three-dimensional problem.

7. Find the Hamiltonian, constants of the motion, energy levels and normalized wave functions of the stationary states of a charged spinless particle moving in a uniform magnetic field \(B \) directed along the \(z \)-axis. Use the vector potential \(\mathbf{A} = \frac{1}{2} \mathbf{B} \times \mathbf{r} \). You may express your answer in terms of known special functions. Note that this is a three-dimensional problem.

8. Consider the situation of problems 6 and 7, but also including the effects of a uniform electric field, \(E \), in the \(z \) direction. Determine the energy levels.